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Abstract— The recently introduced Minimum Uncertainty Maximum
Consensus (MUMC) algorithm for 3D scene registration using planar-
patches is tested in a large outdoor urban setting without any prior
motion estimate whatsoever. With the aid of a new overlap metric based
on unmatched patches, the algorithm is shown to work successfully in
most cases. The absolute accuracy of its computed result is corroborated
for the first time by ground-truth obtained using reflective markers.
There were a couple of unsuccessful scan-pairs. These are analyzed for
the reason of failure by formulating two kinds of overlap metrics: one
based on the actual overlapping surface-area and another based on the
extent of agreement of range-image pixels. We conclude that neither
metric in isolation is able to predict all failures, but that both taken
together are able to predict the difficulty level of a scan-pair vis-a-vis
registration by MUMC.

I. INTRODUCTION

A 3D registration algorithm [1] based on matching large planar-
patches extracted from “point-clouds” sampled from 3D sensors
was recently introduced by some of the authors. The algorithm
is termed Minimum Uncertainty Maximum Consensus (MUMC)
and as the name suggests, it tries to find a set of correspondences
between planar-patches from the two scans being matched which
minimizes the uncertainty-volume of the registration result as
measured by the determinant of the 6 X 6 covariance matrix of
the computed pose. A closed-form least-squares solution of the
registration was also presented along with explicit expressions for
its uncertainty.

The MUMC algorithm was tested on a variety of sensors and
compared to point based methods like Iterative Closest Point (ICP),
in both its point-to-point [2] and point-to-plane [3] incarnations, and
3D Normal Distribution Transform (3D NDT). It was found that
the algorithm had a bigger convergence radius than its competitors
because it does a global search and does not depend on a local
attraction to the nearest locally optimum solution. The goodness-
of-fit was measured by the quality of alignment of scans, which is
a relative measure. The algorithm was also used— embedded in a
pose-graph for Simultaneous Localization and Mapping (SLAM)—
to generate 3D maps of disaster scenarios [4]. In that work, clearly
visible ground-truth structures were used for a qualitative evalua-
tion. The main reason for the use of these somewhat subjective
criteria for evaluation was that ground-truth in 3D is hard to
come by. In the field of mobile robot navigation, ground-truth
comparison either requires a simulation-study or precise GPS [5].
In [6] surveying data of buildings, stored in vector format, and
available from government land registration offices was used as the
source of ground-truth. Satellite images can also be used to obtain
a rough ground-truth.

In this paper, we present a comparison of the MUMC algorithm
results to the ground-truth for the first time. The ground-truth
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Fig. 1. The sensor in two coordinate-frames observes the same physical
plane. Only a patch of the plane is visible from any pose; the polygonized
patches are shown in color, with the sampled points shown as dots and
crosses from the left and the right frame respectively.

was obtained based on the commercial reflective marker-based
solution available on the high-end RIEGL VZ-400 3D laser scanner.
The dataset consists of a fairly big outdoor urban scenario, viz.
the old city-center of Bremen, Germany. The data was originally
obtained as point-clouds of about 22.5 million points per scan,
which were subsequently sub-sampled to range-images of half a
million points per scan, from which planar-patches were extracted
using a region-growing method described in [7]. This method also
involves computation of the uncertainties of the plane-parameters
using a sensor range error-model [8].

A. Notation Overview

The nomenclature used is briefly reviewed in this section. An
infinite plane P(m, p) is given by the equation m - p = p, where
p is the signed distance from the origin in the direction of the unit
plane normal . We see that P(1h, p) = P(—1h, —p). To achieve
a consistent sign convention, we define planes as P(n, d), where,
d % |p| >0, and & £ o(p) i, where, o(p) = —1 if p < 0 and
+1 otherwise. If p = 0, then we choose the maximum component
of n to be positive.

For registration, we consider two robot-frames as shown in Fig. 1:
a left one denoted as F, with origin O, from which the indexed
plane-set ‘P is observed, and a right one ;. with origin O, from
which the indexed plane-set "P is observed. The equations of the
planes are

Zﬁz‘ : ZP = [dh "n;- "p="d,. (1

An indexed set P of planar-patches is extracted [7] from
a point-cloud associated with the k-th robot-frame Fj by seg-
mentation of the range-image using region-growing followed by
polygonization. As shown in Fig. 1, a patch has a set of points
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p; associated with it: the weighted scatter matrix associated with
these points is denoted as Cpp and is depicted as the dotted
ellipsoid in the figure. The weighted centroid is denoted as pc;
the weights being taken to be inversely proportional to the trace of
the covariance of the individual points p;. The normal of the plane
turns out to be the eigenvector of Cpp corresponding to its least
eigenvalue. Apart from the planar patch’s i and d parameters, the
extraction procedure also gives [8] their 4 X 4 covariance matrix
C. Thus, the plane *P is an ordered set of triplets given by

P& Ep(Fhy, M, FCy), i =100 N} 2)

If the robot moves from F; to F,., and observes the coordinates
of the same physical point as ‘p and "p respectively, these
coordinates are related by [9]

‘p= R "p+ it 3)

where, the translation ft ES (TO;, resolved in Fp.

P, o "P; means that the ith patch in the scan taken at 7
corresponds to the jth patch in F,. If we assume that the planes
in the two frames have been renumbered so that planes with the
same index physically correspond, then substituting (3) in (1) and
comparing coefficients gives

‘h, = ‘R"A;, ‘h; - L= Yd, — "d,. (4a)

The registration problem now consists of estimating ‘R and “t
by solving the above in a least-squares sense. This procedure
also yields the covariance of the registration solution. To find the
actual correspondences between the planar-patches is the task of
the MUMC algorithm [1].

II. ROBUSTNESS IN THE CASE OF A COMPLETE ABSENCE OF
AN INITIAL MOTION ESTIMATE

Algorithms like ICP which match scans by iterative attraction
to a local minimum of the registration-cost-function rely on a
good initial guess of inter-scan pose change— e.g. that provided
by vehicle odometry— for finding the right registration. Matching
two scans in the absence of any initial guess is a formidable task,
especially if the inter-scan pose change is considerable compared to
the field of view (FOV) and the maximum range of the 3D range-
sensor involved. In case the sensor has a large FOV, the main culprit
for matching failures is occlusion.

MUMC searches the global correspondence-space of large
planar-patches for the consensus which maximizes geometrical
consistency and hence minimizes pose-uncertainty. The globality
of the search implies that MUMC does not necessarily need to
have an initial guess for the pose difference. However, if such a
guess is available along with its uncertainty, it can still be utilized
by MUMC to do x*-tests and prune the global search space—
hence speeding-up its execution. This paper focuses on making the
performance of MUMC more robust in the case of large, totally
unknown inter-scan movements, assuming a relatively big FOV of
the sensor. In other words, we focus on improving and evaluating
the robustness of MUMC primarily w.r.t. occlusion.

A. Improving Robustness: Unmatched Planes Overlap Metric iy,

The central dilemma facing a scan-matching algorithm is to
weigh the size of scan-overlap against the quality of overlap. If
only the size is given priority, poorly overlapping scans cannot
be matched or are wrongly matched. In case only the quality of
match is considered, a very small area may be accurately matched
without there being a global agreement. MUMC proposes to solve

this issue by employing the uncertainty-volume (determinant of the
covariance matrix) of the computed pose-registration as a metric
to minimize: if consistent patch-correspondences are added to the
matched set, this metric reduces; this avoids the temptation to
greedily collect all patch-correspondences which merely satisfy
some threshold.

In the original formulation of MUMC [1], the agreement of
unmatched planes was not explicitly considered. In case of complete
absence of initial guesses and the presence of occlusion, robustness
can be improved by also evaluating planes in the two scans for
which no correspondences were found. We introduce here a metric
Wy to compute the extent of overlap of unmatched planes. It is
computed after [1, step 11 of Algorithm 2], when a set of potential
plane correspondences I' has been found, and the least-squares
registration ‘R, ‘t it implies, is computed. Now the set I' needs
to be evaluated w.r.t. the unmatched planes.

The basic idea is that the overlap can be measured as a x>
distance in terms of the weighted scatter matrix and the weighted
centroid of the patches as depicted in Fig. 1. Assume that we want
to evaluate whether the previously unmatched planes “P; and "P;
overlap. The matched set I' and its associated registration ‘R, “t
are considered fixed and certain.

‘aq; = [R "pe; + 1t ®)
¥4 ¥4 r T

S Cpp,i + R "Cpp i rR, 6)

xo = (aj— ‘pei) B (‘ay — “pei). @)

For each unmatched plane "P;, we find the P, having the
minimum x?2 to it, such that, additionally, "P; and tp, are also
translationally consistent [1, Sec. III-A2] with ¢t and rotationally
consistent, i.e. ‘f, - (f,RT'ﬁj) ~ 1. To be considered feasible, this
minimum x?2 should also be less than X;t%, which is the x? value
for 3 d.o.f. at the significance level of t%. We selected t = 1%. If a
specific index 7 in the /-set is found to pair with more than one index
in the r-set, the pairing with the lesser value of the minimum x?2 is
taken and the other is rejected. We now have an additional set of
surmised correspondences denoted I's from among the unmatched
set of planes in addition to the previously fixed set I' of matched
planes. Hence,

 #Ds +#T

u — Nr 3

where, # denotes the set’s size and N, is the number of r-patches

being matched. In [1, step 12 of Algorithm 2], we now consider

the appended set I' any further only if p,, > fi., i.e. the overlap is
at least as big as a given threshold.

I' =T UTls. ®)

III. EVALUATION OF SCANS FOR MATCHABILITY GIVEN THE
GROUND-TRUTH REGISTRATION

A. The Spatial Surface-Area Overlap Metric s

The spatial overlapping surface area mutually visible from the
two scans to be matched is one of the factors affecting matching
success of MUMC. We propose to evaluate it using an Octree to
discretize the space and represent the point-clouds of the scans. It
uses the original point-cloud directly and not the extracted planes.
First, the two scans are aligned using the given ground-truth. The
volume covered by the points is recursively split into cubic octets
until the size of the voxels falls below a threshold A:. Each voxel
that does not contain any points is deleted. From each remaining
voxel, the center point is taken for the evaluation. A voxel in one
scan is considered to correspond to the closest voxel in the other
scan if their mutual distance is within a threshold ds. The number
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Fig. 2. Scan 0 as range-image of size 1441 x 401 = 577841 with gray-
scale based on distance. The horizontal field of view (FOV) covers full
360°. The vertical field of view (FOV) of the sensor is —40° to 4+60°.
The fagade of the St. Peter’s Cathedral of Bremen is visible in the image’s
center.

of found corresponding voxels is the spatial surface-area overlap
metric fis.

B. The Range-Image Overlap Metric i,

The spatial surface-area overlap metric ps is an absolute area
measure, but it does not necessarily correspond to the number of
pixels on the range-images mutually visible from the two scans.
This is especially true for open spaces where the surfaces are far
away from the sensor. The overlapping 2D area measured by the
number of common points in the range-images is another important
metric which determines the matching success of MUMC. It can
conveniently normalized to the unit-interval by scaling with the total
number of points in the range-image Ng.

This normalized metric is called p, and is computed as fol-
lows: transform each point "p; on the r-range-image using the
known ground-truth transform to get the vector “¢;. From its
beam direction, one can deduce the pixel (m,n) in the f-range-
image which corresponds to ‘q;. Consider all pixels in the ¢-
range-image within a d,, neighborhood of (m,n). Each such pixel
corresponds to a 3D point ‘p;. We consider the correspondence
£p; to "p; resolved if £p; has the minimum-distance d;; to qu
within the said neighborhood, and additionally, di; < A4 We
take Ay = d, tan(Ag)||%q; ||, where Ay is the angular resolution
(maximum among horizontal and vertical) of the range-image. From
the number of such resolved pixel correspondences N., we can
readily compute u, = No/Ng.

IV. EXPERIMENT

We now describe an experimental dataset using which we
test MUMC for robustness and evaluate the predictive power
of the overlap-metrics derived in Sec. III. A RIEGL VZ-400
(http://www.riegl.com) 3D laser range finder was used
to collect 13 samples shown in Figs. 3 and 4. It is an out-
door urban scenario viz. the city-center of Bremen at late night.
The number of markers put in the scene were about 40. The
dataset can be downloaded from http://kos.informatik.
uni-osnabrueck.de/3Dscans.

The RIEGL VZ-400 has a maximum range of about half a
kilometer. Each complete sample of 22.5 million points, with a
vertical and horizontal angular sampling resolution of 0.04°, took
about 3 minutes to acquire. For planar-patches extraction, this data
was sub-sampled for the same overall FOV but at an angular
resolution of 0.25° to a range-image as shown in Fig. 2. The RIEGL
sensor also returns intensity of reflection for each beam and thus
certain custom-made reflector markers can be distinguished, if put
in the scene as shown in Figs. 4(b) and 4(c). A RIEGL proprietary
algorithm is used to detect these markers across scenes and to
compute the ground-truth based on them. This algorithm sometimes
requires human-intervention to distinguish the markers in the image.

i
'
(a) The ground-truth points-based map computed using reflective mark-
ers.

(c) Close-up of a marker.

Fig. 4. The overall ground-truth computed using reflective markers.

A. Registration Comparison Results

The results are summarized in Table I. For each scan-pair, the
first row shows the registration result of the MUMC algorithm,
the second row gives the 1o uncertainty values of this result
computed by MUMC; finally, the third row gives the ground-
truth, as determined using reflective markers. We emphasize that
no initial guess (odometry or otherwise) was provided to MUMC.
The successfully matched scan sequences from scan-1 to scan-5
and from scan-6 to scan-12 are shown in Fig. 5. In these cases, the
registration result of MUMC agrees quite well with the ground-
truth— indeed the yaw is always correct to within half a degree.
Only the z displacement shows minor discrepancy: this is attributed
to the ground not being matched because of its unevenness. This
resulted in the z displacement being computed in many cases using
overlap. In Table I n, and n, denote the number of planar-patches
considered for matching— they are the top 12% of all patches sorted
according to their evidence. The number of correspondences found
is denoted by n..

For the pair 0 — 1 a false registration was obtained which is
shown in Fig. 6. For the pair 5 — 6, MUMC correctly identified
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(3) Scan 10

Fig. 3.
Figs. 7, 8, 9.

scan-matching failure using the metric u. described in Sec. II-A.
These two failures are further analyzed in terms of the overlap
metrics in the next sub-section.

B. Evaluation of Various Scan Metrics

Figs. 7, 8, 9 show the various scan-wise and pair-wise metrics:

o Fig. 7 confirms that most of the points in the samples are
located on planar patches.

o Fig. 8 shows the spatial surface area overlap metric ps which
was described in Sec. ITI-A for A; = 50mm and ds = 250mm
computed using the ground-truth registration. It shows that the
pair 5-6 has the minimum value of us and thus foretells the
matching-failure of this pair. However, for the pair 0 — 1, p,
is low, though not unusually so.

o Fig. 9 shows the normalized metric u, in log scale. It was
described in Sec. III-B and has been computed for J,, = 8
and Ay = 0.25° and Ng = 577841. This metric shows a
clear global minimum at 0— 1 and hence foretells its matching
failure. Other pairs having low values of this metric, however,
successfully match.

We can thus conclude that the overlap metrics pus and w, are
helpful in predicting scan-matching failure of MUMC. Their low
values imply unreliability of the matching result.

V. CONCLUSION

The MUMC is algorithm is made more robust by adding an
overlap test based on unmatched planes. The absolute accuracy
of the algorithm is obtained for the first time by comparing its
results to the given ground-truth in a relatively large outdoor urban
scenario. The few matching failures were explained in terms of
two independent overlap metrics which need to be used together
to make effective predictions regarding MUMC’s matching success
for the scans involved.

(k) Scan 11

(c) Scan 3

P pee 90 apy P A

(1) Scan 12

The scans as range-images with gray-scale based on distance. The first (Oth) scan is shown in Fig. 2. The distribution of points is analyzed in

s

(a) Scans 1 to 5.

/ ll;

N

(b) Scans 6 to 12. Note the relatively large scale of the map.

Fig. 5. The plane-matching sequences. Planar-patches whose correspon-
dences have been determined using MUMC are shown in same translucent
color. Unmatched planes are translucently grayed out. Note the selectivity
of the MUMC algorithm in choosing the correspondences which minimize
the uncertainty volume.
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TABLE I
COMPARISON OF PLANE-MATCHING RESULTS. [i,,=0.23

Pair Overlap Rotation [deg.] Translation [mm.] ng | nr | ne | Time [s] | Succ.

roll pitch yaw te ty t,
0—1 - - - - - - - - - - X
Ground-truth 0.32 0.77 | -157.20 -1513 41223 | -189
1—2 #,=0.31 0.46 1.08 43.03 | -23700 | -23916 721 | 47 | 49 | 15 54.527 v
+lo 0.002 | 0.003 0.002 11 14 75
Ground-truth -0.08 | -0.03 4348 | -23452 | -24141 | -640
2 -3 1, =0.4 0.95 | -0.51 -24.48 -9703 | -36018 261 | 49 | 45 | 18 49.631 v
+lo 0.002 | 0.002 0.001 20 9 79
Ground-truth 0.07 0.08 -24.79 -9972 | -36047 | -322
3—4 1y, =024 3.20 1.09 158.52 36604 914 508 | 45 | 55 | 13 74.596 IV
+lo 0.001 | 0.002 0.001 5 4 10
Ground-truth 1.13 1.11 158.48 36575 917 | 1063
4—-5 1y, =024 0.32 0.73 72.70 | -22163 124 151 | 55 | 54 | 13 125.891 v
+lo 0.003 | 0.007 0.007 3 1 30
Ground-truth 0.40 0.67 72.72 | -22198 123 142
5—6 — — — — — — — — — — X
Ground-truth -1.36 0.55 | -132.30 | -21377 5685 -98
6—7 1,=0.35 1.46 0.59 -78.79 5315 | -20390 | -164 | 60 | 54 | 19 145.546 IV
+lo 0.001 | 0.001 0.001 9 10 12
Ground-truth 0.59 1.11 -78.76 5327 | -20383 | -189
7—8 1y,=027 | -0.80 1.31 -51.62 25266 -8089 | -550 | 54 | 52 | 14 | 124979 v
+lo 0.001 | 0.001 0.007 6 7 15
Ground-truth 0.30 1.69 -51.52 25295 -8059 | -447
8—9 1, =0.27 2.15 | -2.28 | -124.57 -8501 26675 | -889 | 52 | 55 | 15 96.916 v
+lo 0.003 | 0.003 0.002 25 11 15
Ground-truth 223 | -2.36 | -124.58 -8528 26661 | -932
9 — 10 14,=0.39 4.29 | -0.31 153.52 | -11942 | -22764 769 | 55 | 52 | 20 92.937 v
+lo 0.003 | 0.002 0.001 5 4 54
Ground-truth 3.78 | -0.21 153.52 | -11964 | -22750 753
10 — 11 wy,=042 | -0.09 | -1.80 -78.98 | -12220 20743 | -796 | 52 | 52 | 22 80.312 v
+lo 0.004 | 0.004 0.003 17 27 16
Ground-truth 0.86 | -1.02 -79.05 | -12226 20764 | -663
11— 12 1y,=0.39 | -0.73 0.16 | -140.58 4920 | -37675 159 | 52 | 51 | 20 70.546 IV
+lo 0.002 | 0.002 0.001 8 7 10
Ground-truth 0.15 | -0.13 | -140.58 4922 | -37676 689

j.

5%

(a) The plausible-looking wrong registration. Compare with the  (b) The ground-truth of scan-pair 0-1. The wrongly found patch-
ground-truth below. It is due to very less range-image overlap  correspondences are shown in the same color.
along with the recurrence of similar geometry.

Fig. 6. The wrong registration of scan-pair 0-1.
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Fig. 7. Fractions of various kinds of points in the range-image. pe is the

fraction of empty or maximum-range beams, i, is the fraction of points

lying on planar-patches, and p,, is the fraction of the remaining points.
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Fig. 9. Showing the range-image pairwise overlap p,- of scans in log-scale.
The chart clearly shows that scan-pair O — 1 is the worst according to this

metric.

(6]

(71

(8]

(91

Fig. 8. Showing the absolute pairwise overlap ps of scans. The overlap is
computed by finding corresponding voxel in scan 1 for all voxels in scan
2. Certain points in scan 2 may have the same corresponding point in scan
1, as is the case in pair 9-10. The chart clearly shows that scan-pair 5 — 6

is the worst according to this metric.
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