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Abstract— The recently introduced Minimum Uncertainty Maximum
Consensus (MUMC) algorithm for 3D scene registration using planar-
patches is tested in a large outdoor urban setting without any prior
motion estimate whatsoever. With the aid of a new overlap metric based
on unmatched patches, the algorithm is shown to work successfully in
most cases. The absolute accuracy of its computed result is corroborated
for the first time by ground-truth obtained using reflective markers.
There were a couple of unsuccessful scan-pairs. These are analyzed for
the reason of failure by formulating two kinds of overlap metrics: one
based on the actual overlapping surface-area and another based on the
extent of agreement of range-image pixels. We conclude that neither
metric in isolation is able to predict all failures, but that both taken
together are able to predict the difficulty level of a scan-pair vis-à-vis
registration by MUMC.

I. INTRODUCTION

A 3D registration algorithm [1] based on matching large planar-

patches extracted from “point-clouds” sampled from 3D sensors

was recently introduced by some of the authors. The algorithm

is termed Minimum Uncertainty Maximum Consensus (MUMC)

and as the name suggests, it tries to find a set of correspondences

between planar-patches from the two scans being matched which

minimizes the uncertainty-volume of the registration result as

measured by the determinant of the 6 × 6 covariance matrix of

the computed pose. A closed-form least-squares solution of the

registration was also presented along with explicit expressions for

its uncertainty.

The MUMC algorithm was tested on a variety of sensors and

compared to point based methods like Iterative Closest Point (ICP),

in both its point-to-point [2] and point-to-plane [3] incarnations, and

3D Normal Distribution Transform (3D NDT). It was found that

the algorithm had a bigger convergence radius than its competitors

because it does a global search and does not depend on a local

attraction to the nearest locally optimum solution. The goodness-

of-fit was measured by the quality of alignment of scans, which is

a relative measure. The algorithm was also used— embedded in a

pose-graph for Simultaneous Localization and Mapping (SLAM)—

to generate 3D maps of disaster scenarios [4]. In that work, clearly

visible ground-truth structures were used for a qualitative evalua-

tion. The main reason for the use of these somewhat subjective

criteria for evaluation was that ground-truth in 3D is hard to

come by. In the field of mobile robot navigation, ground-truth

comparison either requires a simulation-study or precise GPS [5].

In [6] surveying data of buildings, stored in vector format, and

available from government land registration offices was used as the

source of ground-truth. Satellite images can also be used to obtain

a rough ground-truth.

In this paper, we present a comparison of the MUMC algorithm

results to the ground-truth for the first time. The ground-truth
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Fig. 1. The sensor in two coordinate-frames observes the same physical
plane. Only a patch of the plane is visible from any pose; the polygonized
patches are shown in color, with the sampled points shown as dots and
crosses from the left and the right frame respectively.

was obtained based on the commercial reflective marker-based

solution available on the high-end RIEGL VZ-400 3D laser scanner.

The dataset consists of a fairly big outdoor urban scenario, viz.

the old city-center of Bremen, Germany. The data was originally

obtained as point-clouds of about 22.5 million points per scan,

which were subsequently sub-sampled to range-images of half a

million points per scan, from which planar-patches were extracted

using a region-growing method described in [7]. This method also

involves computation of the uncertainties of the plane-parameters

using a sensor range error-model [8].

A. Notation Overview

The nomenclature used is briefly reviewed in this section. An

infinite plane P(m̂, ρ) is given by the equation m̂ · p = ρ, where

ρ is the signed distance from the origin in the direction of the unit

plane normal m̂. We see that P(m̂, ρ) ≡ P(−m̂,−ρ). To achieve

a consistent sign convention, we define planes as P(n̂, d), where,

d , |ρ| ≥ 0, and n̂ , σ(ρ) m̂, where, σ(ρ) = −1 if ρ < 0 and

+1 otherwise. If ρ = 0, then we choose the maximum component

of n̂ to be positive.

For registration, we consider two robot-frames as shown in Fig. 1:

a left one denoted as Fℓ with origin Oℓ from which the indexed

plane-set ℓP is observed, and a right one Fr with origin Or from

which the indexed plane-set rP is observed. The equations of the

planes are

ℓ
n̂i ·

ℓ
p = ℓ

di,
r
n̂i ·

r
p = r

di. (1)

An indexed set kP of planar-patches is extracted [7] from

a point-cloud associated with the k-th robot-frame Fk by seg-

mentation of the range-image using region-growing followed by

polygonization. As shown in Fig. 1, a patch has a set of points
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pj associated with it: the weighted scatter matrix associated with

these points is denoted as Cpp and is depicted as the dotted

ellipsoid in the figure. The weighted centroid is denoted as pc;

the weights being taken to be inversely proportional to the trace of

the covariance of the individual points pj . The normal of the plane

turns out to be the eigenvector of Cpp corresponding to its least

eigenvalue. Apart from the planar patch’s n̂ and d parameters, the

extraction procedure also gives [8] their 4 × 4 covariance matrix

C. Thus, the plane kP is an ordered set of triplets given by

kP , { kPi〈
k
n̂i,

k
di,

k
Ci〉, i = 1 . . . Nk}. (2)

If the robot moves from Fℓ to Fr , and observes the coordinates

of the same physical point as ℓp and rp respectively, these

coordinates are related by [9]

ℓ
p = ℓ

rR
r
p + ℓ

rt, (3)

where, the translation ℓ
rt ,

−−−→
OℓOr , resolved in Fℓ.

ℓPi ↔
rPj means that the ith patch in the scan taken at Fℓ

corresponds to the jth patch in Fr . If we assume that the planes

in the two frames have been renumbered so that planes with the

same index physically correspond, then substituting (3) in (1) and

comparing coefficients gives

ℓ
n̂i = ℓ

rR
r
n̂i,

ℓ
n̂i ·

ℓ
rt = ℓ

di −
r
di. (4a)

The registration problem now consists of estimating ℓ
rR and ℓ

rt

by solving the above in a least-squares sense. This procedure

also yields the covariance of the registration solution. To find the

actual correspondences between the planar-patches is the task of

the MUMC algorithm [1].

II. ROBUSTNESS IN THE CASE OF A COMPLETE ABSENCE OF

AN INITIAL MOTION ESTIMATE

Algorithms like ICP which match scans by iterative attraction

to a local minimum of the registration-cost-function rely on a

good initial guess of inter-scan pose change— e.g. that provided

by vehicle odometry– for finding the right registration. Matching

two scans in the absence of any initial guess is a formidable task,

especially if the inter-scan pose change is considerable compared to

the field of view (FOV) and the maximum range of the 3D range-

sensor involved. In case the sensor has a large FOV, the main culprit

for matching failures is occlusion.

MUMC searches the global correspondence-space of large

planar-patches for the consensus which maximizes geometrical

consistency and hence minimizes pose-uncertainty. The globality

of the search implies that MUMC does not necessarily need to

have an initial guess for the pose difference. However, if such a

guess is available along with its uncertainty, it can still be utilized

by MUMC to do χ2-tests and prune the global search space—

hence speeding-up its execution. This paper focuses on making the

performance of MUMC more robust in the case of large, totally

unknown inter-scan movements, assuming a relatively big FOV of

the sensor. In other words, we focus on improving and evaluating

the robustness of MUMC primarily w.r.t. occlusion.

A. Improving Robustness: Unmatched Planes Overlap Metric µu

The central dilemma facing a scan-matching algorithm is to

weigh the size of scan-overlap against the quality of overlap. If

only the size is given priority, poorly overlapping scans cannot

be matched or are wrongly matched. In case only the quality of

match is considered, a very small area may be accurately matched

without there being a global agreement. MUMC proposes to solve

this issue by employing the uncertainty-volume (determinant of the

covariance matrix) of the computed pose-registration as a metric

to minimize: if consistent patch-correspondences are added to the

matched set, this metric reduces; this avoids the temptation to

greedily collect all patch-correspondences which merely satisfy

some threshold.

In the original formulation of MUMC [1], the agreement of

unmatched planes was not explicitly considered. In case of complete

absence of initial guesses and the presence of occlusion, robustness

can be improved by also evaluating planes in the two scans for

which no correspondences were found. We introduce here a metric

µu to compute the extent of overlap of unmatched planes. It is

computed after [1, step 11 of Algorithm 2], when a set of potential

plane correspondences Γ has been found, and the least-squares

registration ℓ
rR, ℓ

rt it implies, is computed. Now the set Γ needs

to be evaluated w.r.t. the unmatched planes.

The basic idea is that the overlap can be measured as a χ2

distance in terms of the weighted scatter matrix and the weighted

centroid of the patches as depicted in Fig. 1. Assume that we want

to evaluate whether the previously unmatched planes ℓPi and rPj

overlap. The matched set Γ and its associated registration ℓ
rR, ℓ

rt

are considered fixed and certain.

ℓ
qj ,

ℓ
rR

r
pc,j + ℓ

rt, (5)

Σ ,
ℓ
Cpp,i + ℓ

rR
r
Cpp,j

ℓ
rR

T
, (6)

χ
2
v = (ℓ

qj −
ℓ
pc,i)

T
Σ

−1(ℓ
qj −

ℓ
pc,i). (7)

For each unmatched plane rPj , we find the ℓPi having the

minimum χ2
v to it, such that, additionally, rPj and ℓPi are also

translationally consistent [1, Sec. III-A2] with ℓ
rt and rotationally

consistent, i.e. ℓn̂i · (
ℓ
rR

rn̂j) ≈ 1. To be considered feasible, this

minimum χ2
v should also be less than χ2

3,t%, which is the χ2 value

for 3 d.o.f. at the significance level of t%. We selected t = 1%. If a

specific index i in the ℓ-set is found to pair with more than one index

in the r-set, the pairing with the lesser value of the minimum χ2
v is

taken and the other is rejected. We now have an additional set of

surmised correspondences denoted Γs from among the unmatched

set of planes in addition to the previously fixed set Γ of matched

planes. Hence,

µu =
#Γs + #Γ

Nr

, Γ← Γ ∪ Γs. (8)

where, # denotes the set’s size and Nr is the number of r-patches

being matched. In [1, step 12 of Algorithm 2], we now consider

the appended set Γ any further only if µu ≥ µ̄u, i.e. the overlap is

at least as big as a given threshold.

III. EVALUATION OF SCANS FOR MATCHABILITY GIVEN THE

GROUND-TRUTH REGISTRATION

A. The Spatial Surface-Area Overlap Metric µs

The spatial overlapping surface area mutually visible from the

two scans to be matched is one of the factors affecting matching

success of MUMC. We propose to evaluate it using an Octree to

discretize the space and represent the point-clouds of the scans. It

uses the original point-cloud directly and not the extracted planes.

First, the two scans are aligned using the given ground-truth. The

volume covered by the points is recursively split into cubic octets

until the size of the voxels falls below a threshold ∆t. Each voxel

that does not contain any points is deleted. From each remaining

voxel, the center point is taken for the evaluation. A voxel in one

scan is considered to correspond to the closest voxel in the other

scan if their mutual distance is within a threshold d̄s. The number
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Fig. 7. Fractions of various kinds of points in the range-image. µe is the
fraction of empty or maximum-range beams, µp is the fraction of points
lying on planar-patches, and µn is the fraction of the remaining points.
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Fig. 8. Showing the absolute pairwise overlap µs of scans. The overlap is
computed by finding corresponding voxel in scan 1 for all voxels in scan
2. Certain points in scan 2 may have the same corresponding point in scan
1, as is the case in pair 9-10. The chart clearly shows that scan-pair 5 − 6

is the worst according to this metric.
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[5] S. Schuhmacher and J. Böhm, “Georeferencing of terrestrial laser
scanner data for applications in architectural modeling,” International

Archives on Photogrammetry and Remote Sensing (IAPRS), vol.
XXXVI/5/W17, 2005. [Online]. Available: http://www.ifp.uni-stuttgart.
de/publications/2005/schuhmacher05 venedig.pdf

0−1  1−2  2−3  3−4  4−5  5−6  6−7  7−8  8−9  9−10 10−1111−12
−12

−10

−8

−6

−4

−2

0

L
o

g
 R

a
n

g
e

Im
a

g
e

 O
v

e
rl

a
p

 M
e

tr
ic

Fig. 9. Showing the range-image pairwise overlap µr of scans in log-scale.
The chart clearly shows that scan-pair 0 − 1 is the worst according to this
metric.
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