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Abstract

State-of-the-art LiDAR-based 3D scanning and mapping systems focus on scenarios
where good sensing coverage is ensured, such as drones, wheeled robots, cars, or
backpack-mounted systems. However, in some scenarios more unconventional sensor
trajectories come naturally, e.g., rolling, descending, or oscillating back and forth, but
the literature on these is relatively sparse. As a result, most implementations developed
in the past are not able to solve the SLAM problem in such conditions. In this chapter,
we propose a robust offline-batch SLAM system that is able to address more challenging
trajectories, which are characterized by weak angles of incidence and limited FOV while
scanning. The proposed SLAM system is an upgraded version of our previous work and
takes as input the raw points and prior pose estimates, yet the latter are subject to large
amounts of drift. Our approach is a two-staged algorithm where in the first stage coarse
alignment is fast achieved by matching planar polygons. In the second stage, we utilize a
graph-based SLAM algorithm for further refinement. We evaluate the mapping accu-
racy of the algorithm on our own recorded datasets using high-resolution ground truth
maps, which are available from a TLS.

Keywords: 3D LiDAR, mobile mapping, scanning, spherical robot, pendulum,
descent, small FOV, Livox, Intel, RealSense

1. Introduction

Mobile systems increasingly gain astonishing capabilities when it comes to 3D
sensing, mapping, and environment reconstruction (Figure 1). Nowadays, there exist
many mobile systems in different shapes and sizes that are able to perform these tasks,
e.g., drones, wheeled or tracked robots, or backpack-mounted systems, just to name a
few. A key aspect of fulfilling their purpose is the estimation of the systems inertial
frame of reference, i.e., the systems local coordinate system, with respect to a global
reference frame. This global reference frame has an origin somewhere in the respec-
tive environment and is usually initialized with the systems starting position and
orientation (pose). By expressing the local measurements in the global frame, the
system is able to create a map of the environment whilst localizing itself in it. This
process is called simultaneous localization and mapping (SLAM), and only works if
the initial pose estimation of the system is sufficiently accurate. The types of robot
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designs mentioned earlier are often favored since they have access to quite accurate
prior pose estimates (GNSS, odometry, visual odometry, etc.) and reliable coverage
while sensing the environment with cameras or laser scanners. In such conditions, it is
typically easy to perform laser-based SLAM, either online (for autonomous mobile
robots) or as a post-processing step. Yet, there are still many situations where condi-
tions are poor, inferring uncertainties to prior pose estimates and thus degrading
SLAM performance. Visual feature tracking with a camera, for example, only works in
good lighting situations, and GNSS might not be available. Using IMUs as the only
pose estimation device usually is also not an option, due to the large accumulation of
measurement errors caused by noise and drift which makes position estimation diffi-
cult. Even high-end devices, e.g. in aviation systems, must be combined with other
references like GNSS in order to be reliable. The ability of LiDAR-based SLAM algo-
rithms to deal with degradation puts constraints on current mobile system designs, as
well as their applications. Therefore, extending the capabilities of SLAM algorithms to
more unusual scenarios opens up interesting design choices for mobile systems, espe-
cially in hazardous environments. The intention of this chapter is to provide a general
and robust LiDAR-based solution for the SLAM problem, which is independent with
respect to the executed trajectories and sensor setups. We note the utilization of a
Livox Mid-40 scanner, which is considered a solid-state LiDAR in [1]. Yet in [2], the
family of Livox scanners is only considered to be “semi solid-state” LiDARs, due to
their non-repetitive scanning pattern. Solid-state LiDAR got a lot of attention in the
past years due to “their superiority in cost, reliability, and [… ] performance against
the conventional mechanical spinning LiDARs [… ]” [3]. While traditional LiDAR is
based on electro-mechanic parts which move the sensor head, solid-state LiDAR relies
on micro-electro-mechanical systems (MEMS), optical-phase arrays (OPA), or Risley
prisms. Despite their potential advantages, solid-state laser-scanners impose new
challenges for established SLAM algorithms, e.g., small FOV, an irregular scanning
pattern with non-repetitive scanning which makes feature extraction more difficult,
and increased motion blur. In this work, we address these challenges by making the
assumption that planar structures are available in the environment. Due to the utili-
zation of planes, the envisioned applications are in human-made environments, e.g.,
old buildings that are in danger of collapsing, narrow underground tunnels, construc-
tion sites, or mining shafts. Many mobile mapping systems present in the current
literature have access to accurate pose estimates, as well as good sensing coverage. We
present four notably interesting experimental setups which do not meet those

Figure 1.
(Left) post-processed 3D point cloud acquired by a sensor that is rotating freely while being descended with a crane
from a fire truck. Prior pose estimates are available from three IMUs and an angular encoder, which encodes the
rotation of the cable reel. (Center) the firetruck. (Right) the sensor, which is mounted to the crane of the firetruck.
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conditions. The main sensor in each scenario is a LIVOX MID-100 laser scanner,
which is inconvenient due to its limited FOV and unique scanning pattern. Figure 2
illustrates the different executed motions. (1) We descent a freely rotating 3D sensor
from a crane. Prior pose estimates are available from three IMUs and a rotary encoder
on the cable reel. (2) Further, we use the sensor as a pendulum, oscillating back and
forth while walking. The robot obtains prior pose estimates from a T265 tracking
camera, which uses its own internal IMU. (3) Moreover, we roll the sensor around on
flat ground. An IMU-only-based approach with three units estimates the pose of the
system [4]. The approach combines two popular filters (Madgwick- and
Complementary-filter) and estimates the position by relating the rotational velocity
and radius of the sphere to its traveled distance. Further constraints are present in the
filter to account for slippage and sliding effects of the sphere. (4) Finally, we repeat
the previous experiment but substitute the 3D sensor with a 2D sensor, which mea-
sures parts of the environment in planar slices. Rotating the planar slice thus results in

Figure 2.
Illustration of the executed sensor trajectories (left) and images of system setups during operation (right).
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a 3D reconstruction of the scene. For pose estimates, we use a rotary encoder and a
single IMU. Section 4 describes all experimental setups in more detail. The prior pose
estimates are subject to a significant amount of noise and drift. Some scenarios are
more difficult than others since the robot locomotion mechanism causes the sensor to
move in five, or even all six degrees of freedom (DOF). In this work, we refine our
offline-batch SLAM system from [5] to make it more robust, such that it is able to
address the unfavorable conditions imposed by more challenging trajectories. Section
3 introduces the two-staged SLAM algorithm, where the first stage uses a polygon-
based approach for a fast coarse alignment, and a graph-based method in the second
stage for slow further refinement. We evaluate the accuracy of the resulting maps by
means of ground truth point clouds, which are available from high precise terrestrial
laser scanning (TLS). Note that in this initial study, no trajectory ground truth has
been recorded. This is a task for future work. In particular, the contributions of this
work are as follows:

• Fixing the open problem mentioned in previous work [5], where after the
application of the SLAM algorithm the resulting trajectories were jagged instead
of smooth.

• Reducing the number of hyperparameters for our SLAM algorithm [5] by seven,
without the sacrifice of flexibility or performance. We achieve this by
substituting the iterative optimization using AdaDelta with a closed-form
solution based on singular value decomposition (SVD).

• Introducing major technical improvements regarding our SLAM procedure from
previous work [5], which increase the robustness of the algorithm. These include
the substitution of the local planar clustering (LPC) with a different plane
detection framework according to [6], as well as the implementation of a simple
global plane model that builds up sequentially as new range measurements arrive.

• Introducing a globally consistent graph-based method, “semi-rigid SLAM,”
according to [7] as an additional post-processing step, to further decrease the
amount of accumulated registration errors.

• Publishing the challenging datasets themselves, as we encourage readers to try
their own SLAM algorithms on them. A more detailed description of the datasets
is found in Section 4.

2. Related work

Many state of the art 3D scanning and mapping approaches for mobile systems are
based on wheeled robots, drones, or backpack-mounted solutions. On the other hand,
the literature regarding mobile mapping systems with more unconventional trajecto-
ries is relatively sparse. In the most recent past, our lab has addressed the subject more
frequently with the “RADial LasER scanning device” (RADLER) [8], the “Laser-
Mapping Unidirectional Navigation Actuator” (L.U.N.A.) [9], and another publica-
tion regarding rolling 3D sensors in human-made environments [5]. RADLER is a
modified unicycle where a SICK LMS141 2D scanner is fixed to the wheel. As far as we
know it was one of the first systems where the same rotation that is used for
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locomotion is also utilized to actuate the sensor. L.U.N.A. extends this idea by
employing a self-actuated locomotion approach using internal flywheels. Another
noticeable trend, despite being only a concept so far, is the European Space Agency’s
(ESA) interest in spherical robots capable of SLAM, called DAEDALUS [10]. In their
Concurrent Design Facility (CDF) study, we developed a mission to autonomously
explore underground caves and lava tubes on the moon with DAEDALUS [11], which
emphasizes the potential of this type of system design for hazardous environments.
More examples of scanning mobile systems with unconventional trajectories include
Zebedee [12], a handheld 2D range scanner mounted on a spring that estimates its
pose using an IMU, or VILMA [13], an IMU-less rolling system that uses only range
measurements for localization. It later advanced into a commercial solution called
“ZEB-Revo” [14]. Leica also provides a handheld sensor for mobile mapping purposes
with their BLK2GO [15]. Alismail and Browning [16] provide a marker-less calibration
procedure for spinning actuated laser scanners, where the extrinsic parameters with
respect to the spinning axis are estimated. In this initial study, we go without fine
calibration of extrinsic as the constant calibration errors are less significant than the
errors introduced by the factors stated in the previous section. In terms of laser-based
SLAM, many algorithms for 6 DOF are available, often based on the well-known
Iterative-Closest-Point (ICP) algorithm [17]. Lu and Milos [18] derive a graph-based
2D variant that considers all scans simultaneously in a global fashion. Later, their
approach got adopted for 3D point clouds in 6 DOF [19] and extended further to a
semi-rigid continuous-time method [7]. This is the method we use in this work as an
additional post-registration step, to reduce the amount of accumulated errors during
the first scan-matching stage. Another recent continuous-time graph-based frame-
work is “IN2LAAMA” [20], which is able to perform localization, mapping, and
extrinsic calibration between a laser-scanner and IMU at the same time. It is an
offline-batch method optimized for 360° FOV multichannel LiDAR devices and has
been extensively tested with a Velodyne VLP-16, yet is not suited for the application
to recently arising solid state laser-scanners. There also exist continuous-time graph-
based online methods, such as [21] which organize and optimize the system poses
using a multilevel hierarchical graph. This method achieves comparable accuracy as
similar offline-batch methods by means of multiresolution surfel-based registration.
However, the approach is also optimized for traditional multichannel laser scanners
and has been tested on carefully controlled micro aerial vehicles (MAVs), which
ensures good coverage. More approaches to laser-based SLAM exist that do not rely
solely on point-to-point optimization as ICP does. Popular model-based optimization
methods often deal with finding planes in the environment, as considering planes is
more robust to outliers and noise than considering only points. In Ref. [22], Förster
et al. successfully use plane-to-plane correspondences for optimization. Their
approach assumes that planar patches got pre-extracted from the point cloud with a
method of choice, and incorporates possible uncertainties in the plane model. Further
recent examples of laser-based SLAM approaches making use of the existence of
planes include [23–26]. Similar registration procedures to ours are [27], which uses
plane-to-plane correspondences for pre-registration and point-to-plane correspon-
dences afterward, and [28], which uses point-to-point, as well as plane-to-plane
correspondences based on their availability. Two more recent and very interesting
SLAM approaches which specialize more on the massivley produced LiVOX devices,
are “Loam-livox” [3] and “Livox-mapping” [29]. The former is based on the well-
known LOAM [30] algorithm, while the latter is provided directly by Livox. Both
have been especially optimized for small FOV devices and offer a feature extraction
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approach which is suitable for the never repeating, flower-shaped scanning pattern.
However, they have been designed with the intention of using them for autonomous
driving cars, which follow simpler trajectories compared to this work.

3. SLAM approach

To address the unconventional trajectories, we use a flexible two-staged SLAM
approach, which is described in this section. We initially proposed a version of the
first stage in [5]. The approach is based on finding planar polygons in the scans and
matching them against a global model. In this section, we build upon our previous
work and introduce several changes. The second stage of our algorithm is “Semi-Rigid
SLAM” [7], which further decreases accumulated registration error from the first
stage. It is a continuous-time method where each frame is optimized simultaneously
using a partially connected pose graph. Figure 3 shows a block diagram representing
the information flow of the SLAM system, including the additions made in this work.
Some basic derivations stay the same (see [5] for further details). Let a point in 3D
space be defined as pi ¼ xi, yi, zi

� �τ. Further, a homogeneous transformation of that
point along the translation t ¼ tx, ty, tz

� �τ and rotation defined using the roll-pitch-
yaw (φ� ϑ� ψ) Tait-Brian angles is given:

T pi

� �

¼

xiCϑCψ � yiCϑSψ þ ziSϑ þ tx

xi CφSψ þ CψSφSϑ
� �

þ yi CφCψ � SφSϑSψ
� �

� ziCϑSφ þ ty

xi SφSψ � CφCψSϑ
� �

þ yi CψSφ þ CφSϑSψ
� �

þ ziCφCϑ þ tz

2

6

4

3

7

5
, (1)

where Ca and Sa denote cosine and sine with argument a. Additionally, let a plane
in 3D space be defined as ρk ¼ nρk

, aρk
� �

, where nρk
is the normal vector of the plane

and aρk is its supporting point. The problem we must solve is an optimization problem,
where the following error function E has to be minimized:

Figure 3.
Overview of the proposed SLAM system. The polygon map represents a set of flat, convex-shaped bounding boxes of
dominant planes. This model is used to find similarities between polygons from subsequent sensor data.
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E Tð Þ ¼
X

ρk

X

pi ∈ ρk

∥nρk
� T pi

� �

� aρk
� �

∥2 , (2)

Note that point-to-plane correspondences (pi ∈ ρk) have to be available, which we
establish by matching polygons similar to [5]. However, the global polygon model in
this work is not extracted only once as an initialization step, as in our previous work. It
is instead a new global model, which is initialized and then updated sequentially. Our
plane detection approach does also not rely on local planar clustering (LPC) anymore.
The old method is a region-growing-based approach to cluster points with similar
normals, whereas the new approach uses a Hough-transformation (HT) framework as
in Ref. [6]. We describe the abovementioned additions in the following subsections in
more detail.

3.1 Local and global plane model

As mentioned earlier, in our previous work [5], we rely on LPC to identify planes
in each scan, as well as the points that belong to those planes. The approach calculates
normal vectors for each point and clusters them into planar patches based on their
distance and angle. Then, after each point in a scan was potentially identified to
belong to one plane, correspondences have to be established with respect to the global
model. In Ref. [5], we obtain the global model by extracting planes from only a few
initial measurements according to Ref. [6].

In this work, we replace LPC with that same approach [6] to identify planes in
each scan. The new approach is based on a randomized version of the well-known
Hough transformation (see Algorithm 5 in Ref. [6]). After a plane has been identified
in the Hough space, all the points belonging to that plane are considered, and their
convex hull is calculated. However, instead of deleting all the points close to the newly
identified plane, we save them in a point cluster and link it to the corresponding plane.
That way, we are still able to establish point-to-plane correspondences as in our
previous work. Figure 4 illustrates how the extracted planes from each frame are used
to sequentially update the global model. The upper sequence of Figure 4a shows the
abovementioned point clusters with their corresponding planes for different frames.
Note that in the last figure of the sequence, identical planes from the different frames
are merged after registration. The bottom Figure 4b shows the resulting global plane
model, as well as the point cloud after registration of all frames. Merging two planes
works by considering all the points on both convex hulls, and recalculate the convex
hull and normal vector from those points. Note that this is not fully a dynamic model,
as polygons are added sequentially but never refined or even falsified after being
added, leading to registration errors such as duplicate and misaligned walls. Now that
we have a global plane model, as well as planar point clusters in each subsequent
frame, we use the matching function from our previous work [5] to establish corre-
spondences between the two. In the next subsection, we use these correspondences to
minimize Eq. (2).

3.2 Closed-form solution with singular value decomposition

In our previous work [5], the minimization of Eq. (2) is achieved by the AdaDelta
[31] method, which is based on analytical jacobians and stochastical gradient descent
(SGD). However, SGD-based methods require multiple iterations until they converge
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to a solution. Furthermore, a hyperparameter is added for each of the six degrees of
freedom, as well as an additional parameter specifying the maximum number of SGD
iterations before updating correspondences. These parameters are not required any-
more, as we now introduce a closed-form solution based on singular value decompo-
sition (SVD). The first appearance of SVD in the context of point set registration is in
Ref. [32]. The solution assumes that point-to-point correspondences exist, instead of
point-to-plane correspondences. To this end, we must first calculate the projection
point from our source point to the target plane. Therefore, the source point gets
shifted onto the target plane in the direction of the plane’s normal vector. Let D be the
signed distance of the point to the plane in the normal direction:

Di
k ¼ nρk

� T pi

� �

� aρk
� �

: (3)

Then, the projection point onto the plane is given as:

Pi
k ¼ T pi

� �

�Di
k � nρk

: (4)

We use this point for point-to-point correspondence. However, we note that Pi
k is

also on the corresponding plane, thus solving the point-to-point problem with SVD
also minimizes our initial Eq. (2). First, we need the correspondence centroids, i.e.,
the centroid of all the plane projection points, and the centroid of all the data points.
Let N be the number of correspondences, then the centroid of plane projections is as
follows:

Figure 4.
Illustration of how the global plane model is obtained and sequentially extended from individual measurements.
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cm ¼
1
N

X

pi ∈ ρk

Pi
k , (5)

and the centroid of data points is as follows:

cd ¼
1
N

X

pi ∈ ρk

T pi

� �

: (6)

We set up the real 3x3 correlation matrix M as follows:

M ¼
X

pi ∈ ρk

T pi

� �

� cd
� �

Pi
k � cm

� �τ
, (7)

which is decomposed using SVD as follows:

M ¼ UΣVτ
: (8)

The interested reader might consider [33] for a detailed description on how the
decomposition works. We set up another real 3x3 rotation matrix R, which solves the
rotation needed to minimize Eq. (2):

R ¼ VUτ
: (9)

From this, the translation that minimizes Eq. (2) is calculated as follows:

t ¼ cm � Rcd : (10)

Note that this is a closed-form solution that does not need any hyperparameters. In
contrast, AdaDelta [31] needs a hyperparameter for each of the 6 degrees of freedom
plus an additional parameter for the maximum number of inner iterations.

3.3 Condense and atomize

Our previous work [5] mentions that after the application of the algorithm, i.e., the
first stage in this work, the resulting paths look distorted. This is due to two reasons:
(1) The individual frames are “condensed” into metascans, which are referenced with
only one pose. We call a collection of multiple subsequent scans, which are
represented using a shared coordinate system, a metascan. (2) Some scans do not
contain any points due to minimum scanning range, e.g., when rolling over the floor,
thus they are not optimized. We fix these problems by introducing the inverse oper-
ation to “condense,” which is able to distribute the relative transformation that got
applied to the metascans, back onto the individual scans. This back-distributing oper-
ation is what we call “atomize.” Figure 5 illustrates the process of condensing, regis-
tration in the condensed domain, and atomizing. During the condense operation, one
has to transform all points from different frames in the same reference coordinate
system. Note that we start counting the frames with one. Let J be the number of all
frames, which should be condensed to a total number ofM frames, where M≤ J. Let S
be an arbitrary integer chosen from the interval 1, ⌊ J

M⌋
� �

. The number S defines which
frame we pick as a reference coordinate system for the points from the other scans in
the interval. Next, consider all J frames, given has homogeneous 4x4 matrices,

9

Unconventional Trajectories for Mobile 3D Scanning and Mapping
DOI: http://dx.doi.org/10.5772/intechopen.108132



H1, H2, ⋯, HS, ⋯, H2S⋯HJ

� �

. The frames with indices m � S (where m≤M) are the
indices of the metascan frames, where all points from the other frames, corresponding
to the same interval, must be transformed in. Thus, the relative transformation
between any single frame with index j≤ J and metascan frame with index m is as
follows:

Hm,j ¼ H�1
m�SHj : (11)

We apply this transformation to every point in the j-th frame, for all J frames. Now
we have a total of only M metascan frames Hm�S, i.e., HS, H2S, ⋯, HM�Sf g, which are
input to our first SLAM stage. After the application of the first stage, there are M
optimized frames Ĥm�S, which we denote with a hat. The atomize operation has to
apply the relative pose change between Hm�S and Ĥm�S, back onto the individual scans.
Thus, the new optimized frames for all J original frames are as follows:

Ĥj ¼ Ĥm�SH
�1
m�S

� �

Hj : (12)

After distributing the relative pose-change onto the individual scans in that way,
the second stage of our approach begins. In the second stage, every individual frame is
considered simultaneously in a pose graph.

3.4 Post-registration with semi-rigid SLAM

In our first SLAM stage, each scan is considered sequentially. That way, the algo-
rithm creates a global plane model of the environment, without the knowledge of
future measurements. This leads to registration inaccuracies during the first stage,
which is why we use a second stage afterward: “Semi-Rigid Registration” (SRR) [7].
The method considers all scans simultaneously in a continuous-time fashion using a
pose graph. In the graph, each pose is represented by a node and is connected via
edges to other poses if the overlap between the corresponding scans is large enough.
After one iteration of the algorithm, SRR re-calculates the edges. Figure 6 illustrates
the behavior of SRR on a dataset recorded by a spherical system rolling on a flat
ground. Section 4.2 describes the experimental setup and evaluation of the dataset. In

Figure 5.
Trajectories are drawn in blue and result from connecting every subsequent pose with a straight line. From left to
right: (1) full point cloud with all initial poses. (2) “condensed” point cloud with only 12 poses. A total of 1000
linescans get combined into one metascan, which has its origin at the pose of the middlest scan. Further, we
subsample and filter the metascans themselves. (3) the point cloud from 2 after registration. Only 12 poses got
optimized in “condensed” domain. (4) full point cloud and all optimized poses after the “atomize” operation,
which is the inverse to “condense.” from the optimized poses in 3, we calculate the relative transformation that has
to be applied to all initial poses.
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the given example, the initial pose estimates are subject to a large amount of drift.
Although SRR has been designed to also reduce such large-scale errors, the method
alone is not able to perform well on more complex trajectories shown in this work.
However, if the input to SRR is already coarsely aligned, the quality of point clouds
and trajectories improves, as shown in Figure 7. The images in the left column show
the resulting point cloud after the application of the first stage. The walls are not
perfectly aligned, yet the side view reveals that the trajectory is planar. In the centered
column, SRR is not able to register the measurements in a meaningful way, using the
initial pose estimates. Moreover, the point cloud and trajectory are less planar. In the
right column, both stages get applied, resulting in better overall map quality. Using
the input from the first stage, the graph-based second stage is able to reduce the
accumulated registration error from the first stage.

3.5 Comparison with ICP

The previous section has demonstrated that using SRR alone is not an option with
the given trajectories. Figure 6 shows how SRR is not able to converge to a meaningful
solution when being applied to a dataset from a rolling spherical system. For this
reason, the input to SRR is usually preregistered using the well-known ICP algorithm.

Figure 6.
Illustration of multiple iterations of “semi-rigid registration” (SRR) [7]. From left to right: (1) resulting point
cloud with initial pose estimations, zero iterations. (2) resulting point cloud after 50 iterations of SRR. (3) after
100 iterations. (4) after 150 iterations.

Figure 7.
Comparison of the first stage, second stage, and first stage followed by the second stage. Upper row: Point clouds in
birds-eye view, with the sliced ceiling. Lower row: Point clouds in side view, aligned to the initial orientation. The
initial input to the algorithms is shown in the most left image in Figure 6. From left to right: (1) first stage only.
(2) second stage (SRR) only. (3) first stage is followed by the second stage.
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The SRR preregistration uses a highly precise metascan implementation, available
from 3DTK—The 3D Toolkit [34]. However, the polygon-based approach
outperformes ICP, which is illustrated in Figure 8. In the images of the left column,
one sees a birds-eye view of the input to both algorithms. The center images show the
resulting point cloud and trajectory after ICP. Due to the given trajectory, the algo-
rithm is not able to establish meaningful point-to-point matches on the dataset, thus
the output is no longer planar. The first stage we present in this work is shown in the
images in the right column. Although some walls are not algined, the result is more
planar and resembles the environment better than the output of ICP. Using this
method before applying SRR leads to a faster convergence and more accurate solution
in the second stage. In the next section, we analyze the accuracy of the resulting maps
qualitatively, as well as quantitatively using high-precise ground truth point clouds.

4. Experiments

In this section, we describe the system setup and procedure of four experiments,
which demonstrate unconventional trajectories. Note that all datasets are available at
http://kos.informatik.uni-osnabrueck.de/3Dscans/. We compare three systems to each
other that have been tested in the same environment. One other system had to be
tested in a different building, which allowed for a long descent from a crane, which we
therefore analyze separately. For our experiments, we use three kinds of motion:
rolling on the ground, moving forward while swinging, and descending while rotat-
ing. All motion profiles were shown previously in Figure 2a. A birds-eye view of the
environments in which the experiments were carried out is illustrated in Figure 9. In
the left image, a square hallway can be seen which we used for the pendulum and
rolling experiments, whereas the right image shows the firefighter school which we
used for the descending experiment. We use the same LiDAR sensor in three experi-
ments: the Livox Mid-100. It produces 300.000 points per second using three beams
that scan in a non-repetitive, flower-shaped fashion, thus point density increases over

Figure 8.
Comparison of point clouds and trajectories after application of different SLAM algorithms. Upper row: Birds-eye
sliced view of the point clouds. Lower row: Side-view of the point clouds, aligned with the initial orientation. From
left to right: (1) initial point cloud and trajectory. (2) after ICP, metascan variant, available in 3DTK—The 3D
toolkit [34]. (3) after the first stage of the proposed method.
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time. Each beam has a circular field of view (FOV) of 38.4°. Thus, three beams aligned
in a row create a vertical FOV of 38.4° and horizontal FOV of 98.4°. The precision at
20-meter scanning distance is 2 cm and the angular accuracy is 0.1°. Further, the
minimum scanning distance of the laser scanner is 1 m and the output frequency is set
to 10 Hz. The maximum output frequency of the sensor is 50 Hz, yet point density
then decreases. In future work, though, we want to test the systems also with 50 Hz
LiDAR frequency. For all setups, a ROS installation on a Raspberry Pi 4 is used for
onboard controlling and recording data. Additionally, we apply the rolling motion to a
SICK LMS141 2D laser scanner with a maximum range of 40 m that operates at a
scanning frequency of 50 Hz and resolution of 0.5°. Here a Raspberry Pi 3 is used for
data collection. Inertial measurements are performed by PhidgetSpatial Precision 3/3/
3 IMUs. The post-processing is performed after the experiments on a separate server.

4.1 Pendulum

As to the pendulum setup the system is equipped with an Intel T265 tracking
camera, which uses a combination of feature tracking and internal IMUs to estimate
its pose. The T265 unfortunately has been discontinued by Intel and is only available
on the secondary market, which increased its price. As a budget alternative, we
consider the Intel T261, which is still available, or performing visual-inertial-
odometry manually, e.g. Intels RealSense-SLAM or VINS-Fusion [35] with Intels
D435i. To test this setup in the hallways of an office-like environment (cf. upper left
image of Figure 2b), we put the sensors inside a trailer net and swing them back and
forth while walking. The movement itself consists of de- and accelerations to the front
and back and slight movements up and down. Depending on the walking speed of the
person, even an overall negative velocity of the sensor is possible if the pendulum
swings faster backward than the person moves forward. Note that the view of the
tracking camera is partially obscured by the trailer net, reflections off the shell, and

Figure 9.
Birds-eye view of the ground truth point clouds, acquired with a terrestrial laser scanner (TLS). The ceiling has
been cropped for a better view. Left: Ground truth point cloud of an office hallway used for the rolling and
pendulum experiments. Right: Ground truth point cloud of the state firefighters school in Würzburg, used for the
descending experiment.
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the thread of the shell. As the camera and laser scanner are mounted near to each other
with the same orientation, we assume that their coordinate systems coincide and thus,
use no external calibration between the two. The duration of this motion was 281 s and
covered a total distance of approx. 162 m (only walking, oscillation not included).

4.2 Rolling on flat surfaces

In this experiment, we put the sensors inside a spherical plastic shell and roll it on a
flat surface manually (cf. bottom left image of Figure 2b). This time there is no
tracking camera included. Rather, rotation, as well as position, estimates come from a
combination of three Phidget 3/3/31044-0b IMUs. We use an IMU filter that is
specialized for pose estimation of spherical robots [4]. The rolling duration was 691 s
and covered the same distance as before of 162 m. Further, a similar experiment has
been executed in the same environment and with the same trajectory, with the
RADLER system as described in [8]. RADLER is a modified unicycle where the 2D
laser scanner is mounted with its scanning plane parallel to the wheel axle thus
creating a radial scanning pattern while rotating.

4.3 Crane descending

Unlike the previous experiments, this one was executed in a different environment
that allowed for a long descent, i.e., in the building of the state firefighters school in
Würzburg. We connected the robot to an outsourced processing machine via a 50 m
tear-resistant tether cable (Fathom ROV Tether by BlueRobotics) which was rolled
around a coil to perform the descending and ascending movement (cf. right image of
Figure 2b). In this experiment, the sensor unrestrictedly rotates around the descending
axis, corresponding to the cable direction. Note that the rotation itself is induced by the
internal twist of the cable, not by any actuators. A spin encoder estimates the position,
as it measures the rotation of the coil which directly corresponds to the height of the
robot according to the helix arc length formula. The descent of the sphere covered a
distance of 22 m and was performed within a duration of 402 s.

5. Evaluation

The resulting point clouds after application of the presented SLAM approach are
now analyzed in terms of their accuracy, which we do by matching them against high-
precise ground-truth models of the environment, given by a RIEGL VZ400 terrestrial
laser scanner (TLS). It has an angular resolution of 0.08° and an accuracy of 5 mm. For
the evaluation, we consider histograms that show a distribution of point-to-point
errors. To create such histograms, we match the resulting point clouds against the
corresponding ground truth maps, using ICP from 3DTK [34]. Then, we create a
three-dimensional difference image by measuring all point-to-point errors. When
calculating the difference images for any dataset, we use an octree-based filter where
the voxels are smaller than 10 cm with a maximum of 5 points. Thus, the resolution of
the different images is the same, i.e., histograms do not depend on point density
anymore and are comparable to each other as long as they have been created for the
same environment. Figure 10 contains three histograms that were created in the office
hallway environment. Broadly speaking, a distribution is better if its tail is short and
its peak is located toward the left, i.e., zero point-to-point error. In particular, the
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quantity of most interest is the distribution mean, as it tells you the average point-to-
point error. The individual histograms correspond to the pendulum, spherical system,
and RADLER results, respectively. From the naked eye, one might suspect that
RADLER performed best, while the spherical system performed worst. The following
sections confirm this statement quantitatively and give a more detailed interpretation
of the results.

Figure 10.
Birds-eye view of point clouds acquired with the different setups. The ceiling has been cropped for a better view. A
profile view showing sensor poses after registration, movement from left to right is also shown. Left column:
Unprocessed point cloud with initial pose estimates, from IMUs and tracking camera (pendulum), IMUs and wheel
encoder (RADLER) and IMUs only (spherical). Center column: Post-processed point cloud after application of
proposed SLAM algorithm. Right column: Histograms showing the occurrences of certain point-to-point errors from
the compared post-processed 3D point clouds to the reference ground truth point cloud. The colors denote distance,
where blue corresponds to zero distance and red corresponds to 50 cm distance or more. (a): Pendulum setup. Mean
point-to-point error is 28.31 cm with peak at 10.94 cm. (b): Spherical system. Mean point-to-point error is
28.70 cm with peak at 11.64 cm. (c): RADLER. Mean point-to-point error is 24.48 cm with peak at 12.10 cm.
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5.1 Pendulum

Figure 10a shows that the initial pose estimations using the Intel T265 tracking
camera is the most accurate, when compared to the methods without feature tracking
(cf. left image of Figure 10b and c). In the other datasets, the IMUs struggle with yaw
angle estimations especially at the corners, whereas here the feature tracking com-
pensates for that. After registration, the map represents the environment better as
before since there are no duplicate corridors left in the point cloud, and the optimized
poses are consistent with the map. Yet the result is not perfect, e.g., the walls appear
thick due to the large amount of motion distortion, the pillars are not perfectly
aligned, and a sizeable duplicate wall remains uncorrected. Note that this is presum-
ably because there is no external calibration between the tracking camera and laser
scanner. Employing such is a task for future work and potentially increases the
mapping accuracy. According to the mean point-to-point error (E) from the histo-
grams in Figure 10, this result (E ¼ 28:31 cm) resembles ground truth better than the
rolling system (E ¼ 28:70 cm), but worse than RADLER (E ¼ 24:48 cm).

5.2 Rolling on flat surfaces

The following sections sum up the results for the mobile systems with rolling
sensor trajectories, i.e., RADLER and the spherical system. As mentioned above,
RADLER has the best similarity to ground truth according to Figure 10, whereas the
spherical system has the worst.

5.2.1 2D LiDAR

Figure 10b presents the results of the experiment with RADLER, which were
carried out in the same environment as before. The left image shows that the initial
pose estimates have significantly more drift compared to the pendulum system, espe-
cially regarding the yaw angle. However, the walls appear thinner, and there is overall
less noise due to the missing shell. After our SLAM, there are a few spots where the
walls are not perfectly aligned, and a lot of noise remains between the walls. In
comparison to the maps created with the pendulum and spherical system, though,
RADLERs result resembles ground truth best. We suppose that this is because
RADLER’s 2D scanner operates at a higher frequency (50 Hz) and uses the rotational
encoder in addition to the IMU for determining the systems pitch. The Livox Mid-100
scanner used for the other experiments operates on only 10 Hz, which is why fast
trajectories lead to a more obscure scan and, thus thicker walls. Further, the 2D
scanner from SICK is optimized for short-range measurements, whereas the 3D scan-
ner from Livox is for long medium- to long-range measurements.

5.2.2 3D LiDAR

Figure 10c shows the results of the experiment with the spherical system. The
initially estimated trajectory distance is the largest when compared against the other
datasets (211.77 m compared to RADLER: 141.01 m, and pendulum: 148.30 m), indi-
cating an overestimated radius parameter in the pose estimation model [4]. The
resulting map resembles the actual scale of the environment better, the pillars are well
aligned, and the corrected poses are consistent with the map. However, there are also
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duplicate walls, remaining outliers, and noise due to remaining registration errors.
According to the histograms in Figure 10, the resulting map has the least similarity to
ground truth when compared to the pendulum and RADLER, which is consistent with
previous observations. Note that in this dataset, the shell is attached to the sphere,
which makes range measurements more noisy and adds outliers due to reflections off
the shell.

5.3 Crane descent

This section presents the results for the crane descent experiment, which was
conducted in a different environment than the previously mentioned results. Thus,
the histogram is not really comparable to the ones in Figure 10, although it uses the
same voxel filter to create the distance image. We still analyze the shape and mean
point-to-point error of the distribution and to interpret them. The upper half of
Figure 11 shows a birds-eye view of the 3D point clouds in the same fashion as before.
Note that the initial pose estimates are especially erroneous in one rotational dimen-
sion. This is the yaw rotation, which is especially difficult to detect for IMUs without
the use of a magnetometer. As this experiment originated in the context of a space
mission, using the magnetometer for inertial measurements was not an option. In the
first stage of an out SLAM algorithm, we locked each other dimension but yaw from
being optimized. The resulting map resembles the environment well, yet error
remains due to low scanning frequency and motion distortion. The mean point-to-
point error when comparing against ground truth (cf. right image of Figure 9) is
31.6 cm. However, the peak of the historgram is located at 3.60 cm, indicating that
there is room for further improvement. We seek to improve on these results by
accounting motion distortion and further reducing IMU drift in future work.

6. Conclusion

We have shown in this work that unconventional trajectories still pose problems
for current SLAM algorithms, especially when using low FoV LiDARs. We built a

Figure 11.
In the images of 3D point clouds, the ceiling has been cropped for a better view. From left to right: (1) birds-eye
view of the resulting 3D point cloud, acquired with the descending system using a spin-encoder and IMUs for pose
estimation. (2) birds-eye view of the post-processed 3D point cloud. (3) profile view of the mobile systems pose,
movement from top to bottom. (4) histogram showing the occurrences of certain point-to-point errors to ground
truth. The colors denote distance, where blue corresponds to zero distance and red corresponds to 1 m distance or
more. Mean point-to-point error is 31.6 cm with peak at 3.60 cm.
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flexible SLAM approach that shows the capabilities to register unconventional trajec-
tories with large-scale pose estimation errors reliably. Further, we tested our SLAM
system with three different unconventional movements: rolling, pendulum, and
rotating crane descend. According to the previous accuracy evaluation, rolling on the
floor is the most difficult scenario. The spherical shell of the system adds noise and
outliers to the range measurement. Additionally, low overlap and sometimes no over-
lap make scan matching hard, even using polygons. Therefore, the success of SLAM
using this trajectory type, compared with the other scanning methods, relies the most
on the initial pose estimations. Moreover, this scenario has the most difficult initial
pose estimation, due to the large accumulation of errors both in translation and
rotation, which makes SLAM especially difficult. RADLER seems to have the best
results regarding accuracy. This is because of the higher scanning frequency compared
to the other experiments, but also because the rotational encoder on the wheel helps a
lot with position estimation when compared to the spherical setup, which relies on
constrained IMU integration. Therefore, it is sufficient to compensate mostly the
accumulated rotational error via SLAM. Descending from the crane shows similar
behavior: the rotational encoder on the cable reel makes position estimation fairly
easy. Further, there are only negligible rotations in two principal axes. However, the
faster and uncontrolled rotation around the cable leads to a much larger error in the
corresponding axis of revolution, as well as to larger motion distortion. Since pose
errors mostly accumulate in one rotational degree of freedom, our SLAM is still able to
correct these via constrained optimization in the first stage. The pendulum setup, on
the other hand, shows almost no rotational error in the initial pose estimations,
because the visual-inertial odometry (VIO) of the Intel T265 camera compensates for
IMU drift. VIO works reliably although the view of the camera is partially obscured by
the trailer net, the thread of the shell, and reflections from the shell. Yet the
relocalization module of the camera, which uses an internal feature map, fails once, as
the visual features of the hallways are ambiguous. This leads to large positional errors
in the initial pose estimates at the end of the trajectory. Our SLAM is able to correct
these errors using the polygon-based optimization in the first stage. However, a lot of
work remains to be done. In particular, we need to address the large drift of the IMUs
and employ a more accurate external calibration, to improve the initial pose estimates
even more. Furthermore, we aim to improve the quality of the maps by revisiting the
global polygon model of the algorithms first stage and making it more dynamic.
Moreover, we want to mitigate the effects of motion distortion in future work. Finally,
the pose estimations need to be evaluated in terms of the achieved positional and
rotational errors, e.g. with an external optical tracking system. Nevertheless, we
provide significant insight and datasets with ground truth maps and are excited to
contribute more to this rather unexplored field of research in future work.
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