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Abstract—The terrestrial acquisition of 3D point clouds by
laser range finders has recently moved to mobile platforms.
Measuring the environment while simultaneously moving the
vehicle demands a high level of accuracy from positioning
systems such as the IMU, GPS and odometry. We present
a novel semi-rigid SLAM algorithm that corrects the global
position of the vehicle at every point in time, while simul-
taneously improving the quality and accuracy of the entire
acquired map. Using the algorithm the temporary failure of
positioning systems or the lack thereof can be compensated for.
We demonstrate the capabilities of our approach on a wide
variety of systems and data sets.

I. INTRODUCTIONS

Mobile laser scanning provides an efficient way to actively

acquire accurate and dense 3D point clouds of object surfaces

or environments and are currently used for modeling in

architecture as well as urban and regional planning. Modern

systems like the Riegl VMX-450 and the Lynx Mobile

Mapper by Optech combine a high precision GPS, a highly

accurate Inertial Measurement Unit (IMU) and the odometry

of the vehicle to compute the fully timestamped trajectory.

Using motion compensation this trajectory is then used to

“unwind” the laser range measurements that were acquired

by the 2D laser scanner mounted on the vehicle. The preci-

sion of the resulting point cloud depends on several factors:

• the precision of the calibration of the system;

• the accuracy of the positioning sensors, i.e., the GPS,

IMU and odometry;
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Fig. 1: A part of the campus scanned by a mobile laser scanner before and after our novel optimization. Note the erroneously duplicated
vegetation in the initial point cloud (left) which is corrected in the optimized point cloud (middle), so that it now appears much closer to
the ground truth acquired by terrestrial laserscanning (right). Points are colored by reflectance information.

• the availability of the GPS, as it may suffer temporary

blackouts in tunnels, between high-rises etc.;

• the precision of the laser scanner itself.

The deficiency of the GPS in constricted spaces is an

exceptionally limiting factor for mobile scanning. Without

the dependance on a GPS device, applications such as

construction of tunnels and mines and facility management

would be open to the use of mobile scanning systems.

In this paper we propose an algorithm to overcome

the problem of erroneous positioning of the vehicle in a

novel fashion. We present an algorithm for computing a

corrected trajectory that produces point clouds that are a

more accurate representation of the measured environment.

To this purpose we constructed mobile platforms that use

a modified approach to mobile laser scanning. Instead of

the common 2D laser scanner in a mobile scanning system,

we employ a 3D laser scanner as depicted in Fig. 2. This

design retains the high degree of automation and speed of

common mobile laser scanning systems. Furthermore, only

a single laser range sensor is required to produce models

with minimal data shadowing. The additional rotation with

respect to the platform during the scanning process reveals

the errors caused by incorrect positioning to a higher degree

than the common design and also allows us to correct them.

We evaluate our algorithms on data sets acquired by our

own mobile platform Irma3D as well as on data acquired on

a car with only minimal means of pose estimation.

II. RELATED WORK

The area of non-rigid registration is largely unexplored but

in the medical imaging community where it is widespread

due to the need to align multi-modal data [6], [10].

Williams et al. [14] describe an extension of a rigid

registration algorithm that includes point estimation to



Fig. 2: Two mobile laser scanning systems used in our experiments
equipped with a Riegl VZ-400 3D laser scanner and an Xsens MTi
IMU. The Riegl completes a rotation around the vertical axis every
6 seconds and acquires 750k points per rotation with a vertical
opening angle of 100 degrees. Top: The robot Irma3D receives
odometry estimates from the volksbot motor encoders. Bottom: No
odometry for the car is available. An On Board Diagnosis device
(OBDII) acquires speed estimates with a precision of at most 1 km

h
.

compensate for noisy sensor data. This technically consti-

tutes a non-rigid registration algorithm designed for low scale

high frequency deformations. Similarly, Pitzer et al. [12]

provide a probabilistic mapping algorithm for 2D range

scans, where point measurements are also estimated.

Chui and Rangarajan [5] proposed a point matching al-

gorithm that is capable of aligning point clouds with each

other. These approaches are usually time expensive due to

the enlarged state space.

Brown and Rusinkiewicz developed a global non-rigid

registration procedure [4]. They introduced a novel Itera-

tive Closest Point (ICP) variant to find correspondences.

Though the registration requires extreme subsampling the

deformation is successfully generalized onto the entire scan.

Unfortunately, this technique is not fully applicable to laser

scans acquired by mobile robots [8].

Stoyanov et al. [13] presented a non rigid optimization

for a mobile laser scanning system. They optimize point

cloud quality by matching the beginning and the end of a

single scanner rotation using ICP. The estimate of the 3D
pose difference is then used to optimize the robot trajectory

in between. Similarly, Bosse and Zlot [3] use a modified ICP

with a custom correspondence search to optimize the pose of

6 discrete points in time of the trajectory of a robot during

a single scan rotation. The trajectory in between is modified

by distributing the errors with a cubic spline.

The approach presented in this paper optimizes the point

cloud using full 6D poses and is not limited to a single

scanner rotation. We improve scan quality globally in all

6 degrees of freedom for the entire trajectory.

III. SEMI-RIGID OPTIMIZATION FOR SLAM

We developed an algorithm that improves the entire tra-

jectory of the vehicle simultaneously, and is unlike previous

algorithms [3], [13] not restricted to purely local improve-

ments. We make no rigidity assumptions, except for the

computation of the point correspondences, require no explicit

vehicle motion model, although such information may be

incorporated at no additional cost and the algorithm requires

no high-level feature computation, i.e., we require only the

points themselves.

In addition to one or multiple 2D or 3D laser scanners

mobile laser scanning systems consist of a mobile base

equipped with sensors for trajectory estimation such as IMU

and GPS in addition to the odometry of the vehicle.

The movement of the vehicle between time t0 and tn
creates a trajectory S = {V 0, . . . ,V n}, where V i =
(Tx, Ty, Tz, θx, θy, θz) is the 6DOF pose of the vehicle at

time ti with t0 ≤ ti ≤ tn. Using the trajectory of the vehicle

a 3D representation of the environment can be obtained

with the laser measurements M to create the final map P .

However, sensor errors in odometry, IMU and GPS as well

as systematic calibration errors and the accumulation of pose

errors during temporary GPS outages degrade the accuracy

of the trajectory and therefore the point cloud quality.

The current state of the art for improving overall map

quality of mobile mappers in the robotics community is to

coarsely discretize the time. This results in a partition of

the trajectory into subscans that are treated rigidly. Then

rigid registration algorithms like the ICP and other solutions

to the SLAM problem are employed. Obviously, trajectory

errors within a subscan cannot be improved in this fashion.

Applying rigid pose estimation to this non-rigid problem is

also erroneous because it only approximates the solution.

Consequently, overall map quality suffers as a result.

We employ a much finer discretization of the time, at the

level of individual 2D scan slices or individual points. This

results in the set of measurements M = {m0, . . . ,mn}
where mi = (mx,i,my,i,mz,i) is a point acquired at time

ti in the local coordinate system of V i. Applying the pose

transformation ⊕ we derive the point pi = V i ⊕ mi in

the global coordinate frame and thereby also the map P =
{p0, . . . , pn}. Given M and S we find a new trajectory S′ =
{

V ′

1, . . . ,V
′

n

}

with modified poses so that P generated via

S′ more closely resembles the real environment.

A. Pose Estimation

Our algorithm incorporates pose estimations from many

sources, such as odometry, IMU and GPS. For the results in

this paper we use sequential pose estimates V i,i+1 that were

combined from all those sources:

V̄ i,i+1 = Vi ⊖ Vj . (1)

using a constant covariance Ci,i+1. In addition to these de-

fault pose estimates, that may also be enhanced by separating

all pose sensors into their own estimates as well as the proper

covariances, we estimate differences between poses via the

point cloud P .

We employ nearest neighbor search sped up by a fast and

compact representation of the entire point cloud into a single

octree. This allows us to compute the nearest neighbor for a



point at comparable speed to state of the art k-d tree search

libraries. The octree also compresses the point cloud so it can

be easily stored and processed. For each measurement pi, we

find a closest measurement pj with |i− j| > δ, where δ is

the minimal amount of time that must have elapsed for the

laser scanner to have measured the same point on the surface

again. Temporally close measurements are usually spatially

close as well, so they must be excluded since they cannot

represent the same physical surface. We employ the nearest

neighbor search algorithm as described in [9] that has been

modified to enforce the time constraint.
Points are stored in the global coordinate frame as defined

by the estimated trajectory S. Closest points are accepted if
∣

∣pi − pj

∣

∣ ≤ dmax. The positional error of two poses V i and
V j is then given by

Ei,j (V ) =

i+m
∑

k=i−m

∥

∥V i ⊕mk − V j ⊕m
′

k

∥

∥

2
(2)

Here, V is the concatenation of all poses,mk,m
′

k is the pair

of closest points written in their respective local coordinate

system, and m defines a small neighborhood of points taken

in the order of hundreds of milliseconds that is assumed

to have negligible pose error. After a Taylor expansion of

Ei,j with respect to V , we obtain its minimum and the

corresponding covariance by

V̄ i,j = (MTM )−1MTZ (3)

Cj,k = s2(MTM). (4)

Here Z is the concatenation of all V̄ i ⊕ mk − V̄ j ⊕ mk

into a vector and M is a concatenation of:

M i =





1 0 0 0 −my,i −mz,i

0 1 0 mz,i mx,i 0
0 0 1 −my,i 0 mx,i



 . (5)

The unbiased estimate of the covariance of the independent

and identically distributed errors of Ei,j is computed as

s2 = (Z −MV̄ i,j)
T (Z −MV̄ i,j)/(2m− 3). (6)

B. Pose Optimization

We maximize the likelihood of all pose estimates and their
respective covariances via the Mahalanobis distance

W =
∑

i

∑

j

(V̄ i,j − (V ′

i − V
′

j))C
−1

i,j (V̄ i,j − (V ′

i − V
′

j)),

or, with the incidence matrix H in matrix notation:

W (V ) = (V̄ −HV )TC−1(V̄ −HV ). (7)

The minimization of W is accomplished via solving the

following linear equation system:

(HTC−1H)V =HTC−1V̄ . (8)

Computing the optimized trajectory is then reduced to in-

verting a positive definite matrix [11] that is sparse due to a

large number of empty correspondences. Thus, we make use

of the sparse Cholesky decompositions by Davis [7].

The complete semi-rigid registration algorithm proceeds

as follows: Given a trajectory estimate, we compute the

point cloud P in the global coordinate system and create

our octree for fast nearest neighbor search. Then, after

computing the estimates V̄ i,j of pose differences and their

respective covariancesCi,j we optimize the trajectory S. The
process is iterated until convergence, i.e., until the change

in the trajectory falls below a threshold. Establishing point

correspondences is the most time consuming step in the

process with O(n log n), where n is the number of points. To

deal with massive amount of data in a reasonable time frame,

we employ 2 strategies. First, we uniformly and randomly

reduce the point cloud by using only a constant number

of points per volume, typically to 1 point per 3 cm3. The

octree is ideally suited for this type of subsampling. Second,

in initial stages of the algorithm estimates V̄ i,j are only

computed for a subset of poses V 0,V m,V 2m, . . . , with m
in the order of hundreds of milliseconds. In every iteration

m is decreased so that the trajectory can be optimized on a

finer scale.

IV. EXPERIMENTS AND RESULTS

We demonstrate the efficacy of the presented algorithms

on two data sets acquired by two different robotic systems.

In addition we also evaluate our algorithms in an indoor data

set where ground truth data is available.

A. Indoor data set

For a direct evaluation of the algorithm with comparison

to ground truth data we acquired a data set using the

robot Irma3D in an empty basement room (see Fig. 2).

Ground truth data of the room is available in the form of

a geodetically measured model acquired by a Riegl VZ-400

using terrestrial laser scanning. The accuracy of the scanner

and therefore the model is 5mm.

This data set with about 4 million points was acquired

in continuous mode, i.e., the laser scanner rotates around

its vertical axis while the robot moves simultaneously. The

robot moved in a “serpentine” trajectory several meters in

length, i.e., taking left and right turns and segments where

the heading remains unchanged. To evaluate the quality

of the resulting point cloud we compare it to the high

precision ground truth model of the room. The point cloud

is matched to the model using ICP [2] from the 3D Toolkit

(3DTK [1]).Then we compute point to plane distances on

the ceiling, floor and each of the 4 walls.

A qualitative comparison of the results of our algorithm

is presented in Fig. 3. The point clouds obtained with

Irma3D in the enclosed room are shown in Fig. 3. The

figure presents the initial point cloud, the rigid registration

obtained with ICP, the semi-rigid registration computed by

the novel algorithm and the ground truth data. The results of

the direct comparison between the the point clouds before

and after automatic semi-rigid registration and the model

of the room are shown in Fig. 4. The deviations between

model and point cloud are plotted in color coded images,

i.e., green for absolute errors less than 1 cm, yellow to red

for large positive errors and cyan to blue for large negative



Fig. 3: An overview on the room data set used for quantitative evaluation of the semi-rigid registration. Top: The initial data set with no
registration (left) and with rigid registration via ICP&SLAM (right). Bottom left: The result of the novel semi rigid registration procedure.
Bottom right: The model of the room acquired with an absolute precision of 5mm.

errors. White areas indicate that no point was measured at

the corresponding location.

The proposed semi-rigid registration produces point clouds

that more closely resemble the ground truth model. Although

rigid registration procedures can improve map quality, it is

clear that the error within one scanner rotation is too large to

allow for a good match. The reduction of the inner error is

even more obvious in the quantitative evaluation as seen in

Fig. 4. The left side shows the point-to-model error of each of

the subscans before semi-rigid registration. The right column

displays the error after the data set has been corrected. Apart

from some small regions in the top scan, the errors are

significantly reduced by the semi-rigid registration.

B. Outdoor data set

To further prove the viability of the proposed algorithm

in other environments we acquired a second data set using

the car in Fig. 2. The vehicle traveled alongside the campus

buildings, took a U-turn, traveled straight back on the other

side of the road and took another U-turn to return to the

beginning. Due to the large inaccuracies in the initial data

set, a ground truth comparison similar to the one before is

not applicable. Nonetheless we acquired a ground truth data

set of the campus in the same fashion as before to provide

a point of reference.

The second data set is a larger one with 12 million points.

It is also far more erroneous since no odometry of wheel

encoder measurements was available. Indeed, the error is so

large that any attempts to improve upon the map quality by

rigid registration methods failed. The initial and the semi-

rigidly corrected point cloud as well as the ground truth

model of the campus is shown in Fig. 5. The semi-rigid

registration shows a remarkable improvement on the input

data. The resulting point cloud exhibits no sign of error

accumulation and reflects the ground truth quite well.

C. Further Experiments

We also tested the algorithm on the Dortmund data set

acquired by TopScan GmbH via the Lynx Mobile Mapper

by Optech. The Lynx mobile mapper employs twin 2D

laser scanners and pose estimation by the Applanix POS L

with integrated odometry, IMU and a GPS unit. The video

supplement to this paper can be seen in high quality under

http://youtu.be/L28C2YmUPWA.

Processing time for all data sets presented in this paper is

in the order of several minutes on a consumer laptop.



Fig. 4: Comparison of the acquired laser scans with the model using the initial (left) and the automatic semi rigid registration (right).
Deviations in cm are color coded as indicated on the right. Best viewed in color.

V. CONCLUSIONS

The proposed semi rigid registration algorithms has shown

that it is capable of processing and significantly improving

upon a variety of data sets. It exceeds current state of the

art rigid registration techniques not only when comparing

the final maps produced, but also when comparing the inner

deformation of subsections of the point cloud with the ground

truth.
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Fig. 5: A comparison of the initial and optimized point cloud acquired by our mobile laser scanner with the ground truth data acquired
by a terrestrial laser scanner. Top: The initial point cloud of the car data set with about 12 million points. Large scale errors in the pose
estimation prevent rigid scan matching algorithms from being successful. Middle: The result of our novel semi rigid registration algorithm.
Bottom: The ground truth data set acquired with the Riegl VZ-400 mounted on a tripod at 12 positions with about 250 million points.


