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Abstract— This paper describes a novel, laser-based ap-
proach for tracking the pose of a high-speed mobile robot.
The algorithm is outstanding in terms of accuracy and
computational time, being 33 times faster than real time.
The efficiency is achieved by a closed form solution for the
matching of two laser scans, the use of natural landmarks and
fast linear filters. The implemented algorithm is evaluated
with the high-speed robot Kurt3D (4 m/s), and compared
to standard scan matching methods in indoor and outdoor
environments.

I. INTRODUCTION

In order to fulfill user specified tasks, autonomous mo-
bile robots have to be able to determine their pose (position
and orientation) while moving – a precise and stable self-
localization is one of the most important requirements to
act successfully in any environment. For an application on
flat ground, the pose p of a robot is denoted by a triple p =
(x, y, θ), with position (x, y) and orientation θ. Standard
robotic approaches often use dead reckoning, e.g. odometry
(counting wheel rotations), to estimate their position. But
wheels slip, especially when driving with high speed, and
miscalculation occurs1. These errors accumulate over time,
and the robot’s position estimate becomes increasingly
inaccurate. One method to improve localization is to track
the robot’s pose with on-board laser range finders. There
are, in principle, two different approaches to determine the
pose of a robot:
• Relative: Given an arbitrary initial pose, e.g., p0 =

(0, 0, 0), the robot’s current pose relative to p0 is in-
crementally updated when the robot is moving. For this
purpose, consecutively acquired sensor data, e.g., laser
scan data, are compared. LetR be the reference scan and
S be the current scan. If both scans have been acquired
from different robot poses, a transformation that maps
S onto R is calculated. This transformation corresponds
to the movement of the robot between the scans.

• Absolute: Instead of tracking the pose incrementally,
the position and orientation of the robot within an a
priori given, assumable exact map or a known area with
distinguishable active or passive landmarks is calculated.
In the following, we consider relative localization tech-

niques, i.e., so-called pose tracking algorithms, since they
do not impose any limitation to already mapped environ-
ments. Furthermore, the aim is not directly to build an
accurate 2D map, but rather to ensure a stable and fast
localization, regardless of the robot’s speed and without

1A video is available at http://www.ais.fhg.de/ARC/kurt3D/
HAYAI/videos/localization skidding.divx.avi.

Fig. 1. The mobile robot Kurt3D, equipped with AIS 3D laser scanner.

any restrictions of the covered distance. This aim reflects
the underlying idea that localization, the preliminary stage
of SLAM (Simultaneous Localization And Mapping), is not
an end in itself, but the fundament of further algorithms,
e.g., the building of three dimensional maps with a 3D
sensor and solving 6D SLAM [1], [2]. The localization
algorithm has to be computationally efficient and should
not restrict the operational area or the speed of the mobile
robot. Hence, subsequent algorithms for improving the
calculated map, like cycle detection and correction [3] or
global relaxation [4], are not considered here.

The implemented algorithm is evaluated with the high-
speed robot Kurt3D (Figure 1), equipped with the AIS
3D laser scanner that is adjusted horizontally and used for
localization purpose while driving [1].

A. State of the Art

Relative localization algorithms based on proximity sen-
sors are distinguishable by the manner of computing the
pose change between two sensor inputs acquired from two
different poses. We concentrate on methods using a laser
range finder, since it has significant, critical advantages
in accuracy and processing speed compared to sonar and
stereo camera sensors. State of the art are algorithms
comparing two scans directly (point-wise scan matching)
[5] or utilizing special representations of the scanned data,
e.g., histograms [6], features like extracted lines [7] or
landmarks [8]. The latter ones are further distinguished by
the type of landmarks, i.e., natural or artificial. In contrast
to natural ones, artificial landmarks are, by definition,
placed in the environment for simplifying the location task,
being either active or passive.

The main drawbacks of current approaches are precision
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Fig. 2. Result of different filters used for feature extraction.

and computational cost, both in practical implementations
as well as from a theoretical point of view, preventing a
stable self localization of a robot driving with high-speed
(e.g., 4 m/s), especially when operating in non-restricted
domains2. Problems arise from the iterative way of calcu-
lating an optimal matching between two scans, preventing
theoretically efficient computations, and from algorithms
with complexities exponential in O(nk), k > 1, with n
the number of distance values of a scan. To match two
scans, usually an error function is defined, implementing a
metric on scan matches as an evaluation of the matching.
Minimizing the error function is a typical optimization
problem with well-known problems. Generally, gradient
descent methods are implemented, transforming the second
scan such that the difference is reduced. Iteration leads to
a local minimum of the error function. There are several
algorithms that, in addition, compute the transformation
within each epoch in an iterative way, employing a second
level of iterations.

In this paper, we describe a method for computing the
optimal transformation in a closed form manner, eliminat-
ing any iteration. For evaluating the proposed algorithm,
it is compared to three main scan matching algorithms, in
the implementation of S. Gutmann [9]:
• IDC (Iterative Dual Correspondence): Matching of raw

data points of both scans. Instead of an elaborated feature
detection, points are assigned according to their distance
or angle [10].

• Cox: Data points from one scan are matched against
lines, prior extracted from the other scan [11].

• Hist: Angle- and xy-histograms are calculated from
both scans and compared based on a cross correlation
function [12].

II. SCAN MATCHING WITH HAYAI

This section describes the newly developed algorithm
HAYAI (Highspeed And Yet Accurate Indoor/outdoor-
tracking). The matching algorithm is based on the follow-
ing scheme:

2A video is available at http://www.ais.fhg.de/ARC/kurt3D/
HAYAI/videos/kurt3d corridor.divx.avi.

1) Detect features within scan R, yielding feature set M
(model set). Likewise set D (data set) from scan S .

2) Search for pairwise corresponding features from both
sets, resulting in two subsets M̌ ⊆M and Ď ⊆ D.

3) Compute the pose shift ∆p = (∆x,∆y,∆θ)T as the
optimal transformation for mapping Ď onto M̌ .

4) Update the robot’s pose pn −−→
∆p

pn+1 accor-
ding to formula (1).

5) Save the current scan as new reference scan R ← S .

Given a pose pn = (xn, yn, θn) and a transformation
∆p = (∆x,∆y,∆θ), the transition pn −−→

∆p
pn+1 is

calculated as follows:
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The following subsections describe the implemented data
filtering techniques, extraction and matching of the used
features as well as the mathematical background and
practical matters of calculating the optimal transformation
between two scans.

A. Data Filtering

Scanning is noisy and small errors may occur, namely
Gaussian noise and salt and pepper noise. The latter one
arises for example at edges where the laser beam of
the scanner hits two surfaces, resulting in a mean and
erroneous data value. Furthermore reflections, e.g., at glass
surfaces, lead to suspicious data. We propose two fast
filtering methods to modify the data in order to enhance
the quality of each scan, typically containing 181 data
points. The data reduction, used for reducing Gaussian
noise, works as follows: The scanner emits the laser beams
in a spherical way, such that the data points close to the
source are more dense. Multiple data points located close
together are joined into one point. The number of these
so-called reduced points is one order of magnitude smaller
than the original one. For eliminating salt and pepper
noise, a median filter removes the outliers by replacing
a data point with the median value of the n surrounding
points (here: n = 7). The neighbor points are determined
according to their index within the scan, since the laser
scanner provides the data sorted in a counter-clockwise
direction. The median value is calculated with regard to the
Euclidian distance of the data points to the point of origin.
In order to remove noisy data but leave the remaining scan
points untouched, the filtering algorithm replaces a data
point with the corresponding median value if and only if
the Euclidian distance between both is larger than a fixed
threshold (e.g., 200 cm).

B. Extraction and Matching of Features

As described above, the scan matching algorithm com-
putes a transformation ∆p such that a set of features,
extracted from the first scan, is mapped optimally to a
feature set of the second scan. In order to be usable for
a pose tracking algorithm, features have to fulfill two
requirements:
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Fig. 3. Matching of features. Left: Detected features in both scans. Matched features are connected by a line. Middle: The second scan is transformed
based on the calculated rotation & translation. Right: The transformed scan, in Cartesian coordinates.

• They have to be invariant with respect to rotation and
translation.

• They have to be efficiently computable in order to satisfy
real time constraints.
Using the inherent order of the scan data allows the

application of linear filters for a fast and reliable feature
detection. The described algorithm chooses extrema in
the polar representation of a scan as natural landmarks.
These extrema correlate to corners and jump edges in
Cartesian space. The usage of polar coordinates implicates
a reduction by one dimension, since all operations deployed
for feature extraction are fast linear filters, operating on
the sequence of range values (ri)i∈N of a scan S =(
(ϕi, ri)

)
i=1,...,N

.
Given a one dimensional filter Ψ =

[
ψ−1, ψ0, ψ+1

]
,

the filtered value rΨi of a scan point ri (i = 2, . . . , N −1) is
defined as rΨi =

∑1
k=−1 ψk · ri+k. For feature detection,

the scan signal is filtered as follows:
1) Sharpen the data in order to emphasize the significant

parts of the scan, i.e., the extrema, without modifying
the residual scan, by applying a sharpen filter of the
form Ψ1 =

[−1, 4, −1
]
.

2) Compute of the derivation signal by using a gradient
filter Ψ2 =

[− 1
2 , 0, 1

2

]
.

3) Smooth the gradient signal to simplify the detection of
zero crossings with a soften filter Ψ3 =

[
1, 1, 1

]
.

Figure 2 illustrates the effects of the used filters.
After generating the sets of features M,D from both

scans, a matching between both sets has to be calculated.
Instead of solving the hard optimization problem of search-
ing for an optimal match, we use a heuristic approach, uti-
lizing inherent knowledge about the problem of matching
features, e.g., the fact that the features’ topology cannot
change fundamentally from one scan to the following. The
basic aim is to build a matrix of possible matching pairs,
based on an error function defining the distance between
two points mi,dj , with mi = (mx

i ,m
y
i )T in Cartesian, or

(mϕ
i ,m

r
i )

T in polar coordinates, resp. (dj analogously):

dist
(
mi,dj

)
=

√(
ω1 · (mϕ

i − dϕ
j )

)2 + ω2(mr
i − dr

j)2

+ ω3 ·
√

(mx
i − dx

j )2 + (my
i − dy

j )2

+ Θ
(
mi,dj

)

with constants (ωk)k∈{1,2,3}, implementing a weighting
between the polar and Cartesian distances. The function Θ

inhibits matchings between two features of different types:

Θ
(
mi,dj

)
=

{
0 Γ(mi) = Γ(dj)
∞ else

with a classification function Γ: (M ∪ D) 7→
{maximum,minimum, inflection point}. The resulting
matrix denoting feature correspondences is simplified until
the match is non-ambiguous. See figure 3 for a matching
of two scans.

C. Pose Calculation

Given two sets of features M = {mi | mi ∈ R2, i =
1, . . . , Nm} and D =

{
di

∣∣ di ∈ R2, i = 1, . . . , Nd

}
, the

calculation of the optimal transformation for mapping D
onto M is an optimization problem. Intuitively, we are
searching for a rotation R∆θ by the angle ∆θ and a
translation ∆t = (∆x,∆y)T such that the differences
between points from the reference and the corresponding
points from the current scan, transformed with ∆p =
(∆x,∆y,∆θ), are minimized. This results in a minimiza-
tion of the error function

E =
Nm∑

i=1

Nd∑

j=1

wi,j ‖mi − (R∆θdj + ∆t)‖2 (2)

with weights wi,j = 1 iff feature mi corresponds to dj ,
and 0 otherwise.

Let M̌ = {m̌i}i=1,...,N ⊆ M and Ď = {ďi}i=1,...,N ⊆
D be sets of matched features, with m̌i ∼ ďi ∀ i ∈
1, . . . , N . Correspondence between two points, m̌i ∼ ďi,
means that both data points denote the same point in the
real scene. Therewith, the error function E simplifies to

E(1) =
N∑

i=1

∥∥m̌i − (R∆θďi + ∆t)
∥∥2
. (3)

Let M̂, D̂ be variants of M̌, Ď so that each point is
shifted by the centroid of the respective set:

M̂ =
{

m̂i | m̂i = m̌i − čm

}
i=1,...,N

D̂ =
{

d̂i | d̂i = ďi − čd

}
i=1,...,N

with the centroids defined as

čm =
1
N

N∑

i=1

m̌i čd =
1
N

N∑

i=1

ďi.
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Fig. 4. Angle histograms. Left: Due to data noise, the histogram degenerates. Middle: Application of a reduction filter leads to clearer histograms.
Right: Using a line extraction filter results in clear, singular peaks.

Substitution into formula (3) leads to

E(1) =
N∑

i=1

∥∥∥m̂i −R∆θd̂i − (∆t− čm + R∆θčd)︸ ︷︷ ︸
= ∆t̃

∥∥∥
2

=
N∑

i=1

∥∥∥m̂i −R∆θd̂i

∥∥∥
2

(4a)

− 2∆t̃ ·
N∑

i=1

(
m̂i −R∆θd̂i

)
(4b)

+
N∑

i=1

∥∥∆t̃
∥∥2
. (4c)

The second term (4b) is zero since the measurements are
referred to the centroids. The third term (4c) is minimal at
∆t̃ = 0, i.e., ∆t̃ = čd−R∆θčd. Therefore, E(1) is minimal
iff E(2) is, with E(2) depending only on the rotation [13]:

E(2) =
N∑

i=1

∥∥∥m̂i − (R∆θd̂i)
∥∥∥

2

.

Since rotating does not change the length of a vector, in
particular ‖R∆θd̂j‖2 ≡ ‖d̂j‖2, it is sufficient to calculate
the maximum of

E(3)(R∆θ) =
N∑

i=1

m̂i ·R∆θd̂i . (5)

By solving the equation ∂
∂∆θE

(3) = 0, the rotation is
calculated as

∆θ = arctan




N∑

i=1

(
m̂x

i · d̂x
i + m̂y

i · d̂y
i

)

N∑

i=1

(
m̂y

i · d̂x
i − m̂x

i · d̂y
i

)



. (6)

With given rotation, the translation is calculated as
follows:(

∆x
∆y

)

︸ ︷︷ ︸
= ∆t

=
(
čxm
čym

)
−

(
cos∆θ sin∆θ
− sin∆θ cos∆θ

)

︸ ︷︷ ︸
= R∆θ

·
(
čxd
čyd

)
. (7)

For calculating a transformation ∆p between two scans
as described, at least two features ∈ R2 are needed,
since the four coordinates are sufficient to determine the
three degrees of freedom (translation in x- and y-direction,

rotation). The following situations where it is impossible
to find two corresponding features may occur:

1) The two scans are too diverse to be matched. Naturally,
every relative localization algorithm is depending on
an adequate overlap of two successive sensor inputs.
In practice, however, this theoretical problem proved
to be nonexistent for the proposed algorithm. Since
the mobile robot platform Kurt3D that was used to
evaluate HAYAI drives with a maximum speed of 4 m/s,
the scanner’s frequency is 75 Hz, and the implemented
algorithm reaches an average frequency of 2300 Hz on
the robot’s on-board computer (Pentium III-800 MHz),
it is guaranteed that every acquired scan is processed.
Hence, the maximal difference between two scans
is ∆t = 6.43 cm (forward translation) respectively
∆θ = 25.58◦ (rotation on the spot with maximal
angular velocity). Various experiments in miscellaneous
environments showed that the algorithm is capable of
matching reliably much larger differences.

2) It is not possible to detect a sufficient number of
matchable features in the scans. This general problem
of every feature-based scan matching technique may
occur either if there are too few objects within the
scanner’s range, or the scenery is unsuitable to detect
features. The first case is very unlikely, since the range
of laser scanners is generally sufficiently high (in case
of the model deployed here, 32 m), and the features
used in this algorithm do exist frequently in a real world
application. An example of the second case is an office
environment, when the robot is turning at the end of a
corridor and is directly facing a corner, detecting this
corner as a sole feature. To cope with this exceptional
case, we calculate angle-histograms to estimate the
rotation. This estimation is used to support the correct
mapping of the corresponding features, and furthermore
enables the transformation calculation based on only
one feature by applying equation (7).

D. Additive: Rotation Estimation with Angle Histograms

Regarding the single data points of a scan as vectors
makes it possible to associate each data point with an
angle, i.e., α(i) of point i = (xi, yi) is defined as the
angle between x-axis and the vector from i to i+ 1, with

α(i) = arctan
(
xi+1 − xi

yi+1 − yi

)
.



Discretizing and plotting the angles against their fre-
quency leads to a histogram as a characteristic of the
scan that is invariant with regards to rotation, that is, a
movement of the robot results in a translational displace-
ment of the circular angle histogram (Figure 4, right).
Likewise, the shift between two histograms extracted from
two different scans are used to calculate the rotation ∆θ
of the robot between taking these scans. More precisely,
given two histograms H,G, the angle ∆θ is computed by
∆θ = arg max

i
Ki(H,G), where the error function Ki

measures the similarity of the two scans. Weiß et al. suggest
the use of a cross correlation function [12],

Ki(H,G) =
n∑

j=1

H(j) · G((j + i) mod (n+ 1)
)
.

In practice, Gaussian noise of the sensor leads to small
variances of the scanned data points that in turn imposes
significant differences of the calculated angles. Therefore,
we apply the reduction filter as described in section II-
A first, resulting in a much clearer histogram. Figure 4
shows the results of both methods, as well as a histogram
calculation based on lines extracted from the scan. For a
description of the real-time capable line filter, see [14].

III. RESULTS

The algorithm has been tested in various indoor and
outdoor environments. This paragraph demonstrates results
of localization in different static and dynamic scenarios.

A. Indoor Tracking

Figure 5 shows the result of a 160 m cyclic drive in the
office corridor of the Fraunhofer Institute AIS. The map
was generated from 12727 scans, gaged during the drive,
and is the direct result of the scan matching algorithm,
without fusion with odometry, and without additional cor-
rective algorithms like global relaxation or explicit cor-
rection of cycles, in order to illustrate the quality of the
localization. In Figure 5 (bottom) the calculated trajectory,
titled with HAYAI, as well as the results of other stan-
dard scan matching algorithms and the robot’s odometry
are presented. Apparently, these reference algorithms are
incapable of processing each incoming scans, since small
errors in the calculations accumulate in such a way that the
resulting trajectories are useless. Artificial off-line reduc-
tion of the scanner’s frequency to 10 Hz, i.e., taking about
every 7th scan only, improves the result of the comparative
algorithms, but is no general solution, since this procedure
fails at higher speed of the robot: With increasing velocity,
the distance between two acquired scans increases as well,
and soon becomes too large for a reliable matching.

Besides accuracy, another important criterion to evaluate
the quality of a localization method is computation time.
A slow algorithm imposes a hard restriction on the robot’s
velocity, or leads to periodical loss of acquired scans if they
cannot be processed in real time. Skipping scans means to
deal with larger pose changes between successive scans
– if the robot drives fast enough, the scan matching will
become unreliable due to a too small overlap, the pose

Fig. 5. Result of a 160 m cyclic drive, inside an office building. Top: The
resulting map, based on the scan matching algorithm only, without fusion
with odometry or application of additional corrective algorithms. Bottom
left: Trajectories, calculated by different algorithms, based on all 12727
scans (75 scans per second). Bottom right: Artificial off-line reduction to
10 Hz enables the reference algorithms to improve their calculations.

TABLE I
SPEED COMPARISON OF SCAN MATCHING ALGORITHMS: TIME [SEC]
NEEDED TO CALCULATE THE TRAJECTORIES FROM FIGURE 5 (LEFT).

HAYAI Cox Hist IDC
5.41 30.86 213.26 47.09

will be highly incorrect or lost completely. Furthermore,
even slower moving robots profit from a fast, efficient
algorithm, since it enables the on-board computer to carry
out other, computationally expensive tasks, besides the
robot localization. Table I compares the times needed
to calculate the trajectories from the indoor experiment
described above, measured on a Pentium III-800 MHz.

B. Outdoor Tracking

Outdoor localization is particularly demanding for an
algorithm, since it has to deal with highly irregular and
non-static environments, where even small changes in the
pose lead to significant changes in the corresponding scans.
For example, scans of plants result in varying output due
to many jump edges and reflections on moving leaves
and branches. Other outdoor capable localization methods
typically depend on some kind of absolute information,
like an a priori map of the environment, active beacons
or GPS data. Contrary to the reference scan matching
algorithms, HAYAI proved to be able to localize the robot
in a clearly unstructured environment (Figure 7), as long
as the ground itself is roughly even so that there are no
significant changes of the robot’s pitch and roll angle.



Fig. 6. Left: Pose tracking in dynamic environments. The red plotted map serves as ground truth, the calculated trajectory is based on scan matching
only, without fusion with odometry. Green arrows mark scan data of dynamic objects (people walking around). Right: Photo of the corridor.
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Fig. 7. Localization during a 84 m cyclic outdoor drive. Top: Calculated
trajectories from HAYAI, other scan matching algorithms, and odometry.
Bottom left: Map generated from 6903 scans, with calculated, exact, final
trajectory (Kalman-filtered with odometry). Bottom right: Picture of the
scene (rotated 90◦ counterclockwise).

C. Dynamic Environments

In practice, the described algorithm showed to be robust
even in dynamic environments, like scenarios with people
walking. Due to the scanner’s high clock rate of 75 Hz,
the environment does not change significantly between two
scans. In addition, the use of abstracted features instead of
whole scans and an accurate calculation of corresponding
features yields an inherent robustness, since data points
that appear suddenly and do not match correctly with
the previous scan features are ignored. Figure 6 shows
a typical example of such an experiment. Comparison
between ground truth map and plotted scans shows that
the accuracy of the localization is still very high.

IV. CONCLUSION

Mobile robots depend on a stable and reliable self
localization. The described, newly developed localization
algorithm, based on pairwise scan matching, is capable
of tracking a robot’s trajectory in indoor as well as out-
door environments, driving with a speed of up to 4 m/s.
Comparison with three state of the art scan matching
algorithms showed the outstanding performance of HAYAI

in terms of precision and computational speed. It is able to
process scans with up to 2300 Hz on a moderate laptop
(Pentium III-800 MHz) – if only the scanner supplied
the data so fast. In reality, the scanner provides the data
with 75 Hz, that is one scan every 5.3 cm at a speed of
4 m/s. The scan matching algorithm HAYAI is based on
matching features that are naturally given in any standard
operational environment and are extracted efficiently in the
order of O(n). The method is not restricted to polygonal
environments, independent from structural alteration of
the surrounding like beacons or artificial landmarks, and
proved to be stable even in dynamic environments.
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