
Chapter

Aerial 3D Mapping with
Continuous Time ICP for Urban
Search and Rescue
Helge Andreas Lauterbach and Andreas Nüchter

Abstract

Fast reconnaissance is essential for strategic decisions during the immediate
response phase of urban search and rescue missions. Nowadays, UAVs with their
advantageous overview perspective are increasingly used for reconnaissance besides
manual inspection of the scenario. However, data evaluation is often limited to visual
inspection of images or video footage. We present our LiDAR-based aerial 3D map-
ping system, providing real-time maps of the environment. UAV-borne laser scans
typically offer a reduced field of view. Moreover, UAV trajectories are more flexible
and dynamic compared to those of ground vehicles, for which SLAM systems are
often designed. We address these challenges by a two-step registration approach
based on continuous time ICP. The experiments show that the resulting maps accu-
rately represent the environment.
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1. Introduction

Reconnaissance is the basis for SAR missions and essential for strategic decisions.
With the growing size of the site, it becomes difficult for officers in charge to get an
overview of a disaster scenario, even in more frequent urban scenarios like houses on
fire. Nowadays the main tools for scenario exploration used by firefighters are still 2D
maps in command vehicles. Assessment is still done mainly by human visual inspec-
tion. Besides safety risks, this is a difficult and time-consuming process either for data
collection and evaluation. Accordingly, this process aims the risk of missing important
information.

In recent years, video footage in visible and thermal spectrum from small UAVs is
increasingly used for scenario assessment and search operations [1]. UAV images are
advantageous due to their overhead perspective and their capability to reach other-
wise inaccessible areas. However, in practice, data evaluation is time-consuming
likewise and faces the challenge of spatial correlation. Creating 3D maps in real-time is
one useful approach to improve the evaluation process [2].

UAV-based approaches to 3D mapping often rely on structure from motion (SfM)
techniques. Such approaches often do not provide 3D maps immediately, as dense
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mapping has high computational requirements [3]. Photogrammetric approaches are
therefore mostly applied to large-scale scenarios like earthquakes [4, 5]. In [6], 3D
point clouds generated from UAV images with SfM are used to localize and navigate
unmanned ground vehicles. In large-scale scenarios, the immediate response phase
has a time scale of hours to weeks [2], rather than minutes to hours as in more
frequent urban scenarios, like houses on fire.

LiDAR-based mapping systems have the advantage of providing spatial informa-
tion directly. Here the key issue is the implementation of an adequate SLAM
approach. Unlike unmanned ground vehicles, UAVs are constantly in motion. Thus,
the rigidity assumption does not hold true for sensors like laser scanners. To compen-
sate for motion distortion in laser scans a continuous time formulation of the SLAM
problem is convenient. [7] presents an application of continuous-time SLAM in UAV
mapping. Groups of scans in a sliding window fashion are registered and the com-
puted corrections are interpolated along the trajectory. In a second offline step, the
trajectory is optimized globally. [8] use a map-centric approach. Instead of pose graph
optimization, the map itself is deformed in case of loop closures.

LiDAR odometry and mapping (LOAM) [9] allows for real-time mapping by
utilizing edge and planar features for registration. Distortion is removed by motion
estimation from IMU mechanization and odometry estimation before registering to
the map. An extension with visual odometry [10] was also demonstrated in aerial
mapping [11]. Several approaches use feature extraction from LOAM and introduce
environmental constraints such as ground planes [12] or tightly coupled LiDAR and
INS [13]. They also incorporate loop closing, which LOAM does not. [14] propose
improved edge and planar features. Due to offline batch optimization, the approach is
not real-time capable. The study [15] instead relies on planes as landmarks and bundle
adjustment for optimization. However, both methods are designed for indoor envi-
ronments.

Instead of sampling at scan frequency in [16], the trajectory is modeled as a B-
Spline to allow for interpolation between scan poses. The map is refined by realigning
scans within local submaps. Based on the B-Spline trajectory representation, [17]
registers multiple scans at once in a sliding window fashion to a sparse multiresolution
surfel map, enabling real-time LiDAR odometry.

Thermal imaging is another important tool for firefighters [1]. It is used for navi-
gation under low-sight conditions [18] (e.g., smoke) and to detect sources of fire and
thermal hot spots [1]. Robotic systems equipped with thermal cameras also facilitate
object detection [19] and search for casualties [20].

In a previous work [21], we gave an overview of our UAV system for SAR appli-
cations. Most similar to our setup is the UAV [22], integrated into a multirobot system
with a focus on autonomous exploration [23]. In this paper, we present our mapping
pipeline, generating accurate, temperature-enhanced 3D point clouds. The two-step
registration approach is based on continuous time ICP.

2. Methodology

2.1 System overview

The proposed mapping system for rescue missions is divided into two principal
components, an aerial segment for data acquisition and a ground segment for data
processing and user interaction as depicted in Figure 1. The aerial segment is designed

2

Autonomous Mobile Mapping Robots



as a mapping sensor unit, that is able to operate without a UAV. The main sensor is a
Velodyne Puck VLP16 Lite1 laser scanner. With its low weight of 830 g and typical
power consumption of 8 W, the sensor is appropriate for aerial mapping. It provides
full 360∘ scans at a frequency of 10 Hz with a maximum range of 100 m. The vertical
FoV (field of view) of 30∘ is sparsely covered by 16-line laser scans with an angular
resolution of 2∘ vertically. The laser scanner is mounted at a pitch angle of 45∘,
resulting in a reduced usable horizontal FoV. This is a compromise between maxi-
mizing the ground coverage and ensuring a convenient overlap between consecutive
scans for scan matching. As a second sensor, the system features an Optris PI 640LW2

thermal camera to enrich the map with registered temperature information. In order
to maximize the overlap with the laser scanner a wide-angle lens with an FoV of 90∘ x
64∘ is used. Thermal images are captured at a resolution of 640 px � 480 px with a
frequency of 10 Hz. As an aerial platform, several Dji3 UAVs are used that provide
enough payload capacity to lift the sensor unit for a long period. The sensor unit
mounted on the UAV is depicted in Figure 2 on the left. For initial pose estimation, we

Figure 1.
System overview. The aerial segment is used for data acquisition while the ground segment runs the mapping
pipeline and user interaction.

Figure 2.
UAV with mounted mapping payload in front of simulated facade fire (left) and the firefighter command vehicle
(right).

1 https://velodynelidar.com/products/puck-lite/
2 https://www.optris.com/thermal-imager-optris-pi-640
3 https://www.dji.com
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rely on the trajectory reported by the flight control unit (FCU) of the UAV. This
control system fuses three sets of redundant sensors, each of them including an IMU, a
barometer and a GPS sensor.

The second component of our mapping system is the ground segment. Apart from
communication for telemetry and data transmission, its main task is to run the map-
ping pipeline described in Section 2.2. As we focus on mapping rather than autono-
mous operation, a rough initial localization with UAV sensors is sufficient and
onboard data processing is omitted. Furthermore, the ground segment offers online
map visualization and a user interface for managing automated flights.

For this purpose, a workstation based on an Intel i7 8700 Hexacore running at
3.2 GHz and 16 GB RAM is integrated into a vehicle based on a german standard
command vehicle (ELW1), depicted in Figure 2 on the right.

2.2 Workflow

This subsection gives an overview of the processing pipeline, also visualized in
Figure 3. Data acquired by the UAV is transmitted to the ground station. In the
preprocessing stage, a pose for each laser scan is estimated by GNSS/INS localization. To
reduce the computational effort, a keyframe approach is used. A new keyframe is
selected only if the change in pose exceeds a defined threshold w.r.t. the previous
keyframe, e.g., 1 m. We drop all scans that do not contribute to the map significantly,

Figure 3.
Workflow of our UAV mapping system.
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since for this application we are mainly interested in a map rather than navigation tasks.
Selected frames are then undistorted based on the initial trajectory to compensate for
motion. In an optional step, the laser scans are enriched with temperature information.

The mapping process is divided into two stages, for registration in a coarse to fine
manner as shown in Figure 4. The core of the first registration stage is a continuous
time ICP approach described in Section 2.4. This stage aims to reduce gross errors in
the initial trajectory and to improve the map globally. Therefore a loop-closing tech-
nique adopted for the continuous time ICP is applied. This results in a coarse map of
the environment, suitable for online inspection.

The second stage is run as a postprocessing step to further refine the trajectory and
fine-register the laser scans. Here we use an upsampling approach to deal with the
sparse nature of point clouds from a Velodyne VLP16 laser scanner. Details are given
in Section 2.6.

The map is enriched with temperature information. Therefore, for each laser scan,
we estimate the transformation between the poses of laser scanner and thermal camera
at their current time stamps based on the GNSS/INS trajectory and project the thermal
image on the laser scan. In our setup, this is done before matching the laser scans to
enable fast thermal inspection of the coarse map. Note that by this approach only 3D
points in the overlapping FoV of laser scanner and camera get temperature values
assigned. Thus the temperature-enhanced map is less dense than the original map. In
postprocessing, the mean temperature value of each voxel of the map is assigned to all
points in the voxel. An example of the resulting representation is given in Figure 5.
A facade fire scanned by the UAV is shown on the left, the corresponding temperature-
enhanced 3D point cloud representation from our approach is shown on the right.

Figure 4.
Example for improved point clouds by proposed registration steps.

Figure 5.
UAV scanning a simulated facade fire on the campus of the Bavarian firefighter school Würzburg (left) and the
corresponding 3D model colored by temperature (right). Red indicates high temperatures.
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2.3 Continuous time SLAM

The movement of a mobile robot creates a trajectory T ¼ X0, … , Xnf g where Xi is
the 6-degree of freedom pose of the vehicle at time ti. Using T a map P ¼ p0, … , pn

� �

of the environment is derived, by transforming the set of timestamped measurements
M ¼ m0, … , mnf g into the global coordinate system with pi ¼ Xi ⊕mi ¼ Ri �mi þ ti.

Given a sufficiently estimated trajectory, in [24], the map quality is improved by
optimizing the trajectory, based on the ICP concept known for rigid registration.
Similar to our graph-based SLAM algorithm [25], the n-scan registration problem is
considered, but with a finer discretization of time, e.g., segments of a 3D scan or even
single points. Under the assumption, that the error of the estimated trajectory is
negligible for a short time interval the error function to be minimized is given by:

Ei,j ¼
X

iþN

k¼i�N

Xi ⊕mk �Xj ⊕m0
k

�

�

�

�

2
(1)

where a small neighborhood of 2N points close in time to mi the closest point
m0

k ∈Mn mi�N, … , miþNf g is selected.
In other words, the measurements are grouped into overlapping submaps

Mi ¼ mi�N, … , miþNf g, wheremi denotes the reference measurement of the submap,
that defines the corresponding pose Xi. These submaps are then matched using the
automatic high-precision registration of terrestrial 3D scans, i.e., the graph-based
SLAM approach presented in [25, 26]. The graph is estimated using a heuristic that
measures the overlap of the submaps based on the number of closest point pairs.

After applying globally consistent scan matching on the submaps the actual con-
tinuous time matching, as described in [24], is applied. Using the results of the rigid
optimization as starting values for T, the numerical minimum of the underlying least
square problem is computed.

2.4 Continuous time ICP

In contrast to the continuous-time SLAM approach, in ICP registration only the
current pose is optimized with respect to its predecessor or a fixed map. Again
consider the error of the initially given trajectory to be negligible in a small time
interval before and after a pose Xi. The positional error of Xi is then given by

Ei ¼
X

iþN

k¼i�N

Xi ⊕mk � p0
k

�

�

�

�

2
(2)

where p0
k is the closest point to mk in Pn pi�N, … , pn

� �

. Note, that all poses Xj with
j< i�N are fixed.

For efficiency, we subsample the trajectory at 2N steps, as is done in the continu-
ous time SLAM approach. The measurements mk with k ¼ i�N then form a submap
with pose Xi. These submaps are then registered rigidly using plain ICP. Afterward
the transformation update is locally distributed to all 2N poses between Xi and Xi�1.
Although not constrained, a linear distribution of translation and SLERP interpolation
of rotation shows to be sufficient for small trajectory errors. For practical implemen-
tation, we form groups of 10 to 15 Velodyne VLP16 scans.
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2.5 Loop closing

A common strategy in loop detection is, to rely on a heuristic based on pose-to-
pose distance. This works well for trajectories with low drift, if either the flat surface
assumption holds true, e.g., on ground vehicles and or if omnidirectional perception is
available. In UAV laser scanning, both requirements are often not fulfilled. In our
mapping system for instance the laser scanner is tilted by 45∘, thus the effective FoV is
reduced to less than 180∘ horizontally depending on the flight altitude and surround-
ing environment. As a consequence, there is often no overlap between loop closure
candidates, or the overlap is small if the difference in orientation is high between the
submaps. Instead, we search for poses with a maximum distance to the tilted plane,
spanned by x and y coordinate of the sensor. Due to the reduced FoV, loop closure
candidates additionally require an orientation that is similar to the query pose. After
candidates are found, we apply the loop-closing technique ELCH from [27] to the
submaps. To maintain the continuity of the trajectory we then distribute the trans-
formation update of submaps to each laser scan in a similar way as in continuous time
ICP in Section 2.4. An example is given in Figure 6.

2.6 Upsampling registration

Rigid registration of sparse point clouds, as those of a Velodyne VLP16, faces the
problem of inhomogeneous point density in vertical and horizontal directions. The
difference between the angular resolution between two scan lines and within one scan
line is typically in the order of a magnitude. Similar to this, rotating 2D profilers
provide 3D point clouds with a higher angular resolution within a sweep. This inho-
mogeneity in resolution has an impact on registration approaches using point-to-point
distances as the ICP. As a result scan lines are pulled onto each other and the estimated
transformation is distorted. In theory point to plane approaches perform better in
such a case, as the underlying surface structure is estimated by local planar patches.
However, the success of registration depends on the quality of the estimated normals

Figure 6.
Example for detected loop closures. We search for poses close to sensor xy plane. Poses with similar orientation are
accepted as loop closing candidates.
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of the points. The traditional approach of calculating the normals using k nearest
neighbors is affected by the point distribution though.

To mitigate the problems caused by inhomogeneous point density, often assump-
tions about the underlying structure are made. One group of approaches relies on
robust features, such as edges and planes [9]. The second group of approaches
coarsely reconstructs the surface. [28] interpret a scan of a Velodyne 64 laser scanner
as a range image and compute the linkage of the direct neighbors of a point in the
image. Then they estimate the normal vectors as the average cross product of the
vectors to the neighbors weighted by the linkage and apply a point-to-plane variant of
ICP. A similar strategy is proposed by [29] that is more general in terms of the sensor
model. Using the ordered structure of point clouds provided by sensors, they create a
simple quad mesh to estimate the point normals and then apply a variant of the
generalized-ICP [30]. Similar to this we approximate the surface by upsampling the
point cloud. Inspired by the idea of range images, the sensor data is first organized
into a ring and bin structure, preserving the real measurement. Then for each point,
we create a line with its neighbor in the next ring and linear sample points. Compared
to previous work [31], this simple approach proved to be sufficient due to the high
point density within a ring. As in [29] an edge is rejected if it is nearly parallel to the
line of sight with respect to the scan pose or a depth discontinuity is detected consid-
ering angular and range-dependent thresholds. The set of fitted line points forms a
virtual scan that estimates the underlying surface, as visualized in Figure 7. Octree
reduction generates a homogeneous distribution of points. The virtual scan is then
rigidly registered against previous scans in their original form with ICP, either
sequential or incremental, to further refine the robot trajectory.

2.7 Map organization

In both registration stages, we follow a scan-to-map matching strategy. A key issue
in scan registration is the search for closest point pairs. The implementation of search
trees in 3DTK [32] (e.g. octree) is optimized for fast point query operations and a

Figure 7.
Upsampled 3D laser scan from Velodyne VLP16. The original point cloud is depicted in red, the upsampled point
cloud in black.
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small memory footprint. However, due to their compact representation in memory,
they do not allow for insert operation. Thus the search tree needs to be rebuilt once the
map is updated. To deal with this, an efficient strategy for maintaining the map is
important. For both registration steps, we consider the map to be a set of submaps. In
the upsampling registration step, we follow a keyframe approach. Keyframes are
added to the current active submap. Each keyframe in the active submap provides a
search tree. All search trees of the submap are queried in parallel. Once a submap is
finished, the keyframes are joined and a single search tree for the finished submap is
built. A submap size of 10 to 15 scans has shown to be a good trade-off between
increasing search time and reducing construction time for a new k-d tree containing
the complete submap. To further optimize the runtime, we only consider a ROI
(region of interest) during the registration. Therefore, we select the k nearest submaps
each time starting a new submap. Each scan is then registered against this ROI map.
As with the active submap, the search trees of all submaps are searched in parallel.

In the continuous-time ICP step, the map is organized in a similar fashion. The
major difference is that the active submap is not composed of several search trees.
Note that submaps do not change once they are completed unless a loop closure is
detected. As a consequence, submaps may significantly overlap and thus cause
redundancy. However, the continuity of the trajectory is maintained.

3. Results

To evaluate our approach we acquired a data set at the campus of the Bavarian
Firefighter School Würzburg with our system described in Section 2.1. The UAV (DJI
S1000) was manually flown in several loops at different altitudes above the site of the
school. During the flight of 325 s a trajectory of 862 m was covered. We applied the
pipeline as described in Section 2.2. The initial trajectory was provided by the UAV.
We applied continuous time ICP with a maximum point-to-point distance of 0.75 m
and a submap size of 10 VLP16 scans. The resulting point cloud and the flown
trajectory are visualized in Figure 8.

Figure 8.
Optimized point cloud from bird’s eye view. The red line represents the UAV trajectory.
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For comparison, we also applied BLAM! [33] and Pointmatcher [34] to the data set.
Both approaches are based on ICP registration as our method is. To gain valuable
results, we slightly modified BLAM, such that the UAV trajectory is used as an initial
guess for odometry estimation.

For ground truth comparison we collected 42 highly precise laser scans with a Riegl
VZ400 terrestrial laser scanner to cover the complete area of the firefighter school.
The scans were registered using our ICP and SLAM methods [25] implemented in
3DTK [32] to obtain the reference point cloud.

As an error measure, we use the Absolute Trajectory Error (ATE) following [35]. It
is computed as the root mean square error

ATEpos ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN�1

i¼0
∥Δpi∥

2

r

ATErot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN�1

i¼0
∥∠ ΔRið Þ∥2

r

,

where Δpi denotes the euclidean distance between the estimated and ground truth
position at time step i of N and ∠ðÞ denotes the rotation angle of the corresponding
rotation ΔRi in angle axis representation [35].

To obtain the ground truth trajectory we first localize each laser scan from the
UAV system in the reference cloud. Then the initial trajectory as well as the optimized
trajectories are aligned to the ground truth trajectory using all pose pairs and the ATE
is calculated. The resulting mean errors are given in Table 1. Figure 9 visualizes the
positional error for all evaluated approaches and Figure 10 the orientation error
respectively.

Compared to the initial trajectory by GNSS/INS the mean error in position reduces
to 0.172 m by applying our pipeline. Especially the drift in z-axis is removed as shown
in Figure 11. Regarding orientation, the pitch angle θy provides the highest errors, as
depicted in Figure 12. One explanation is that clocks of laser scanner and UAV are not
synchronized. Thus the error increases during positive and negative acceleration and
deceleration phases. θx and θz are less affected due to low speed and smooth curves in
the trajectory. The mean rotational error is reduced 0:32∘.

A comparison of the optimized point cloud to the reference point cloud justifies
the results from ATE evaluation. Therefore, we computed the cloud-to-cloud distance
with a maximum point-to-plane distance of 1 m. The results are visualized in
Figure 13 from two views. To support the visual representation, the corresponding
error histogram is given in Figure 14. It shows that 90% of the points feature an error
of less than 0.13 m. The accuracy of the Velodyne VLP16 is specified at �3 cm, which
corresponds with the peak of the histogram and is close to the median.

algorithm ATEpos [m] ATErot [∘]

GNSS 0:718 2:16

Ours 0:172 0:32

BLAM 0:383 1:74

Pointmatcher 0:225 0:32

Table 1.
Absolute trajectory error.
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Note that Figure 13 shows regions of high errors up to 1 m which do not reflect the
low ATE errors discussed before. First, they refer to dynamic objects like cars that
moved between the acquisition of the UAV data and the ground truth data (see
Figure 13, at 1). Second, there are gaps in the ground truth data. Due to restricted
possibilities to position the terrestrial laser scanner, it suffers from occlusions. This
mainly affects the roofs of the buildings, e.g., no. 2 in Figure 13. Those gaps are filled
by the airborne data set. As we used the distance to the closest plane as an error
measure, some points at the borders are wrongly assigned a high error. A similar
effect is present at windows and glass facades, e.g., at no. 4. Static areas, such as
buildings and ground in majority, feature errors less than 0.1 m. Higher deviations
up to 0.4 m, e.g., at no. 3, are explained by the fact, that this area was not directly
overflown by the UAV, as depicted in Figure 8. Hence, the point density is reduced
since the area was less often covered by the sensor and only from the side of the
sensor at larger distances. Points in those areas have less influence on the scan
matching than points in the core of the FoV since the probability to find
corresponding points within the maximum search distance decreases. On the other
hand, small registration errors have a greater impact on the distant areas of a scan.
Moreover, the point density of the reference cloud is reduced in this area, biasing the
error measure as described for number 2.

Figure 9.
Absolute trajectory error in position.
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Figure 10.
Absolute trajectory error in orientation.

Figure 11.
Position error of individual axis. The error of GNSS trajectory (left) is reduced by the proposed pipeline (right).

Figure 12.
Rotational error of individual axis. Error of GNSS trajectory (left) is reduced by the proposed pipeline (right).
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To summarize the results, our approach is capable of generating detailed point
clouds, accurately representing the environment.

Figure 13.
Optimized point cloud from top (above) and oblique view (below). The color decodes the deviation from ground
truth. Higher errors mainly correspond to dynamic objects (1) and occlusions in the reference data (2), as well as
areas not directly overflown (3).
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4. Conclusions

In this paper, we presented our pipeline for aerial 3D mapping in USAR scenarios.
Using a two-step continuous time registration approach the system is able to produce
an accurate representation of the environment. Enhanced with temperature values the
generated 3D maps aim at facilitating the assessment of disaster scenarios. The current
drawback of our approach is that only the first registration stage runs online, produc-
ing a coarse map while the second stage is designed as a postprocessing step producing
an accurate map. Future work includes runtime optimization and further integration
to enable online processing of the entire pipeline. Additionally point cloud analyzing
methods, for instance, to detect heat sources are in work.
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Figure 14.
Histogram of cloud-to-cloud error.
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