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Abstract— In the past many solutions for simultaneous lo-
calization and mapping (SLAM) have been presented. Recently
these solutions have been extended to map large environments
with six degrees of freedom (DoF) poses. To demonstrate the
capabilities of these SLAM algorithms it is common practice
to present the generated maps and successful loop closing.
Unfortunately there is often no objective performance metric
that allows to compare different approaches. This fact is
attributed to the lack of ground truth data. For this reason
we present a novel method that is able to generate this ground
truth data based on reference maps. Further on, the resulting
reference path is used to measure the absolute performance of
different 6D SLAM algorithms building a large urban outdoor
map.

I. INTRODUCTION

Algorithms for solving the robotic simultaneous local-
ization and mapping (SLAM) problem are a key scientific
issue in mobile robotics research. Solutions to SLAM are of
core importance in providing mobile robots with the ability
to operate with real autonomy. SLAM algorithms integrate
robot action and sensor readings and exploit the fact that
previously mapped areas are recognized. Global optimization
methods yield consistent maps. Nevertheless, these consistent
maps might be incorrect and therefore ground truth exper-
mients have to be made. This paper presents ground truth
experiments using a novel empiricism.

Popular mapping algorithms work with 3DoF pose es-
timates, i.e., robot poses are represented by three degrees
of freedom P = (x, y, θz). For indoor environments this
choice is appropriate, but a current trend for mapping outdoor
environments are mapping algorithms that represent poses
in 6DoF, i.e., 6D SLAM [16]. These algorithms consider the
6DoF pose V = (x, y, z, θx, θy, θz) of the mobile robot with
3 position coordinates and roll, pitch and yaw angles. Robot
motion and localization on natural surfaces must regard
these 6 degrees of freedom. Recently, 3D mapping of large
environments received much attention, [3], [17], [23]. A
framework for benchmarking these large experiments is still
missing.

This paper evaluates algorithms and methods for au-
tonomous mapping. A mobile robot, equipped with a fast 3D
scanner gages the environment, while it is steered through
a large urban environment. The maps generated by online
and offline algorithms are compared to odometry based,
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Fig. 1. Performance measurement of SLAM algorithms. Using reference
maps and MCL in urban outdoor environments (3D scan index 1 - 700).
Distances are given in meter.

gyro based and GPS based pose estimates. Ground truth
is provided by a Monte Carlo Localization (MCL) using
accurate reference maps.

A. Ground Truth Experiments

In doing experiments with ground truth reference, re-
searchers aim to measure the objective performance of a
dedicated algorithm. Based on this benchmark it is possible
to give an experimental prove of the effectiveness of a
new algorithm. Furthermore measuring the performance of
algorithms allows to optimize the algorithm and to compare
it to other existing solutions.

Benchmarking is a common scientific instrument. A good
example for successful performance measurement in com-
puter science is the computer vision community. There are
several projects that aim at providing image data bases
to other researchers [11] [22]. These image databases are
supplemented by ground truth images and algorithms that
calculate performance metrics. In doing so, the community
is able to make progress and to document its progress in
fields like image segmentation and object recognition.

Unfortunately this kind of performance measurement is
not widely spread in the robotics community. Even though
there are several ways of comparing the performance of
robotic algorithms and systems, one basic step is to provide
experimental data and results to other research groups. Up
to now this is only done by small projects [13] [18] or
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individual researchers. Another way of comparing robotic
systems are competitions like RoboCup [6], ELROB [7] or
the Grand Challenge [4]. With this kind of competitions
it is possible to measure the level of system integration
and the engineering skills of a certain team, but it is not
possible to measure the performance of a subsystem or a
single algorithm.

Objective benchmarking of localization and mapping al-
gorithms is only achieved by comparing of experimental
results against reference data. The practical problem is the
generation of this ground truth data. In computer vision,
ground truth data is either available for synthetic images, or
needs to be hand labeled. In case of mobile robot navigation
one way of gathering ground truth data is the use of precise
global positioning systems (RTK-GPS) [10]. Unfortunately,
this data is only available in open outdoor environments and
not for urban outdoor environments or indoor environments.
Another possibility is to use complex external measurement
setups.

Another benchmarking method for robotic algorithms
comprises simulation. Realistic simulation enables reseachers
to perform experiments with defined conditions and to repeat
these experiments. However, real life differs from simulation.
Experiments, involving sophisticated sensors such as cameras
or laser scanners can only be simulated up to a certain
level of accuracy, e.g., capturing environments must regard
surface properties such as material, local structures and
reflexions. Therefore, using real robotic data sets is favored
for benchmarking.

With this paper, we present a novel method of gathering
ground truth data in indoor and urban outdoor environ-
ments. The procedure is making use of a highly accurate
environment map (provided by the land registry office), a
Monte Carlo Localization that matches sensor data against
the reference map and a manual supervision step.

B. State of the Art in Metric Robotic Mapping

1) Planar Mapping: State of the art for metric maps
are probabilistic methods, where the robot has probabilistic
motion models and uncertain perception models. Through
integration of these two distributions with a Bayes filter,
e.g., Kalman or particle filter, it is possible to localize the
robot. Mapping is often an extension to this estimation
problem. Beside the robot pose, positions of landmarks
are estimated. Closed loops, i.e., a second encounter of a
previously visited area of the environment, play a special
role here: Once detected, they enable the algorithms to
bound the error by deforming the mapped area to yield
a topologically consistent model. However, there is no
guarantee for a correct model. Several strategies exist for
solving SLAM. Thrun [20] surveys existing techniques, i.e.,
maximum likelihood estimation, expectation maximization,
extended Kalman filter or (sparsely extended) information
filter SLAM. FastSLAM [21] approximates the posterior
probabilities, i.e., robot poses, by particles.

SLAM in well-defined, planar indoor environments is
considered solved. In principle probabilistic methods are

extendable to 6DoF. However, to our knowledge no reliable
feature extraction mechanisms nor methods for reducing the
computational cost of multihypothesis tracking procedures
like FastSLAM (which grows exponentially with the degrees
of freedom) have been published.

2) Mapping Environments in 3D.: An emerging research
topic is 6D SLAM, i.e., while mapping the robot pose is
represented with six degree of freedom. In previous work, we
used a 3D laser range finder in a stop-scan-match-go-process
to create a 3D map of the environment by merging several
3D scan into one coordinate system [16], [19]. Similar
experiments have been made by Newman et al. [15]. A
current trend in laser based 6D SLAM is to overcome stop-
and go fashion of scan acquisition by rotating or pitching
the scanner while moving [3], [23], [24]. In the most recent
work Pfaff et al. [17] employ two rotating SICK scanners
for data acquisition, odometry, IMU and DGPS positioning,
a variant of the iterative closest point (ICP) algorithm and a
loop closing procedure to map large urban environments in
3D.

Feature-based 6D SLAM methods are investigated by Udo
Frese, who adapted his fast treemap algorithm to six degrees
of freedom [9]. Among the category of feature based 6D
SLAM are the visual SLAM methods, i.e., the MonoSLAM
system of Davison et al. [5].

The remainder of the paper is structured as follows: Next,
we describe the sensor system for generating large 3D maps
and the two pairs of evaluated mapping algorithms. In section
III we present the MCL based benchmarking technique. Then
we present results from an experiment consisting of 924 3D
scans. Section V concludes.

II. GENERATION OF LARGE URBAN 3D MAPS

A. Sensor System

The sensor that has been employed for the experiments
is a fast 3D laser range scanner, developed at the Leibniz
Universität Hannover (see Fig. 2). As there is no commercial
3D laser scanner available that meets the requirements of
mobile robots, it is common practice to assemble 3D sensors
out of standard 2D laser range sensors and additional servo
drives.

The specialties of our RTS/ScanDrive are a number of
optimizations that are made to allow fast scanning. One
mechanical optimization is the slip ring connection for power
and data. This connection allows continuous 360◦ scanning
without the accelerations and high power consumption that
are typical for panning systems. Even more important than
the mechanical and electrical improvements is the precise
synchronization between the 2D laser data, servo drive data
and the wheel odometry. Having this good synchronization,
it is possible to compensate systematic measurement errors
and to measure accurate 3D point clouds even with a moving
robot. Detailed descriptions of these 3D scanning methods
and optimizations are published in [26].

Having these optimizations described above the limiting
factor in bulding faster 3D laser scanner is the maximal

651



Fig. 2. 3D laser range sensor RTS/ScanDriveDuo. Measuring full 3D scans
with 32580 points in 1.2 sec.

number of 13575 (75 × 181) points that can be measured
with a SICK LMS 2xx sensor in one second. The only way of
building faster SICK LMS 2xx based 3D scanners is the use
of multiple 2D measurement devices [23]. For this reason we
first present the RTS/ScanDriveDuo with this paper. This 3D
scanner makes use of two SICK LMS 291 2D laser scanners.
Thus the measurement time for 3D scans with 2◦ horizontal
and 1◦ vertical angle resolution is reduced to 1.2 sec. In this
case one 3D scan measured in 1.2 sec consists of 32580 (180
× 181) 3D points.

In addition to the 3D laser scanner the mobile robot is
equipped with wheel odometry, a 3 axis gyroscope and a
low-cost SiRF III GPS receiver. The measured data of the
wheel odometry and the gyroscope are fused to result in the
OdometryGyro that is used as the internal sensor for both
MCL and SLAM. In contrast to the odometry sensor the
GPS receiver that has got no influence on neither the MCL
nor the SLAM results. It is only logged to have another laser
independent reference.

B. 6D SLAM with ICP based Scan Matching

We use the well-known Iterative Closest Points (ICP)
algorithm [1] to calculate the transformation while the robot
is acquiring a sequence of 3D scans. The ICP algorithm
calculates iteratively the point correspondence. In each it-
eration step, the algorithm selects the closest points as
correspondences and calculates the transformation (R, t) for
minimizing the equation

E(R, t) =
Nm∑
i=1

Nd∑
j=1

wi,j ||mi − (Rdj + t)||2 , (1)

where Nm and Nd, are the number of points in the model
set M or data set D, respectively and wj,i are the weights
for a point match. The weights are assigned as follows:
wi,j = 1, if mi is the closest point to dj within a close
limit, wi,j = 0 otherwise. The assumption is that in the
last iteration the point correspondences are correct. In each
iteration, the transformation is calculated by the quaternion
based method of Horn [12].

To digitalize environments without occlusions, multiple
3D scans have to be registered. Consider a robot travelling
along a path, and traversing n+1 3D scan poses V0, . . . , Vn.
A first straightforward method for aligning several 3D scans
taken from the poses V0, . . . , Vn is pairwise ICP, i.e., match-
ing the scan taken from pose V1 against the scan from pose
V0, matching the scan taken from V2 against the scan from
pose V1, and so on. Here the model set M is formed the 3D
data from pose Vi−1 and the data set D that of the pose Vi

for all i ∈ [1, n]. A second plausible method is to form of all
previously acquired 3D scans a so called metascan and match
the last acquired one against this metascan. This method is
called metascan ICP. Here, the model set M consists of the
union of the 3D scans from the poses V0, ..., Vi−1 and the
data set D that of pose Vi, for all i ∈ [1, n].

C. 6D SLAM with Global Relaxation

Both, pairwise ICP and metascan ICP correct the robot
pose estimates, but registration errors sum up. SLAM al-
gorithms use loop closing to bound these errors. If two
estimated robot poses Vi and Vj are close enough, i.e.,
their distance falls below a threshold (here: 5 meter) then
we assume these scans overlap and are matchable. To
a graph, initially containing the sequence of all poses
(V0, V1), (V1, V2), . . . , (Vn−1, Vn), the edge (Vi,Vj) is added.
While processing the scans with pairwise ICP or meta
scan matching, we detect closed loops using this simple
distance criterion. Once detected, a 6DoF graph optimization
algorithm for global relaxation based on the method of Lu
and Milios [14] is employed, namely Lu and Milios style
SLAM (LUM). This is a variant of GraphSLAM. Details
of the 6DoF optimization, i.e., how the matrices have to be
filled, can be found in [2], thus we give only a brief overview
here:

Given a network with n+1 nodes X0, ..., Xn representing
the poses V0, ..., Vn, and the directed edges Di,j , we aim at
estimating all poses optimally to build a consistent map of
the environment. For simplicity, the approximation that the
measurement equation is linear is made, i.e.,

Di,j = Xi −Xj (2)

An error function is formed such that minimization results
in improved pose estimations:

W =
∑
(i,j)

(Di,j − D̄i,j)T C−1
i,j (Di,j − D̄i,j). (3)

where D̄i,j = Di,j+∆Di,j models random Gaussian noise
added to the unknown exact pose Di,j . This representation
involves to resolve the non-linearities resulting from the
additional roll and pitch angles by Taylor expansion. The
covariance matrices Ci,j describing the pose relations in the
network are computed, based on the paired closest points.
The error function eq. (3) has a quadratic form and is
therefore solved in closed form by Cholesky decomposition
in the order of O(n3) for n poses. The algorithm optimizes
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eq. (3) gradually by iterating the follwoing three steps:
First, for every network link the corresponding covariance
is computed based on the point correspondencies of the
scan matching. Then the error function (3) is minimized by
solving a linear system of equations. In the third step, the
local transformations are applied to the poses, resulting in
improved pose estimates.

Using the global optimization, two more strategies have
been implemented: In pairwise LUM, we use pairwise match-
ing of scans for initially estimating the robot poses. After a
loop has been closed, the global relaxation to all previously
acquired scans is applied. In metascan LUM, every new scan
is initially matched against all previously acquired scans. In
both algorithms, global relaxation is started after a closed
loop is detected. The relaxation considers all previously
acquired scans.

D. Mapping Stategies

Animations of the four mapping stategies, pairwise
ICP, metascan ICP, pairwise LUM, metascan LUM
are given in the accompanying video and on the
following web page: http://kos.informatik.uni-
osnabrueck.de/download/6DSLAMbenchmarking.
Note the maps presented in the video are rotated about
190◦.

III. BENCHMARKING TECHNIQUE

This paper introduces a new benchmarking technique for
SLAM algorithms. The benchmark is based on the final
SLAM results and a reference position that is obtained
independently of the SLAM algorithm under test.

As highly accurate RTK-GPS receivers can not be used
in urban outdoor environments, we present a technique that
is based on surveyed maps as they can be obtained from
the German land registry offices. The process of generating
this ground truth reference positions can be divided into a
Monte Carlo Localization step that matches the sensor data
to the highly accurate map and a manual supervision step to
validate the MCL results.

As the SLAM algorithm under test and the MCL algorithm
use the same sensor data, the SLAM results and the reference
positions are not completely independent. But on the other
hand, global localization algorithms and incremental local-
ization and mapping algorithms work differently. Incremental
mapping algorithms like odometry and SLAM can suffer
from accumulating errors and drift effects. However pure
localization algorithms eliminate these errors by continu-
ously matching to an accurate given map. For this reason
the remaining error of the manually supervised reference
position is at least an order of magnitude smaller then the
discussed SLAM errors.

A. Reference Map

As part of their geo information system (GIS) the German
land registration offices features surveyed data of all build-
ings within Germany. The information about these building
is stored in vector format in the so called ”Automatisierte

Liegenschaftskarte (ALK)”. The vector format contains lines
that represent the outer walls of solid buildings. Each line
is represented by two points with northing and easting
coordinates in a Gauss-Krueger coordinate system. The upper
error bound of all points stored in the ALK is specified to
be 4 cm. Up to now there are no further details about doors,
windows or balconies available.

B. Monte Carlo Localization

The Monte Carlo Localization (MCL) is a commonly used
localization algorithm that is based on particle filtering [8].
As the theory of MCL is well understood we focus on the
sensor model that is used to match the 3D sensor data to the
2D reference map with this paper.

The key problem of matching a 3D laser scan to a 2D map
is solved by using a method called Virtual 2D Scans [24].
The method splits up into two steps. The first step reduces the
number of points in the 3D point cloud. The reduction step
is based on the assumption that the reference map presents
plain vertical walls. For this reason all 3D measurement
points that do not belong to plain vertical surfaces need to be
removed. A sequence of 3D segmentation and classification
algorithms that is used to do this reduction in urban outdoor
environments is described in [25]. By this means the ground
floor, vegetation and small objects are removed from the 3D
data. Measurement points on the outer walls of buildings and
on other unmapped vertical obstacles remain.

Having this reduced 3D point cloud, the second step of
the Virtual 2D Scan method is a parallel projection of the
remaining 3D points onto the horizontal plane. After this
projection the z coordinate contains no information and can
be removed. By this means, the Virtual 2D Scan has got
the same data format as a regular 2D scan. Thus it can
be used as input data of a regular 2D MCL algorithm. To
reduce the computational complexity of the successive MCL
algorithm the remaining measurement points are randomly
down sampled. Experimental results show that less than 100
measurement points are needed for sufficient localization.

Due to the 2D nature of the reference map and the
used 2D MCL algorithm it is only possible to estimate the
3DoF pose PREF = (x, y, θz) of the robot. There is no
reference information on the robots height z. And the roll
and pitch components θx θy of the 6DoF robot pose can
not be estimated with this 2D method. These angles need to
be measured and compensated with a gyro unit before the
generation of the Virtual 2D Scans.

C. Manual Supervision

Unlike MCL algorithms used in fully autonomous nav-
igation the generation of reference positions needs manual
supervision. Even though the human supervisor is not able to
identify the absolute accuracy of the estimated MCL position,
it is possible to check the conditions that are needed for
proper operation. If all of these conditions are fulfilled the
MCL algorithm is able to find the true position of the robot
in global coordinates.
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There are several conditions that need to be checked to
attest proper operation:

At first the sensor data needs to be checked for a sufficient
number of landmarks. Namely, walls as they are given in the
reference map. In case of an open area without landmarks
in the surrounding of the robot, occluded landmarks or
insufficient Virtual 2D Scans the MCL results only depend
on odometry and are therefore not accurate.

The second step is to supervise the numerical condition
of the particle filter. As a particle filter only presents a
sampled belief an efficient distribution of the finite number of
particles is essential for correct operation. For this reason the
human supervisor needs to make sure that enough particles
are located around the true position. The estimated position
can be corrupt if particles are located around more than one
maximum or around wrong local maxima.

Finally, the human supervisor can valuate the overall
soundness of the localization and mapping results. For this
reason it is necessary to display the reference map with
overlaid sensor data. As the sensor data is transformed with
the MCL results, fatal matching errors can be detected by
the supervisor.

D. Benchmark Criteria

Up to this point the MCL positions and SLAM positions
are given in different coordinate systems. The MCL positions
are given in the global Gauss-Krueger coordinate system of
the reference map and the SLAM positions are given in a
local coordinate system that is centered in the robots start
position. To be able to compare the positioning results it is
necessary to transform the SLAM positions into the global
coordinate system based on the known start position.

Having the trusted MCL reference PREF and the SLAM
results V SLAM in the same coordinate system, it is possible
to calculate objective performance metrics based on position
differences. The first metric based on the 2D Euclidean
distance between the SLAM and MCL position

ei =
√

(xSLAM
i − xREF

i )2 + (ySLAM
i − yREF

i )2. (4)

The second metric is based on the difference between the
SLAM und MCL orientation

eθ,i = |θSLAM
z,i − θREF

z,i |. (5)

As the MCL position has got only 3DoF, the robots
elevation, roll and pitch angle can not be tested.

To compare the performance of different SLAM algo-
rithms on the same data set, it is possible to calculate scores
like the standard deviation

σ =

√√√√ 1
n + 1

n∑
k=0

e2
i , (6)

and the error maximum

emax = max ei. (7)

Of course these statistic tests can be done analogously
on the orientation errors eθ,i resulting in the scores (σθ and
eθ,max).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The presented experiment has been carried out at the
campus of the Leibniz Universität Hannover. The experi-
mental robot platform that was used to collect the data was
manually driven on the 1.242 km path closing a total of 5
small and large loops. On this path 924 full 3D scans have
been collected at an average robot speed of 4 km/h and a
maximum speed of 6 km/h. In addition to the 3D laser data
wheel odometry and fused wheel/gyro odometry have been
stored with a data rate of 10 Hz. And the position fixes of a
low-cost GPS have been logged with 1 Hz.

B. Ground Truth Data

The section of the ALK that is used as the reference
map contains 28 buildings represented by 413 line segments.
To avoid huge coordinate numbers a constant offset of
5806400 m northing and 3548500 m easting is subtracted
from all Gauss-Krueger coordinates. This offset corresponds
to the position 52◦23′58′′ north, 9◦42′41′′ east in WGS84
coordinates.

The MCL reference positions are calculated online on the
Pentium III 700 MHz processor included in the 3D sensor.
The particle filter runs with 200 samples and a generous
estimate of the sensor variance of 30cm. This estimate
includes the sensor range error, errors from scanning while
moving and map uncertainties. The localization results are
plotted as a solid gray line in Fig. 1.

The result of the offline manual observation is that the
MCL positions can be used as reference positions for 3D
scan indexes 1 to 197 and 242 to 924. On the other hand
positions corresponding to 3D scan indexes 198 to 241 can
not be used as there are not enough landmarks visible to
the 3D sensor (MCL error box in Fig. 1). Due to that
particles diverge and the calculated position follows the
drifting odometry. Starting with 3D scan 138 the Virtual 2D
Scan contains new landmarks and thus the MCL converges
quickly to the true position.

For that reason results from 3D scan indexes 198 to 241
are not considered in the following analysis.

C. Mapping Results

1) Mapping with Internal Sensors and GPS: Since all
sensors are inaccurate the maps generated using internal
sensors for pose estimation are of limited quality as has been
demonstrated many times before. For odometry and the gyro
based localization the error for orientation and postion are
potentially unbounded. However, since paths usually contain
left and right turns, these errors partially balance. The GPS
shows problems close to buildings, where the orientation is
poorly estimated and the position error reaches its maximal
value. Fig. 3 shows the orientation errors of the internal
sensors in comparison to ICP scan matching.
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Fig. 3. Orientation errors. Comparing internal sensors measurments, GPS
headings and metascan ICP matching with orientations computed by MCL
localization. The x-axis represents the 3D scan index, roughly corresponding
to the position at the robot path.

Fig. 4. Position errors (Euclidean distance to MCL localization). Compar-
ison of different mapping strategies.

2) Mapping with ICP: Mapping with ICP was done using
two different methods, namely pairwise ICP and metascan
ICP. The latter method outperforms pairwise ICP since it
considers all previously acquired 3D scans leading to slower
error accumulation. Fig. 4 shows the scan matching errors in
comparison to methods using explicit loop closure that are
described next.

3) Mapping with ICP and Global Relaxation: The perfor-
mance of the methods pairwise LUM, metascan LUM have
also been evaluated. As expected, loop closing reduces the
position error at the positions, where the loop is closed to
approximately zero, e.g., Fig. 4 at scan index 100, where
the first loop was closed and at the indices 300–400 and
600–700. At these locations, the Lu/Milios style SLAM
methods outperform the pairwise ICP and metascan ICP
methods. However, pairwise LUM, and metascan LUM may
also fail, if the loop cannot be closed. This case occurs in our
experiment in the final part of the trajectory, i.e., when the
scan index is greater than 700 (cf. Fig. 4 and Fig. 6). This
last loop was not detected by the threshold method described
in section II-C.

Finally, tables I and II compare all localization/mapping

TABLE I
POSITION ERRORS [M].

method σ emax

Odometry 55.1 261.2
OdometryGyro 64.7 250.1
GPS 5.8 95.1
pairwise ICP 5.2 21.8
metascan ICP 1.6 6.6
pairwise LUM 4.9 17.0
metascan LUM 3.8 13.8

TABLE II
ORIENTATION ERRORS [DEG]

method σθ eθ,max

Odometry 77.2 256.6
OdometryGyro 15.1 56.7
GPS 27.3 171.0
pairwise ICP 6.3 17.7
metascan ICP 2.4 11.8
pairwise LUM 5.2 22.8
metascan LUM 4.3 21.2

methods. Fig. 5 shows the final map generated with metascan
LUM. The left part contains the first 720 3D scans that have
been matched correctly, whereas the right part contains all
scans including the errors, due to the undetected loop. Fig. 7
shows a 3D view of the scene including two close-up views.

D. Computational Requirements

Of the compared mapping methods only the internal sensor
based and the pairwise ICP are online capable. Pairwise ICP
using an octree based point reduction and kd-tree search
are perfomed in less than 1.2 sec. using standard computing
hardware. In metascan ICP, mapping the computing time for
closest point calculations increases with the number of scans;
therefore, the scan matching time increases to 11.2 sec. for
matching scan No. 920 with all previous ones, i.e., matching
32580 against 29 Mio. points.

Pairwise LUM and metascan LUM spend additional time
on computing the point correspondences for scans repre-
sented by the nodes in the graph. Due to the iteration required
by our GraphSLAM algorithm, both methods are not online
capable [2]. The total map processing time was 207 min and
371 min, respectively. The largest portion of the computing
time was spent by calculating closest points.

V. CONCLUSION AND FUTURE WORK

Benchmarking of algorithms and research in experimental
methodology are topics that get more and more important in
robotics. Thus this paper presents a novel evaluation method
for SLAM in urban outdoor environments. The evaluation is
based on a comparison of the final SLAM results and ground
truth reference positions. In our case these reference posi-
tions are generated with a manually supervised Monte Carlo
Localization working on surveyed reference maps. Having
this reference positions it is possible to calculate objective
benchmark scores that can be used to improve and compare
algorithms. This evaluation technique is demonstrated with
experimental data and four different 6D SLAM strategies.
The experiment that contains 924 full 3D scans on a 1.2 km
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Fig. 5. Final 3D map using the metascan LUM strategy. 3D points are classified as ground (gray) and object points (blue). The trajectory is denoted in red.
Left: Registration of the first 720 3D laser scans into a common coordinate system. Global relaxation leads to a consistent map. Right: The accumulated
elevation errors on the remaining path (3D Scan 700 to end) prevents loop closing (yellow rectanlge). Due to that parts of the map are inconsistent. A
detailed view of the yellow rectangle is provided in Fig 6.

Fig. 6. 3D view of the problematic loop closure in Fig. 5 (right, yellow
rectangle). Loop closing is not possible due to accumulated elevation errors.

path was carried out on the campus of the Leibniz Universität
Hannover.

Needless to say that much work remains to be done.
Future work will be done on two aspects: First, research in
robotic benchmarking techniques needs to be emphasized.
And second this ideas need to be spread out in the robotics
community. To this end, we plan to cooperate with the
Radish: The Robotics Data Set Repository [13] and the
OpenSLAM [18] project.
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