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Abstract— In this paper, we present a local, robot-centric
navigation map optimized for autonomous mobile robots op-
erating in unknown environments, enhancing their onboard
perception systems for collision-free operation with far look-
ahead distances. Utilizing a novel converging covariance cell
representation, our approach effectively analyzes hazards such
as obstacles and hazardous slopes in both terrestrial and aerial
navigation contexts. The new technique specifically targets
mapping from stereo scenarios with ultra short baseline and
highly oblique viewpoints close to the ground.

Our methodology surpasses traditional window-based haz-
ard analysis by resolving sub-cell size obstacles and terrain
gradients at the individual cell level, thereby avoiding the
computational overhead typically associated with such analyses.
It leverages a multi-resolution strategy adaptive to the range
errors common in stereo vision systems, making it particularly
suitable for embedded systems with computational limitations.

Functionality includes constant-time queries for height, ob-
stacle presence, and slope details, boasting improvements in
run time, memory usage, precision, and resolvable obstacle
size compared to existing grid-based mapping algorithms. We
validate our approach through rigorous simulation and real-
world testing. This technique will be used for the local mapping
and collision avoidance on NASA’s CADRE lunar rovers.

I. INTRODUCTION

Terrain perception and local mapping are crucial for
autonomous mobile robots, ensuring safe, collision-free nav-
igation. Specifically, autonomous off-road vehicles and plan-
etary rovers need effective traversability analysis methods
given the constraint of sensor accuracy, noise and limited
available computational resources. Mainly surface obsta-
cles like rocks, holes, or slopes are encountered, making
a 2.5D map representation adequate. To identify hazards,
2.5D geometric grid maps assess discontinuities and slopes
across multiple cells, marking obstacles on an occupancy
grid map for navigation planning [1]. Within these maps,
cell resolution is dependent on the sensor noise and limits the
smallest detectable obstacle. High resolution maps become
unreliable under high sensor noise while large cells fail to
accurately represent obstacles.

The CADRE mission [2], employs short baseline stereo
with an oblique, ground-near angle, generating a point cloud
of uneven point density and measurement noise. High-
density, low-noise data near the robot are scrutinized for
small obstacles, while less precise data from further away
identify larger obstacles for long-term planning. A multi
layered map with different sizes and resolutions is used

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
CA, USA papers@lennart-werner.de, { pproenca,
roland.brockers } @ jpl.nasa.gov

2 Computer Science XVII – Robotics, Julius-Maximilians-Universität
Würzburg, Germany andreas.nuechter@uni-wuerzburg.de

Fig. 1. CADRE rover with the CCM map. Image is generated by overlaying
the super-sampled map (5 cm/cell map, sampled at 1 cm). The piece-wise
linear map cells are visible as small inclined surfels with color indicating
the variance normal to the slope and thus obstacle presence.

to overcome this issue and match the sensor resolution
in the map architecture. Different mapping techniques for
the individual layers make optimal use of the available
information and computational resources.

We present a new technique, estimating the local incli-
nation as well as the intra-cell roughness for each cell as
part of the measurement update. This allows for obstacle
identification without geometric filtering and the detection of
obstacles which are smaller than the resolution of the map.
Fig. 1 illustrates an example of reconstructed terrain for a
CADRE rover.

II. RELATED WORK

Robotic maps vary greatly in their configurations, ranging
from basic binary occupancy maps [1], [3], [4] to intricate 3D
representations based on Oct Trees and Voxels [5], [6]. While
3D maps are highly expressive, their use in path planning and
collision avoidance is computationally intensive, leading to
a preference for 2.5D maps [7], which represent height as a
function of position.

While surface approximation can be achieved through
methods including meshing [8] and piece-wise (bi-)linear
functions [9], these maps pose difficulties in incremental
updating. Fusion of new measurements into DEMs can use
the latest measurement or mean of all heights, with sophisti-
cated techniques employing one-dimensional Kalman Filters
to consider sensor uncertainty during height estimation for
each cell [10]–[12]. The setup in [12] can adapt to dynamic



resolution changes, assisting UAVs in hazard detection.
Kalman-based updates for robot-centric maps with an es-

timated uncertainty deterioration, based on robot movement,
have shown promise in reflecting pose errors accurately in
map uncertainty [13]. However, they assume minimal intra-
cell terrain variance, which can be unrealistic for large cells
encapsulating substantial surface features.

The Optimal Mixture of Gaussians (OMG) update over-
comes this challenge by introducing a variance that approxi-
mates the height distribution of samples [14]. OMG provides
a mean cell height and a confidence band in which the true
terrain lies. Our work builds upon this idea by proposing a
three-dimensional covariance per cell approach inspired by
[15], facilitating the creation of a 2.5D map inclusive of slope
and roughness data.

We align with the strategies in [16], [17] in utilizing
plane fitting to terrain patches within each cell to estimate
slope and roughness, critical for state-of-the-art traversability
analysis. However, we advance beyond these methods by
accommodating multi-size, multi-resolution mapping and fa-
cilitating incremental updates without necessitating iterative
processes unfit for small embedded systems.

Traversability analysis often involves geometric processing
of the height map, incorporating either rover simulation over
a single resolution DEM to identify obstacles [18] or a
roughness filter examining height differences in neighboring
cells to assign roughness values [12]. Despite their appli-
cability, these strategies are computationally expensive and
confined to single resolution maps, hindering the detection
of smaller obstacles [19]. Our approach aims to overcome
these limitations, enhancing the efficiency and effectiveness
of local traversability mapping.

III. CONTRIBUTION

This work introduces a converging covariance map (CCM)
based representation with an incremental update for mo-
bile robotics. State-of-the-art terrain mapping approaches
assume piecewise-constant maps and therefore loose vital
information for traversability analysis due to discretization.
We propose an efficient piecewise linear map that allows to
resolve smaller obstacles with larger cells and do precise
slope estimation without additional cost. Our algorithm is
designed to be executed in real-time on a small embedded
system. Slope and variance are estimated in each cell,
which enables reliable detection of obstacles smaller than
the resolution of the map. A forgetting mechanism keeps the
map adaptable to a changing environment or drift in pose
estimation. Updating the map with new measurements is
performed in linear time with point cloud size, similar to ex-
isting piece-wise constant maps. Buffering of measurements
is not necessary. Supporting multi-size, multi-resolution map
setups for efficient stereo vision based mapping, a pooling
operation is formulated additionally to the incremental mea-
surement update to incorporate measurements consistently
and efficiently into multiple overlapping map layers. The
combination of a traditional piece-wise constant map for the
highest resolution and the new CCM map to estimate slope

Fig. 2. Layout of multi-size, multi-resolution map. Areas in the center are
covered by multiple resolutions.

and roughness for all low resolution layers forms a reliable
and precise local map. The structure is shown in Fig. 2.
Finally, the new map is evaluated and compared to state of
the art techniques.

IV. CONVERGING COVARIANCE MAP

A. Motivation

Height measurement distribution within one cell is affected
by both, the Measurement Variance of the sensor and the
Terrain Variance due to irregularities of the surface. These
variances combine to create the Sample Variance in each cell.

To enhance evaluations, it is beneficial to estimate the
complete three-dimensional sample distribution, represented
by Σs ∈ R3×3, and the intra-cell mean of samples, denoted
as µs ∈ R3. This approach facilitates a detailed assessment
compared to using traditional maps with constant pieces.

As illustrated in Fig. 3, utilizing the full covariance ellip-
soid for each map cell aids in the accurate estimation of slope
and surface-normal variance. This is essential for detecting
obstacles effectively through the analysis of the ellipsoid’s
orientation and shape. Fig. 3 represents a section of the 3D
covariance ellipse, showing one lateral axis alongside the
elevation axis.

B. Cell Representation

In CCM, each cell requires five distinct elements from
a three-dimensional covariance matrix, excluding the corre-
lation between the two lateral axes which is not needed.
The five (co)variance values describe variances across the
three spatial axes and the covariances between the lateral and
vertical axes. Moreover, to counteract unequal distribution
of measurements and allow measurement weighting, each
cell must maintain a record of a three-dimensional mean
and one accumulated weight factor. Consequently, a total
of nine values are stored for every CCM cell, namely the
accumulated weight W , three-dimensional mean µ[x,y,z] and
five-dimensional (co)variance σ2

[xx,yy,zz,xz,yz]. To simplify
the incremental update, (co)variances are memorized as a W
scaled value S = W · σ2, rather than being stored directly.

C. Incremental Update

1) Update Equations: To satisfy runtime and memory
demands, an incremental update for (co)variances and means
is essential. This update (eqs. (1) to (5)), facilitates the
transition from the a-priori state at t − 1 to the posterior
state t utilizing a single-point measurement. The respective
cell must be identified through map discretization before
initiating the update, using the measured coordinates denoted
by M[x,y,z] and yielding the geometric cell center coordinates
C[x,y]. Calculated cell means are shown as µc,[x,y,z]. The
measurement weight, represented as wt in (1), governs the



impact of the new data in relation to the existing dataset.
This weight derives from the sensor model and stands as a
crucial tuning parameter for the map, with a constant value
proving sufficient in tested configurations.

Following the algorithm shown by [20], the incremental
updates of mean and variances have been devised. This
approach was extended to covariances in (5).

Wt =Wt−1 + wt (1)

µm,t =[Mx − Cx,My − Cy,Mz]
T (2)

µc,t,[x,y,z] =µc,t−1,[x,y,z]

+
wt

Wt
· (µm,t,[x,y,z] − µc,t−1,[x,y,z])

(3)

S[xx,yy,zz],t =S[xx,yy,zz],t−1 + wt · (µm,t,[x,y,z]

− µc,t−1,[x,y,z]) · (µm,t,[x,y,z] − µc,t,[x,y,z])
(4)

S[xz,yz],t =S[xz,yz],t−1 + wt · (µm,t,[x,y] · µm,t,[z,z]

− µc,t−1,[x,y] · µc,t−1,[z,z])

+Wt · (−µc,t,[x,y] · µc,t,[z,z]

+ µc,t−1,[x,y] · µc,t−1,[z,z])

(5)

2) Weight Limiting: To ensure consistent significance for
new measurements in the incremental update, a convergence
limiter is implemented. This step is essential as the current
setup tends to diminish the relevance of new data over
time, with the accumulated weight, W , increasing through
straightforward addition (1). This growth in W can also lead
to float precision issues, causing S values to escalate to a
point where they cannot be precisely represented.

This limiter activates when the accumulated weight ex-
ceeds a specified threshold, Wl. In this case, the procedures
outlined in eqs. (6) to (7) are executed to maintain the
relative weight of new measurements and keep the map’s
adaptability to evolving surroundings and resilience towards
pose estimation drift. It essentially ensures a controlled
response to environmental changes by dictating the influence
of new observations after full convergence.

Wt+1 = Wl (6)
S[xx,yy,zz,xz,yz]t+1 = S[xx,yy,zz,xz,yz],t ·Wl/Wt (7)

D. Map Query

A CCM map query provides the cell’s mean height, two-
axis inclination, and surface normal variance, allowing for
sub-cell resolution estimations of height and inclination. The
procedure for querying the X and Y axis inclinations (a, b),
along with the elevation (hq) at the query point designated as
([qx, qy]T ), is presented in eqs. (8) to (10). The queries utilize
the Euclidean center coordinates of the queried cell, denoted
as C[x,y]. Furthermore, the surface-normal variance σ2

s query
is calculated by equation (11). The total surface inclination
is expressed by itotal =

√
a2 + b2. These metrics are vital

in assessing traversability through threshold comparison, a

0.05 0.00 0.05 0.10 0.15 0.20
x [m]

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

z 
[m

]

Sample Covariance

Ground Truth
3   Measurement

3   Sample Covariance

Measurement

σ
s
2

Fig. 3. 2D sliced CCM cell: Visualizing measurements, stereo measurement
uncertainty and sample covariance. The cell contains an obstacle.

process detailed in section IV-E.

qc = [qx − Cx, qy − Cy]
T (8)

a =
σ2
xz

σ2
xx

, b =
σ2
yz

σ2
yy

, c = µc,z − a · µc,x − b · µc,y (9)

hq = c+ a · qc,x + b · qc,y (10)

σ2
s = σ2

zz −
σ4
xz

σ2
xx

−
σ4
yz

σ2
yy

(11)

Sub-cell elevation interpolation presumes an equal sample
distribution within a cell, a condition disrupted by shadow-
ing. As a result, partially covered cells are labeled as un-
known. A cell of width w is considered adequately covered if
the lateral standard deviations exceed a user-defined fraction,
τ , of the maximum theoretical value as given in (12). In this
study, setting τ = 0.8 yielded good results.

σxx, σyy ≥ τ ·
√

w2

12
(12)

E. Normal Variance Thresholding

The dependency between surface-normal variance and
obstacle presence is illustrated in Fig. 3. The derived surface
normal variance, denoted as σ2

s , portrays the bulkiness of
the ellipsoid, aiding in sub-cell discontinuity detection. The
variance threshold for a given obstacle height is determined
through simulation.

A ground truth step of the minimum obstacle height
is simulated, followed by computing the surface normal
variance for increasing obstacle cell coverage levels. The
resulting variance is exemplified in Fig. 4 for 32 cm cells
with obstacles, equivalent to 75% of the cell width (24 cm).
Setting the threshold to the variance of 50% cell coverage
enables the detection of obstacles covering 11% to 91%
of the cell, although the threshold can be modified to
suit different scenarios, sensor configurations or expected
obstacles.

F. Pooling

Pooling serves as a crucial strategy in significantly reduc-
ing the computational burden in multi-layer, multi-size map-
ping algorithms. It allows new measurements to be incorpo-
rated solely at the highest available resolution, bypassing the
necessity of updating all layers; the lower resolution layers
are only updated at the time of query through the fusion of
high-resolution cells. However, given that individual CCM
cells estimate distinct distributions characterized by unique
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Fig. 4. Cell variance for obstacle coverage levels.

means and covariances, merging them into a single entity
using traditional means is not feasible. Standard Gaussian
mixture approaches, which operate under the assumption of
all measurements observing a uniform value, are inapplicable
here [14]. The appropriate strategy to pool four higher-
resolution CCM cells (references with subscript c) into
a single lower-resolution cell (subscript C) is outlined in
eqs. (13) to (15) and is based on the combination of partially
observed distributions. The additional index i identifies one
of the small cells which are to be merged.

µC =
Σ4

i=0µc,i

4
(13)

σ2
C,[x,y,z] =

1

4
· [Σ4

i=0σ
2
c,[x,y,z],i + (µC,[x,y,z] − µc,i,[x,y,z])

2]

(14)

σ2
C,[xz,yz] =

1

4
· [(Σ4

i=0σ
2
c,[xz,yz],i + (µC,[x,y] − µc,i,[x,y])

· (µC,z − µc,i,z)]
(15)

G. Size Considerations

Since CCM estimates the measurement sample distribu-
tion, it is vital to pay attention to the stereo sensors’ measure-
ment noise. The chosen cell size must be sufficiently large to
prevent range noise from dominating the variance induced by
terrain features within a cell. Otherwise, CCM will estimate
values influenced more by the camera’s incidence angle
rather than the ground truth inclination and roughness.

To ensure the dominant axes in the covariance reflect
the surface rather than sensor noise, one must compare the
measurement standard deviation (σm) with the anticipated
standard deviation of a uniform distribution of cell dimen-
sions, defined as σr =

√
w2

12 , where w denotes the cell width.
A CCM convergence to the terrain values requires σr to be
at least twice as large as σm for reliable rejection of the
range noise. Consequently, this constrains the cell size with
a lower bound for a given distance and sensor model.

V. EXPERIMENTAL EVALUATION

We evaluate the CCM algorithm’s performance relative to
existing piece-wise constant mapping techniques, verifying
its advantages in precision and sub-cell obstacle detection.
We chose the in elevation mapping most commonly used
Kalman update and the more advanced and sample-variance
aware OMG update as representatives for the piece-wise
constant maps to benchmark against. We assess the algo-
rithms based on their terrain representation accuracy and

Fig. 5. 20 x 20m map. CCM, OMG, KF at 3m resolution. Evaluation of
precision (left) and variance representation (right). Precision: color indicates
error between real terrain and map estimate. Variance: White indicates areas
where elevation error < 3σ. Color quantifies error outside these bounds.

hazard detection capabilities. Here, hazards refer to areas
exceeding a specified local inclination or featuring terrain
discontinuities beyond the acceptable limit.

A. Reconstruction Precision and Variance

This section evaluates precision and confidence using
synthetic data from a noise-added point cloud based on
simulated terrain, as shown in Fig. 5.

In a 3m resolution test, there’s a clear distinction in ele-
vation error plots on the left, showing the absolute difference
between actual and estimated elevations and revealing finer
details beneath the cell level. This difference underscores
the discrepancy between piece-wise linear and constant map-
ping techniques. Both Kalman and OMG updates produce
identical elevation error maps and total RMS errors due to
their identical elevation estimation processes. The CCM map,
however, displays significantly lower errors in individual
cells, leading to a lower overall elevation reconstruction error
(RMS error of 0.07 vs. 0.15 in piece-wise constant maps).
Further tests indicate that Piece wise Constant maps and
CCM with half resolution achieve similar continuous terrain
precision, maintaining comparable memory usage.

The right column’s variance violation plots assess the
variance accuracy, highlighting areas where the actual sur-
face falls outside the estimated variance’s 3σ band. The
Kalman update fails to accurately represent sample variance,
while OMG and CCM accurately predict sample variance.
However, OMG’s utility is limited due to its sensitivity
to both inclination and surface roughness when estimating
elevation variance. In contrast, CCM uniquely estimates
variance orthogonal to the first-order fit, separating slope
from roughness and resulting in lower variance figures.
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Fig. 6. Obstacle detection performance CCM

B. Obstacle Detection

The CCM algorithm’s obstacle detection capability was
evaluated through high-fidelity simulations and real-world
data, focusing on scenarios from NASA’s CADRE mission.
CADRE rovers use ultra-short baseline stereo cameras with
a 5 cm separation, positioned 17.5 cm above the ground. The
CCM layers are calibrated for obstacles sized at 75% of a
cell, as outlined in section IV-E. For comparison, roughness
filter thresholds for contemporary maps activate at a 20 deg
slope when set to the lowest effective value.

A series of Monte-Carlo simulations assessed map per-
formance across various lunar terrains, paths, and obstacle
sizes using a block-matching stereo vision algorithm for
precise depth and noise evaluation, closely replicating actual
rover setups. In these simulations, cell classifications at each
timestep were recorded as correct, false positive (missed
obstacle), false negative (incorrectly marked obstacle, yet
passable), or unknown (not observed), determined by their
traversal characteristics and real obstacle presence.

As depicted in Fig. 6, each data point aggregates the time-
summed areas of correctly and incorrectly classified regions
for distinct obstacle dimensions. The graph shows a dip
in false positives as obstacle size escalates, identifying the
obstacle detection capacity across different resolutions.

A partial detection of an obstacle still causes a visible
false positive rate which impacts the measured precision. The
small residual false positive rate after the main drop is caused
by stereo border effects and do not pose a drive hazard as
explained in Section V-E. Due to the conservative tuning of
safety margins, a false negative of only 50% is achieved. The
false negative areas are all adjacent to a real obstacle.

Obstacle detection in piece-wise constant maps is con-
strained by the need for the roughness filter. As shown in Fig.
7 and supported by [19], reliable detection occurs when the
obstacle size is approximately 3× the map resolution. This
ensures correct obstacle height representation in the map.

Evaluating slope in a piece-wise constant map can also be
done using a roughness filter or by fitting a plane to multiple
cells. Both techniques are computationally intensive tasks.
The roughness filter threshold, influenced by slope, thus
cannot be arbitrarily lowered to detect smaller obstacles with-
out increasing false negative rates in inclined areas. These
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Fig. 8. Picture of the test setup at JPL.

operations, supplementary to map updates and roughness
estimation, are unnecessary with the CCM algorithm.

C. Real World Tests

Real-world tests were performed to validate simulation
results, utilizing various sized rock and crater obstacles
situated in the JPL Mini Marsyard, depicted in Fig. 8 and
Fig. 9. An external optical pose tracking system ensured
evaluation independence from localization, with seven Vicon
Vantage cameras [21] delivering pose updates at 100Hz.
A survey-grade laser scanner served as the ground truth
for elevation and obstacle assessments. Common targets in
the Vicon data and laser scans are used for the alignment
of ground truth elevation data and the odometry frame.
This enables precise qualitative and quantative evaluation of
precision and obstacle detection performance.

The same evaluation pipeline applied to simulated data
was used in real-world experiments to maintain consistency.
Real-world findings match the simulated results, affirming
the relative terrain reconstruction precision between the maps
and the reproducibility of obstacle detection performance
in real settings. The proposed algorithm and setup runs on
the target hardware (Snapdragon 820) with 850px × 650px
stereo at 80ms update time and a refresh rate of 5Hz.

Fig. 9 shows a terrain patch mapped by CCM and OMG.
The top row compares the DEM smoothness at an identical
map resolution, while the bottom row highlights the accurate
detection of a small obstacle by an 8 cm CCM layer —
a detail not captured by the piece-wise constant map with
double the resolution.



Fig. 9. Real world data CCM (left column) and OMG (right column). Top
row: Terrain reconstruction of a crater (both maps in top row resolution:
8 cm for visual comparison). Bottom row: OMG with twice the resolution
(4 cm) does not detect an obstacle CCM finds at 8 cm.
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D. Drift Resilience

The integration cap Wl greatly affects drift resilience. In
piece-wise constant maps, obstacles can drift outside labeled
areas, a problem compensated for by averaging. Conversely,
CCM mistakenly marks safe terrain as hazardous due to
heightened sample variance arising from pose estimate drift.

We assessed drift resilience via simulation on wave shaped
terrain, to represent the worst case scenario. Fig. 10 presents
the findings for 4 cm and 8 cm resolution maps. The chosen
Wl withstands drift by 8% for 4 cm and 16% for 8 cm,
proving robustness to anticipated pose estimation drift.

E. Limitations

Depth errors from stereo vision predominantly escalate
at object borders, leading to point cloud streaks. This is
especially fatal at the top rim of an obstacle, where incor-
rect depth values extend measurements far behind the real
obstacle. Since areas behind an obstacle lack measurements,
these false data points significantly affect those cells, forming
a flat surface in the obstacle’s shadow. This can potentially
misclassify a cell as traversable if it surpasses the minimal
measurement threshold. However, since this phenomenon is
confined to an obstacle’s rim and extends behind it, it does
not pose an immediate driving risk.

VI. APPLICATIONS

Low-resolution maps benefit from the discussed technique,
as high measurement noise and sparse sensor data render

high-resolution maps unsuitable. Traditional geometric fil-
tering proves inadequate for obstacle detection here.

Developed primarily for NASA’s CADRE mission, the
CCM algorithm within a multi-size, multi-resolution map-
ping framework, reliably detects obstacles over 48 cm at a
5m detection range. The strategy suits the mission’s unique
setup involving a small stereo camera baseline and a ground
clearance, which causes variable error variance in depth
images. These factors, coupled with restrictions on map
size, minimum obstacle detectability, and slope traversability,
negate the utility of conventional piecewise constant maps.

The presented map can be used with different types of 3D
sensors such as Lidar, Radar or SFM sensors. The sensors
measurement noise model is required to find the correct cell
resolution for the desired map size.

VII. CONCLUSION

CCM serves as an effective tool for simultaneously es-
timating the height and slope of a terrain, presenting a
viable solution for computationally limited mobile robotic
platforms that require both slope and hazard data for secure
operations. It outperforms traditional methods utilizing piece-
wise constant elevation maps in precision, while consuming
comparable computational resources.

The multi-resolution methodology aptly addresses the in-
creasing range uncertainty encountered in 3D reconstructions
generated by stereo camera systems, finding substantial ap-
plicability in autonomous vehicles. Presently, we are adapt-
ing this approach for NASA’s upcoming CADRE mission
scheduled for lunar deployment in 2024 [22].

VIII. FUTURE WORK

Currently, CCM integrates pre-aligned point clouds from
stereo vision into a unified map representation, utilizing a
sample covariance distribution in each cell to generate prob-
ability predictions for incoming measurements. This frame-
work could evolve to incorporate pose estimate corrections
based on the derived observation probabilities, mitigating
pose drift. Furthermore, the covariance parameters can foster
quicker map patch matches, enabling global mapping and
patch stitching through efficient covariance cell alignments,
a strategy that promises to be faster than the conventional it-
erative closest point (ICP) algorithm used in map alignments.

Full 3D reconstruction with the presented technique would
also be feasible, but requires a different voxel based memory
setup and slight modification of the measurement update.

Due to the high obstacle detection performance and low
computational load, JPL will investigate the usability of the
presented map for landing site detection in future martian
areal vehicles.
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