
A. Bredenbeck1, 2, †, S. Vyas3, 2, ‡, M. Zwick2, D. Borrmann1, M.A. Olivares-Mendez4, A. Nüchter1 .

Abstract— Applications of space robotics, such as Active
Space Debris Removal (ASDR), require representative test-
ing before launch. A commonly used approach to emulate
the microgravity environment in space are air-bearing based
platforms on flat-floors, such as the European Space Agency’s
Orbital Robotics and GNC Lab (ORGL). This work proposes
a control architecture for a floating platform at the ORGL,
equipped with eight solenoid-valve-based thrusters and one
reaction wheel. The control architecture consists of two main
components: a trajectory planner that finds optimal trajectories
connecting two states and a trajectory follower that follows any
physically feasible trajectory. The controller is first evaluated
within an introduced simulation, achieving a 100% success rate
at finding and following trajectories to the origin within a
Monte-Carlo test. Individual trajectories are also successfully
followed by the physical system. In this work, we showcase
the ability of the controller to reject disturbances and follow a
straight-line trajectory within tens of centimeters.

I. INTRODUCTION

Space debris is widely recognized as a significant chal-

lenge to all future activities in space [1]–[3]. Already in

1978, Kessler et al. [4] noted that the debris forming from

satellite collisions could lead to an artificial asteroid belt

in popular orbits such as the Low Earth Orbit (LEO) and

the Geostationary Orbit (GEO). This belt could severely

limit human space activities. In the extreme case, it could

entirely prohibit the possibility for safe spaceflight. Becom-

ing known as the “Kessler-Syndrome”, the described effect

gained traction in recent years for multiple reasons. Firstly,

today a significant portion of debris is caused by human

activity. Some of the biggest contributions are caused by

anti-satellite tests [5], [6] and satellite collisions [7]. Further,

planned large constellations, such as SpaceX Starlink, are

suspected to influence the space debris situation in the

future strongly, possibly endangering space sustainability as

indicated by [8]. Despite there being stringent requirements

on de-orbiting satellites, many members of the community

(cf. [9]–[11]) argue that these are not sufficient to avoid

the Kessler-Syndrome mentioned above and campaign for

1 Informatics VII, University of Würzburg, Germany
2 Automation and Robotics Group, ESA, Noordwijk, Netherlands
3 Robotics Innovation Center (RIC), DFKI Bremen, Germany
4 SpaceR-SnT, University of Luxembourg, Luxembourg
† To abide by the FAIR principles of science, all software created

for this work is available as open source at gitlab.com/anton.

bredenbeck/ff-trajectories
‡ Author 2 acknowledges the support of Stardust Reloaded project which

has received funding from the European Unions Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement
No 813644.

Fig. 1. The first author at the ORGL at ESTEC. An epoxy flat-floor for
floating air-bearing platforms, where slight unevenness induces disturbances.

ASDR. Further, in-orbit servicing will play an essential

role in reducing the number of malfunctioning satellites by

prolonging the lifetime of satellites.

Given the proximity of the servicing/capturing device and

the respective client, the missions carry above-average risk.

Hence, the flawless operation must be guaranteed as good

as possible prior to launch. For this purpose, ground-test

facilities that provide system-level evaluation are necessary.

The servicing/capturing system will eventually operate in a

zero-g environment, while all ground facilities are subjected

to Earth’s gravity. Hence, precisely replicating the entire

operating domain proves to be very difficult.

Air-bearing platforms have turned out to be the most

popular type of facility for testing in simulated micro-gravity

in academia and industry, with many examples in use [12]–

[17].

Figure 1 depicts one of these facilities: the European

Space Agency’s (ESA) ORGL at ESTEC. One of the testing

platforms at the ORGL provides a realistic actuator assembly,

with several cold gas thrusters and a reaction wheel. This

system functions either as a base platform for testing new

technologies or as a dummy target for capturing tests. Thus it

is of interest to control the system along desired trajectories

as a target or to enable the movement of the tested technol-

ogy. For all floating platforms, the most limiting factor for

the test duration is the amount of cold gas stored onboard,

which provides the necessary pressure to keep the platform

floating. The compressed breathing air also functions as

propellant for the thrusters that controls the position and

orientation (pose) of the system. Therefore, a controller that

aims at prolonging the test duration must use the thrusters

in a propellant-optimal manner along any trajectory. This

Trajectory Optimization and Following for a Three Degrees of Freedom
Overactuated Floating Platform

TABLE I

MASS, MOI AND SIZE PROPERTIES OF THE SUBSYSTEMS AND THE

OVERALL SUM

Subsystem Mass MoI Height Radius

ACROBAT 154 kg 10.090 kgm2 62.5 cm 35 cm

SATSIM 50 kg 1.416 kgm2 20 cm 35 cm

RECAP 13.66 kg 0.67 kgm2 20 cm 35 cm

RW 4.01 kg 0.047 kgm2 – –

Σ 221.67 kg 12.223 kgm2 102.5 cm –

objective is similarly vital for the application on satellites,

as depletion of fuel limits the lifetime of a satellite.

This work proposes a controller that first finds optimal

trajectories between two points in state-space,then uses op-

timal control methods combined with a modulation scheme

for the thrusters to follow the desired trajectory and validates

the proposed method with simulation and experiments.

The rest of the document is structured as follows: After

introducing the system model in section II, section III

gives an overview of the control architecture. An evaluation

in simulation and on the physical system (section IV) is

carried out before summarizing and discussing the results

in section V.

II. SYSTEM MODEL

The used platform is the combination of three previously

existing, modular platforms: Air Cushion Robotic Platform

(ACROBAT), Satellite Simulator (SATSIM), and Reaction

Control Autonomy Platform (RECAP) [18]. The platforms

are stacked to form the overall system, and each provides a

different functionality:

• ACROBAT provides the base of the platform. Using

three New Way 200mm air-bearings which are supplied

with compressed air at 4.8 bar it enables the micro-

gravity behavior on the flat ground.

• SATSIM provides air tanks that supply the ACROBAT

air bearing as well as the thrusters that SATSIM uses

to provide thrust to the stack. SATSIM combines eight

thrusters that are arranged pairwise on each side of the

platform to induce forces parallel to the coordinate axes

of the local robot coordinate system as indicated in

Figure 2

• RECAP provides the Reaction-Wheel (RW) used for

yaw control.

Their mass, Moment of Inertia (MoI), and size properties are

shown in Table I.

This section characterizes the overall system. In particular,

this section identifies the thrust by an individual thruster and

the motion model.

A. Thruster Characterization

The thrusters built into this system are a combination

of a tank holding pressurized gas, an intermediate pressure

regulator to achieve a lower operating pressure, a regulating

solenoid valve, and a Laval-nozzle through which the gas

escapes. Solenoid valves only allow for the states on and

xworld

yworld xreacsa

yreacsa

θ

f1

f3

τ, ωRW

f2

f4

f5

f6

f7

f0

Fig. 2. Coordinate systems and wrenches imposed by the actuators.

off. Thus, their nominal force when opened is of interest. At

a regulated operating pressure of 5.0±0.2 bar the force is

measured to be 10.0±0.7N. The thrusters can hold this peak

force for pulses of 100ms but experience a significant drop

for longer pulses in the order of seconds. In the following,

this work assumes that the force is constant for the opening

duration, and no pulses long enough to induce significant

deviation from this model are considered.

B. Dynamic Model

Using the thrust identified above and a torque-based model

for the RW the following derives the overall motion model.

First, we define all actuators as in Figure 2. The position

(x, y) of the system is defined relative to some world

coordinate system, and the orientation θ is defined relative

to that x axis.

Using the state and control vectors:

x =
[

x y θ ẋ ẏ θ̇ ωRW

]T
(1)

u =
[

τ f0 f1 f2 f3 f4 f5 f6 f7
]T

(2)

with the forces of the thrusters f0 to f7, the velocity of

the reaction wheel ωRW and the torque τ on the RW, the

resulting continuous state equation is:

ẋ = f (x,u) =

[

0
3×3

I
3×3 0

0
4×7

]

x

+

0
3×7

0 −sθ
m

sθ
m

−cθ
m

cθ
m

sθ
m

−sθ
m

cθ
m

−cθ
m

0 cθ
m

−cθ
m

−sθ
m

sθ
m

−cθ
m

cθ
m

sθ
m

−sθ
m

−1

Ib
r
Ib

−r
Ib

r
Ib

−r
Ib

r
Ib

−r
Ib

r
Ib

−r
Ib

1

Iw
0
1×6

u ,

(3)

where sθ and cθ denote the sine and cosine of the respective

angle, m is the system mass, Iw and Ib are the MoI of the

RW and the overall system respectively.

III. CONTROLLER

A. Overview

The block diagram in Figure 3 gives an overview of

the entire control architecture. The system consists of two

Trajectory Tracker

State - Observer

Trajectory Planner

Feedback Control (TVLQR) System
dynamics +

- -Modulator

Conditions

,
Sensors+

Noise

+

Disturbance

x0

u0

x1

u1

xN-1

uN-1

xf

......

......

Integration of the system dynamics

Fig. 3. Block diagram of the control architecture, consisting of a trajectory
planner and follower (TVLQR, a Σ∆-Modulator, and an Observer).

main modules: the trajectory planner and the trajectory

tracker. The planner computes an optimal trajectory a-priori,

given system constraints specified by the user. The resulting

trajectory has the form of N knot-points, each comprised of

a state and a control vector, which in combination satisfy

the dynamics of the system and the specified constraints,

if physically feasible. The trajectory tracker then tries to

follow the trajectory using three sub-modules: the continuous

feedback controller, the modulator, and the observer. The

feedback controller computes the optimal, continuous force

required to follow the trajectory, using Time-Varying Linear

Quadratic Regulator (TVLQR) [19], [20]. The modulator

then chooses opening times for the on/off thrusters to

match the continuous force best using a Σ∆-Modulation

scheme [21]. A motor encoder and a Motion-Capture (Mo-

Cap) system provide measurements of the RW velocity

and the system pose, respectively. The observer uses the

most recent measurements available at the sensors and the

commanded control input to estimate the current system state

optimally. The state estimates and the torque commands are

computed at 100Hz while the force command is calculated

at a slower 10Hz to better abide by the physical limitations

of the thrusters. Further, the trajectory follower can follow

the previously computed optimal trajectory and any other

admissible (physically feasible) trajectory.

B. Trajectory Planner: Optimizing over Discrete States and

Control Inputs

1) Cost Function: The cost function J is the main factor

determining the shape of the resulting trajectory. The two

qualitative criteria that should be optimized are propellant

efficiency and trajectory duration. Given the actuator limits,

there is a minimal time for the system to reach the final state.

This trajectory is called time-optimal. On the other hand, if

the desired finishing time is infinite, the most propellant-

efficient action is to do nothing. In order to find a trajectory

that satisfies both criteria the approach is as follows:

First, find the time-optimal trajectory using the cost func-

tion J = tf . In addition, it is enforced that tf ≥ 0. It is

well known that the time-optimal solution for such a system

is a “bang-bang” controller [22] – a controller jumping

between maximal and minimal control values. However, it

also provides a lower bound for the overall time required to

follow the trajectory.

Afterwards, define a desired final time that is a result of

the multiplication of a buffer factor α with the time-optimal

final time: tf,des = α · t∗f , where the buffer factor α is

chosen heuristically to provide slow, smooth movement. The

number of tunable heuristics is the main difference between

this approach and simultaneously optimizing the final time

and actuation costs. Simultaneous optimization requires two

separate weights for both cost functions, whereas the sepa-

ration reduces this to one.

The goal is then to find the trajectory that minimizes the

propellant usage, which finishes at the desired time. The

force exerted by the thrusters is approximately proportional

to the propellant used; therefore, a reasonable proxy for

minimal-propellant is minimal force. The cost function is

then:

J =
N
∑

k=1

ukRu
T
k , (4)

where R is a diagonal matrix that contains the respective

weights for each control value. By choosing a large weight

for all thrusters and a small weight for the RW the actuation

of the thrusters is minimized.

2) Direct Collocation: To find an optimal trajectory that

minimizes the above cost-functions, we use direct colloca-

tion [23], [24]. Its key aspect is to discretize the trajectory

at N instances of time tk, which are denoted as knot-points.

Each knot-point is subject to constraints that reflect the

maximal and minimal state and control values and constraints

concerning its neighbors. In particular, the dynamic model

(as derived in section II) must be satisfied. Since that model

is continuous, we use Hermite-Simpson collocation [23] to

integrate its dynamics. Then it is ensured that for any set

of subsequent knot-points, the system dynamics is satis-

fied. In other words, the state and the control applied at

some knot-point must result in the state at the next knot-

point according to the integrated dynamics. From this it

is possible to derive a minimization problem on all N ×
(Dim(x) + Dim(u)) variables. For the time-optimal problem

the final time adds one more decision variable. However, the

optimization problem that incorporates the binary restriction

on the actuators is of the class Mixed-Integer Non-Linear

Programming (MINLP). These problems are increasingly

difficult to solve in that they are NP-hard and combine

challenges of handling non-linearities with a combinatorial

explosion of integer variables [25]. By relaxing the binary

condition on the respective control variables and assuming

them to be continuous, the problem reduces to a problem

of the class Non-Linear Programming (NLP), which can

be solved significantly faster. The resulting optimization

problem over all states X and control values U at all knot-

points is:

min
X,U

{J(X,U)} ∀k ∈ [0, N − 1] s.t.

x(0) = xinit, x(tf) = xfinal

xmin ≤ xk ≤ xmax, umin ≤ uk ≤ umax

xk+1 − xk =
∆t

6
(fk + 4fk+1/2 + fk+1)

where xk+1/2 =
1

2
(xk + xk+1) +

∆t

8
(fk − fk+1)

and uk+1/2 =
1

2
(uk + uk+1)

(5)

Readily available, open source solvers, such as IPOPT (Inte-

rior Point OPTimiser) [26], using the programming interface

provided by Drake [27], find a solution for a zero initial-

and final velocity trajectory within ten seconds. However,

this relaxation yields trajectories which demand continuous

control input which cannot be provided by discrete or binary

actuator. Therefore, any trajectory tracking controller needs

to consider how to translate the desired control input into the

discrete space. This is further discussed in subsection III-C.

C. Trajectory Follower

1) Time Varying Feedback Controller: Once there is an

optimal trajectory to be followed, the robot should find

the controls that, given the current state, propels the robot

along the trajectory. We propose to use a full state feedback

controller based on the TVLQR formulation. Solving the

Differential Riccati Equation (DRE) by initializing the cost-

to-go with its value at the final time and integrating it

backward in time yields the respective cost-to-go matrices at

different times t and from this, one can compute the feedback

gain matrices K(t) [20]. The resulting control law is:

u(t) = u0(t) +K(t)(x(t)− x0(t)), (6)

where u(t) is the desired control input, u0(t) is the feed-

forward control from the pre-computed trajectory, x(t) is

the current state, and x0(t) is the desired state according to

the trajectory. Note that solving the DRE backward in time

implies the controller must pre-compute the gain matrices for

a trajectory beforehand, resulting in a few additional seconds

of computation time in the initialization.

2) Sigma-Delta-Modulator: Given that there are discrete

actuators in the present system, one needs to answer how

to modulate the continuous control signal derived in the

previous section. One approach introduced in [21] is using

a Σ∆-Modulator, a technique commonly used in analog to

digital modulation, to modulate the continuous force onto the

binary actuators. The basic concept of a Σ∆-Modulator is

to trigger a pulse as soon as the integrated error between the

desired and current output reaches some specific threshold.

The general concept of the Σ∆-Modulator is the following:

1) Sample the continuous signal u(t) at some frequency

fsmpl using sample and hold.

2) Compute the error eΣ∆(t) by taking the difference of

the current thruster output yThrust(t) (which is already

modulated) to the desired value.

3) Integrate the error by numeric integration where ∆t is

the time difference between two samples:

we(t) =
∫ t

t0
eΣ∆(τ)dτ ≈ ∆t

∑T
i=0

eΣ∆(i ·∆t) .

4) Once the integrator value surpasses some threshold,

i.e. we(t) > ϵ, trigger a pulse. The threshold is chosen

such that a single pulse resets the error integrator to

zero, i.e., has the same area under the curve. This is

achieved by choosing the threshold to be the inverse

of the control frequency times the nominal force.

Finally, the modulator feeds back the current output value,

closing the loop.

3) State-Estimation: In the previous sections, this work

assumes that the entire state is available for feedback. This

is not the case since the MoCap system only provides pose

estimates (x, y, θ), and numerically differentiating those is

not sufficient [28]. Further, all available measurements are

subject to noise and thus require some filtering process to

improve their quality given some underlying system model.

The standard for this filter is the Kalman Filter (KF) [29].

By combining the knowledge of the underlying system and

the measurements optimally, in the sense of a quadratic

estimation error, the filter smoothes the data and rejects

extreme outliers that fall significantly outside the distribution

of the specified measurement error. This work combines a

classical KF for the position, its derivative, and the RW

velocity with a KF over the Lie Algebra SO(2) × R for

the orientation and the angular velocity as given in [30] to

achieve full state estimation.

IV. RESULTS

A. Simulation

Before being evaluated on the physical system, this work

evaluates the controller in a Gazebo [31] simulation that

incorporates sensor noise and the slight unevenness of the

floor. The simulated sensors are subjected to Additive White

Gaussian Noise (AWGN) with variances that match the mea-

sured variances of the real system (σ2
x = σ2

y = 1×10−5 m2,

σ2
θ = 1×10−5 rad2 and σ2

ωRW
= 1×10−4 (rad/s)2).

The simulation includes a heightmap representing the last

openly available measurements from [32], to incorporate the

unevenness of the flat-floor, which has a maximal deviation

of 1mm over one meter.

1) Stabilization: The system is simulated while being

subjected to the instantaneous disturbance consisting of a

force and a torque d =
[

fd τd
]

and lasting for ∆t, where:

fd =
[

5000N 5000N
]T

, τd = 1000Nm, ∆t = 0.001 s. (7)

The response is shown in Figure 4 and the actuation of

the controller in Figure 5. Accompanying each plot of the

controlled system response is a plot of the system response

to the disturbance without being controlled to highlight the

effect of the controller.

As Figure 4 shows, the controller succeeds in bringing

the system back to the origin after the initial disturbance. It

maintains the system within less than 10 cm and 6◦ of the

origin. The unactuated system, on the other hand, drifts over

1.5m and performs more than a full rotation. The offset from

0.0 0.5 1.0

x [m]

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

y
[m

]

−0.05 0.00 0.05

−0.05

0.00

0.05

Raw

Observed

True

0.0

0.2

0.4

0.6

0.8

1.0

H
ei
gh
t
[m

m
]

0.0 0.5 1.0

x [m]

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

y
[m

]

Raw

Observed

True

0.0

0.2

0.4

0.6

0.8

1.0

H
ei
gh
t
[m

m
]

−1

0

1

C
oo
rd
in
at
e
[m

]

xnoisy

ynoisy

x̂

ŷ

x

y

0 50 100 150 200 250

t [s]

−100

0

100

O
ri
en
ta
ti
on

[◦
]

θnoisy θ̂ θ

0 50 100 150

−0.05

0.00

0.05

0 50 100 150

0

5

−1

0

1

C
oo
rd
in
at
e
[m

]

xnoisy

ynoisy

x̂

ŷ

x

y

0 50 100 150 200 250

t [s]

−100

0

100

O
ri
en
ta
ti
on

[◦
]

θnoisy θ̂ θ

−0.1

0.0

0.1

V
el
oc
it
y
[m

/s
]

ˆ̇x ˆ̇y ẋ ẏ

0 50 100 150 200 250

t [s]

−10

−5

0

5

10

A
ng
ul
ar

V
el
oc
it
y
[◦
/s
]

ˆ̇θ θ̇

−0.1

0.0

0.1

V
el
oc
it
y
[m

/s
]

ˆ̇x ˆ̇y ẋ ẏ

0 50 100 150 200 250

t [s]

−10

−5

0

5

10

A
ng
ul
ar

V
el
oc
it
y
[◦
/s
]

ˆ̇θ θ̇

Fig. 4. Ground-track, individual coordinates, and velocities of the system
responding to a disturbance (at T = 0 s) on an uneven floor in simulation.
Left: Controller stabilizing the system at the origin. Right: No controller
running. An animation of the stabilization process is given at https://
youtu.be/KRYcq3VjQUo?t=4.

0 50 100 150 200 250

t [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

T
or
qu
e
[N

m
]

0 50 100 150 200 250

t [s]

0

25

50

75

100

125

150

175

200

R
W
-S
p
ee
d
[R
P
M
]

ωRW,noisy ω̂RW ωRW

f
0

f
1

f
2

f
3

f
4

f
5

f
6

0 50 100 150 200 250

t [s]

f
7

Fig. 5. Actuation required to stabilize the system at the origin on an uneven
floor in simulation while being subjected to a disturbance (cf. Figure 4). Top
Left: the torque exerted by the motor onto the RW. Top Right: the resulting
RW velocity (raw and observed). Bottom: the thruster activity for all eight
thrusters.

the origin of the controlled system is attributed to two factors:

the binary nature of the thrusters and the unevenness of the

floor. The continuous actuation needs to accumulate in the

modulator until a firing is triggered, which in turn will propel

the system through the origin, and the process repeats in the

opposite direction. This well-known behavior for thruster-

based systems is referred to as a limit cycle [33]. At the same

time, the controller needs to compensate for the disturbances

induced by the flat-floor, further adding to the oscillations

about the origin. In Figure 5 the torque clearly shows “bang-

bang” behavior. Since the intertia of the RWs is two orders

of magnitude smaller than that of the system, the controller

demands high torques such that it quickly jumps between

the maximal and minimal torque. The RW velocity, however,

remains within its allowable bounds. Also, in Figure 5, the

thrusters 1, 2, 4, and 7 initially show high activity since

they are the ones pointed in negative x and y direction, thus

counteracting the disturbance. Afterward, the thrusters show

alternating behavior corresponding to the small oscillations

about the origin. Finally, the thrusters regularly fire to move

the system towards positive y direction (Thruster 0 and

5) and slightly less frequently towards positive x direction

(Thrusters 3 and 6), which corresponds to the gradient of the

floor at the origin.

2) Monte Carlo: A Monte Carlo test simulation is exe-

cuted to demonstrate the generalizability of the controller

to different initial locations on the flat-floor. For a large

(n = 100) number of episodes, the robot spawns at random

initial poses, whereby x, y, and θ result from drawing from

uniform random distributions that span the range [−2, 2],
[−4, 4], and [−π, π] respectively. The controller computes

the optimal trajectory to the origin and starts following it. An

episode is considered successful when the euclidean distance

to the origin, the euclidean velocity as well as the angular

error and velocity are smaller than the threshold ϵ:
[

ϵlin ϵang ϵlin,vel ϵang,vel
]

=
[

0.05m 0.05m s−1 0.05 rad 0.05 rad s−1
]

(8)

Figure 6 shows the results of the Monte Carlo test. During

the Monte Carlo simulation, the controller commands the

system to the origin from all 100 tested initial conditions.

As seen in Figure 6 the trajectories are mostly straight

lines with some minor deviations caused by the uneven

ground, in combination with the noise of the system and

the binary thrusters. One particular trajectory (purple, bottom

right of the ground-track) overshoots a desired state along the

trajectory at approximately 38 s. Since the controller only

attempts to control the system to the desired state at some

time, it returns to a previous location resulting in a loop. This

loop also corresponds to the spikes in velocities (purple). All

trajectories reach the desired region at the origin and slow

down to the desired maximal velocity in less than 140 s.

B. Physical System

1) Experimental Setup: The RW experiences stiction at

low revolutions per minute. Thus, to avoid issues the RW is

spun up to half its rated velocity before each trajectory. From

−2 0 2

x [m]

−4

−3

−2

−1

0

1

2

3

4
y
[m

]

0.0

0.2

0.4

0.6

0.8

1.0

H
ei
gh
t
[m

m
]

−2

0

2

x
[m

]

−2.5

0.0

2.5

y
[m

]

0 20 40 60 80 100 120 140

t [s]

−100

0

100

θ
[◦
]

Fig. 6. Monte Carlo simulation of finding and following a trajectory to
the origin.

−0.4 −0.2 0.0 0.2 0.4

x [m]

−0.4

−0.2

0.0

0.2

0.4

y
[m

]

Followed Trajectory

0.0

0.2

C
o
or
di
na
te

[m
]

x0

y0

x

y

0 10 20 30 40 50 60 70

t [s]

−50

−25

0

25

50

O
ri
en
ta
ti
on

[◦
]

θ θ0

Fig. 7. Ground-track and individual coordinates of the controller stabilizing
the physical system at the origin. In the coordinate plots (right) the desired
value is indicated as a dashed line. A video of the stabilization process is
given at https://youtu.be/KRYcq3VjQUo?t=168.

this state, the system is manually placed at the origin of the

coordinate system before starting the trajectory follower.

2) Results:

a) Stabilization: First, the stabilization is also tested on

the physical system. The disturbance is added by manually

pushing the system. The results are shown in Figures 7 and 8.

In all experiments, the general tendency to drift in nega-

tive x and y direction is observed. This tendency implies

that there is a slope pointing in this direction, which is

further supported by the heightmap from [32]. During the

stabilization process, the system initially stabilizes within

15 cm and 15◦ of the origin before the disturbance. The

disturbance moves the system about 35 cm and within 30 s
the system stabilizes in the initial region again. Figure 8

shows that very little thrusting is required to achieve this

result, firing no thruster more than once every two seconds

during the entire process. The RW, on the other hand,

0 20 40 60

t [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

T
or
qu
e
[N

m
]

0 10 20 30 40 50

t [s]

−500

−450

−400

−350

−300

−250

R
W
-S
p
ee
d
[R
P
M
]

ω̂RW

ωRW

f
0

f
1

f
2

f
3

f
4

f
5

f
6

0 10 20 30 40 50 60 70

t [s]

f
7

Fig. 8. Actuation of stabilizing the physical system (cf. Figure 7).

0.0 0.5 1.0

x [m]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y
[m

]

Optimal

Followed

0

1

2

C
o
or
di
na
te

[m
]

x0

y0

x

y

0 20 40 60 80 100 120

t [s]

0

100

200

300

O
ri
en
ta
ti
on

[◦
]

θ0 θ

Fig. 9. Ground-track and individual coordinates of the controller following
a straight-line trajectory on the physical system. After reaching the final pose
of the trajectory plots (right) in the coordinate plots, the desired value is
indicated as a dashed line. A video of the trajectory is given at https:
//youtu.be/KRYcq3VjQUo?t=193.

saturates rather quickly after the disturbance. It quickly

reaches its maximum rotational velocity as it attempts to

absorb the entire angular momentum put into the system by

the disturbance. Afterward, the thrusters perform the attitude

control by themselves; thus, the pointing accuracy degrades

as larger errors are required to trigger a pulse since thruster

usage is penalized more than RW acceleration.

b) Straight-Line Trajectory: Further, a straight-line tra-

jectory (similar to the ones from section IV-A.2) is tested

on the physical system. The results are shown in Figures 9

and 10.

The average Euclidean and angular error of the physical

system to the desired trajectory are 0.325m and 23.8◦

respectively, in a trajectory covering 2.2m and 180◦. In

particular, the error in the x-axis is significant. This error

is due to the slope in that region of the flat-floor, with a

gradient in the negative x-direction. As in the stabilization

case, the heightmap shows a local minimum adjacent to the

trajectory.

0 20 40 60 80 100 120

t [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

T
or
qu
e
[N

m
]

0 20 40 60 80 100 120

t [s]

−500

−400

−300

−200

−100

0

R
W
-S
p
ee
d
[R
P
M
]

ω̂RW

ωRW

f
0

f
1

f
2

f
3

f
4

f
5

f
6

0 20 40 60 80 100 120

t [s]

f
7

Fig. 10. Actuation of following a straight-line trajectory (cf. Figure 9)
with the physical system.

TABLE II

OPTIMAL AND REAL THRUSTER ON-TIME FOR THE STRAIGHT LINE.

Thruster 0 1 2 3 4 5 6 7 Σ

Optimal 0.499 s 0.004 s 0.061 s 0.296 s 0.004 s 0.499 s 0.296 s 0.061 s 1.72 s
Real 0.30 s 3.40 s 0.70 s 1.30 s 3.40 s 0.30 s 1.30 s 0.70 s 11.40 s

Further, the RW saturates at both ends of the allowable

range throughout the entire trajectory. At each instance a

larger deviation from the desired orientation is observed

which implies that large desired changes in angular momen-

tum of the entire system quickly leads to RW saturation.

The controller then performs orientation control using only

thrusters; thus, losing precision. However, at the end of

the trajectory, the RW recovers from saturation, and the

pointing accuracy at the final state is within 10◦ . The

thrusters were firing appropriately, never exceeding one

fire per second for an individual thruster. Moreover, when

considering the thruster on-times, as depicted in Table II,

it shows an increase of less than one order of magnitude

for the overall thruster on-time compared to the optimal-

value. Some individual thrusters (0, 5) even decrease on-

time, whereas others increase by one or multiple orders

of magnitude, all while compensating for uneven ground.

Note that the long on-time for thrusters 1 and 4 stem from

compensating the previously mentioned error in x-direction

since these thrusters are enacting a force in positive x-

direction throughout the middle section of the trajectory.

c) Discussion: The experiments demonstrate that the

general behavior of the simulation and the physical system

is similar, indicating that the simulation is a realistic repre-

sentation of the scenario. The controller manages to stabilize

the system and follow a pre-computed trajectory. However,

the deviations from the set values are more significant on

the physical system. Besides shortcomings in the simula-

tion, such as the idealized thrusters, the limited heightmap

resolution, and a single ground-contact point, other factors

that influence this difference stem from the hardware. The

most significant factors that influence the overall system

performance are lack of precise system identification and

limited control authority. The former is outside the scope of

this work; thus, it relies on previous inertial measurements of

the system. An offset here contributes to the size of the limit-

cycle the system exhibits around the desired orientation. This

is especially the case since the control architecture combines

the controller with a KF, such that the model errors both

accumulate and deteriorate performance [34]. Improving this

model in terms of inertial parameters, thrust, and thrust

vectors for individual thrusters will significantly improve the

system performance.

The latter is a consequence of the initial design of the

floating platform. The high mass of the system means that

the effects of any unevenness of the floor can be compensated

much less by the thrusters. For example, on a slope of

1 mm

m
the system experiences a constant disturbance force of

approximately 2.2N. In an ideal scenario where two thrusters

are exactly aligned with this disturbance force, they can

provide approximately 20N in the opposing direction. Thus

to compensate for the disturbance force, the thrusters would

have to have an on-time of at least 10%. This firing rate is

already larger than the firing rate observed for the followed

straight-line trajectory.

Additionally the RW saturates very fast. Given the inertias

of the entire system and the RW it can compensate only

for a slight change in angular velocity of approximately

6 ◦ s−1. Despite that the trajectory planner incorporates this

limitation, any disturbance that imposes an equivalent torque

on the system quickly saturates the RW and thus degrades

the control authority of the system. One source of such dis-

turbance is the uneven floor. Another is an unequal nominal

force of individual thrusters. When firing two thrusters that

point the same way (e.g., thruster 0 and 5), the exerted

wrench should only contain a force pointing in one direction.

However, assuming a difference between the two thrusters

it also contains a disturbance torque τd. If this difference

is only 10% and one assumes the 10% thruster on-time to

compensate the floor unevenness, this will saturate the RW

within 34 s of operation.

V. CONCLUSION

Three Degrees of Freedom (DoF) floating platforms are a

good way of partially emulating microgravity environments

as they are present in space applications. This work intro-

duced a controller for one of the heaviest floating platforms

in Europe located within the ORGL at ESTEC, ESA.

First, this work develops a dynamic model of the overall

system, actuated by eight solenoid-valve thrusters and one

RW. The proposed controller consists of two main com-

ponents: the trajectory planner and the trajectory follower.

The former pre-computes optimal trajectories that connect

two arbitrary states while minimizing the force exerted by

the thrusters. The trajectory follower computes the control

actions to follow these and any other physically feasible

trajectory using a TVLQR formulation. To abide by the

binary nature of the thrusters, it uses a Σ∆- Modulator to

modulate the continuous force command computed by the

TVLQR onto the thrusters. Finally, a KF estimates the system

state, providing feedback for the control architecture.

This work further develops a simulation of the overall

system that takes measurement noise and the unevenness of

the floor into account. When testing the control architecture

in this simulation, the controller achieves at least 16 cm
average Euclidean and 5◦ angular error. The controller proves

to be robust to arbitrary initial poses on the flat-floor. In a

Monte-Carlo simulation in which the robot is spawned at

arbitrary initial poses and tasked with finding and following

optimal trajectories to the origin the controller achieves a

100% success rate.

The controller is further evaluated on the physical system.

There a straight-line trajectory is also followed successfully

but experiences a drop in performance. The average eu-

clidean error approximately doubles, and the angular error

increases by an order of magnitude. The increase in error is

mostly attributed to a lack of precise system identification

and control authority.

A thorough system identification will improve the system

performance in the future. The thorough identification in-

cludes a more precise characterization of individual thrusters

and their thrust vectors. This improved model is helpful in

two domains: the trajectory planner would be able to plan

trajectories that are more representative of the physical sys-

tem and the controller would follow those better. Redesigning

some system components to increase control authority also

helps to improve accuracy. The two most promising options

are decreasing the overall weight and inertia of the system

and increasing the reaction wheel inertia.

Further work at the ORGL intends to implement, test,

and compare multiple controllers based on the software

framework developed in this work. One approach would be to

solve the trajectory optimization problem online and control

the system in a Model Predictive Control (MPC) fashion,

increasing resilience to disturbances.

REFERENCES

[1] R. Crowther, “Space junk–protecting space for future generations,”
Science, vol. 296, no. 5571, pp. 1241–1242, 2002.

[2] C. J. Newman and M. Williamson, “Space sustainability: Reframing
the debate,” Space Policy, vol. 46, pp. 30–37, 2018.

[3] D. Mehrholz, L. Leushacke, W. Flury, R. Jehn, H. Klinkrad, and
M. Landgraf, “Detecting, tracking and imaging space debris,” ESA

Bulletin(0376-4265), no. 109, pp. 128–134, 2002.

[4] D. J. Kessler and B. G. Cour-Palais, “Collision frequency of artificial
satellites: The creation of a debris belt,” Journal of Geophysical

Research: Space Physics, vol. 83, no. A6, pp. 2637–2646, 1978.

[5] G. Neuneck, China’s ASAT test — A warning shot or the beginning

of an arms race in space?, pp. 211–224. Vienna: Springer Vienna,
2008.

[6] L. Crane, “Anti-satellite weapons,” New Scientist, vol. 252, no. 3362,
p. 15, 2021.

[7] T. Kelso, “Analysis of the iridium 33 cosmos 2251 collision,” 2009.

[8] B. Bastida Virgili, J. Dolado, H. Lewis, J. Radtke, H. Krag, B. Revelin,
C. Cazaux, C. Colombo, R. Crowther, and M. Metz, “Risk to space
sustainability from large constellations of satellites,” Acta Astronau-

tica, vol. 126, pp. 154–162, 2016. Space Flight Safety.

[9] J. Chatterjee, J. N. Pelton, and F. Allahdadi, Active Orbital Debris

RemovalActive orbital debris removaland the Sustainability of Space,
pp. 921–940. Cham: Springer International Publishing, 2015.

[10] S. Peters, H. Fiedler, W. Mai, and R. Förstner, “Research issues and
challenges in autonomous active space debris removal,” Proceedings

of the International Astronautical Congress, 2013.
[11] C. P. Mark and S. Kamath, “Review of active space debris removal

methods,” Space Policy, vol. 47, pp. 194–206, 2019.
[12] K. Yoshida, “ETS-VII flight experiments for space robot dynamics

and control,” Experimental Robotics VII, pp. 209–218, 2001.
[13] “Air bearing floor.” https://www.nasa.gov/centers/

johnson/engineering/integrated_environments/

air_bearing_floor/index.html. Accessed: 2021-08-18.
[14] T. Rybus and K. Seweryn, “Planar air-bearing microgravity simulators:

Review of applications, existing solutions and design parameters,” Acta

Astronautica, vol. 120, pp. 239–259, 2016.
[15] A. Redah, T. Mikschl, and S. Montenegro, “Physically distributed

control and swarm intelligence for space applications,” Proceedings

of the Advanced Space Technologies for Robotics and Automation

(ASTRA), 2018.
[16] E. Papadopoulos, I. Paraskevas, T. Flessa, K. Nanos, Y. Rekleitis, and

I. Kontolatis, “The NTUA space robot simulator: Design & results,”
Proceedings of the International Conference on Intelligent Robots and

Systems (IROS), 2011.
[17] S. Wehrmann and M. Schlotterer, “Coordinated orbit and attitude

control of a satellite formation in a satellite simulator testbed,”
Proceedings of the 10th International ESA Conference on Guidance,

Navigation & Control Systems, 05 2017.
[18] M. Zwick, I. Huertas, L. Gerdes, and G. Ortega, “ORGL - ESA’s test

facility for approach and contact operations in orbital and planetary
environments,” Proceedings of the i-SAIRAS, 2018.

[19] D. Bertsekas, Dynamic Programming and Optimal Control: Approxi-

mate dynamic programming. Volume 2. Athena Scientific, 2012.
[20] R. Tedrake, “Underactuated robotics: Algorithms for walking, running,

swimming, flying, and manipulation (course notes for mit 6.832).”
Downloaded on 21.12.2021 from http://underactuated.mit.edu/.

[21] R. Zappulla, Experimental Evaluation Methodology for Spacecraft

Proximity Maneuvers in a Dynamic Environment. PhD thesis, Naval
Postgraduate School Monterey United States, 2017.

[22] J. Betts, Practical Methods for Optimal Control Using Nonlinear

Programming, Third Edition. Advances in Design and Control, Society
for Industrial and Applied Mathematics, 2020.

[23] C. HARGRAVES and S. Paris, “Direct trajectory optimization using
nonlinear programming and collocation,” AIAA J. Guidance, vol. 10,
pp. 338–342, 07 1987.

[24] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Review, vol. 59, pp. 849–904, 01 2017.

[25] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and
A. Mahajan, “Mixed-integer nonlinear optimization,” Acta Numerica,
vol. 22, p. 1131, 2013.

[26] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical Programming, vol. 106, pp. 25–57, 2006.

[27] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019.

[28] F. Van Breugel, J. N. Kutz, and B. W. Brunton, “Numerical dif-
ferentiation of noisy data: A unifying multi-objective optimization
framework,” IEEE Access, vol. 8, pp. 196865–196877, 2020.

[29] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME–Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[30] I. Markovic, J. Cesic, and I. Petrovic, “On wrapping the kalman filter
and estimating with the SO(2) group,” CoRR, vol. abs/1708.05551,
2017.

[31] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” vol. 3, pp. 2149–2154 vol.3,
2004.

[32] H. Kolvenbach and K. Wormnes, “Recent developments on ORBIT,
a 3-dof free floating contact dynamics testbed,” Proceedings of the

i-SAIRAS, 2016.
[33] S. W. Jeon and S. Jung, “Hardware-in-the-loop simulation for the

reaction control system using pwm-based limit cycle analysis,” IEEE

Transactions on Control Systems Technology, vol. 20, no. 2, pp. 538–
545, 2012.

[34] J. Doyle, “Guaranteed margins for LQG regulators,” IEEE Transac-

tions on Automatic Control, vol. 23, no. 4, pp. 756–757, 1978.

