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Abstract— We study the motion model of a sensor rigidly
mounted inside a ball. Due to the rigid placement inside
the ball, the geometry of the sensor trajectory resembles a
3D curate trochoid. A new calibration method for spherical
systems estimates the extrinsic parameters of the sensor with
respect to the balls center of rotation. We deploy the calibration
and motion model on our spherical mobile mapping platform
to estimate the trajectory of a LiDAR sensor and compare
it to trajectories of state-of-the-art LiDAR-Inertial odometry
(LIO) methods. The motion model, which is solely based on
IMU measurements, produces comparable results to the LIO
methods, sometimes even outperforming them in positional
accuracy. Although the LIO methods provide better rotational
accuracy due to the utilization of LiDAR data, they struggle
to reproduce the trochoidal nature of the trajectory and only
provide pose estimations at the LiDAR frequency, whereas the
motion model produces a more consistent trochoidal trajectory
at the much higher IMU frequency. The results demonstrate the
difficulty that current LIO methods have on spherical systems
and indicate that our motion model is suitable for overcoming
these issues.

I. INTRODUCTION

Spherical systems are still a niche format in robotics for

the use of mobile mapping, compared to more prominent

systems like unmanned aerial vehicles (UAV) or rovers. The

majority of research in that area focuses on the locomotion

mechanism to move the ball around [1]–[5]. Often, these

approaches use actuators inside the ball, e.g., moving masses

or conservation of angular momentum via flywheels, and

study the mobility, controllability, and corresponding path

planning methods. Others focus more on the mathematical

description of the motion of the ball itself [6]–[10]. However,

there is a lack of research that focuses on the use of

spherical systems for mobile mapping using its internal sen-

sors. Some authors [11]–[13], including the European Space

Agency (ESA) [14], have suggested the suitability of the ball-

shaped design for exoplanetary exploration and exploration

of other inaccessible, dangerous, or harsh terrestrial environ-

ments like mine shafts or narrow funnels. The advantages

of spherical systems in that context include protection of

the internal sensors, an advantage in maneuverability and

mass efficiency, and a locomotion principle that leads to

sensor coverage without needing additional actuators for the

sensor. However, one major disadvantage considering mobile

mapping is the large angular velocities and aggressive system

dynamics, which introduce degrading effects on inertial
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Fig. 1: Illustration of a curate trochoid (red line), which is

the trace of a point rigidly mounted inside a rolling sphere

with radius R and distance d to the balls center point of

rotation, when the ball is rolling without slipping.

measurement units (IMUs), LiDAR sensors, and cameras. In

our previous work, we have built spherical mobile mapping

prototypes including LiDAR sensors and IMUs, assuming

that each sensor would be mounted in the balls center [15]–

[17]. In reality, though, the trajectory of a sensor mounted

rigidly inside the ball resembles a curate trochoid, which

is illustrated in Figure 1. We approach this problem in our

paper, having the following contributions:

• A motion model that estimates the trochoidal 6-DoF tra-

jectory of a sensor mounted rigidly inside the spherical

system, based on IMU measurements and an extrinsic

calibration of the sensor with respect to the center of

the ball.

• A calibration procedure for LiDAR sensors that esti-

mates the extrinsic translation parameters of the sensor

with respect to the center of the ball.

• A comparison of the motion model with two state-of-

the-art Lidar-Inertial odometry (LIO) methods, illustrat-

ing their difficulty to produce trochoidal trajectories.

The rest of the paper is structured as follows: In the next

section, we introduce other work related to extrinsic LiDAR

calibration and LiDAR-inertial odometry. Then, we introduce

our own calibration procedure for spherical mobile mapping

systems, followed by the introduction of our 3D trochoidal

motion model. Afterwards, we perform experiments with our

spherical prototype and discuss the quality of the resulting

trochoidal trajectories, followed by conclusions and possible

future work.

II. RELATED WORK

In the previous section, we have already introduced some

spherical systems and their possible applications. Our paper



focuses on two major topics: 1) Extrinsic LiDAR calibration

and 2) LiDAR-inertial odometry (LIO). Note that the motion

model presented in our paper only falls into the category

of Inertial odometry, yet we compare it with other LIO

methods.

A. Extrinsic LiDAR calibration

Finding the extrinsic parameters between the coordinate

systems of a LiDAR and some other sensor or reference

frame is a broad, well studied field. State-of-the-art ap-

proaches do not require the user to place artificial external

markers in the environment but utilize the features or ge-

ometries of the environment directly. The following methods

are only a few examples that address the calibration of

LiDAR-IMU systems. In [18] the authors introduced an on-

site calibration method for LiDAR-IMU systems that com-

bines point, sphere, line, cylinder, and plane features. Their

approach employs a full information maximum likelihood

estimation to obtain both the LiDAR-to-IMU extrinsics, but

also the IMU intrinsic parameters. Another similar approach

that estimates both LiDAR-IMU extrinsic and IMU intrinsic

parameters is [19], where the authors also utilize point, plane,

cone, and cylinder features to construct a geometrically

constrained optimization problem, followed by a restricted

maximum likelihood estimation. Li et al. present a method

that employs “continuous-time trajectory estimation wherein

the IMU trajectory is modeled by Gaussian process re-

gression with respect to the independent sampling times-

tamps” [20]. Furthermore, they account for motion distortion

effects of the LiDAR and match the corrected point clouds to

a structured plane representation of the environment in an on-

manifold batch-optimization framework. In [21] the authors

also utilize a continuous-time batch-optimization framework.

This approach has been designed for usage in degenerate

cases by leveraging observability-aware modules, including

an information-theoretic data selection policy and a state up-

date mechanism that updates only the identifiable directions

in the state space. Note that in this work, it is specifically

required to find the extrinsic translation parameters between

the LiDAR and not the IMU, but rather the center point

of rotation of the ball, which none of the abovementioned

methods provide. These methods are still useful to find the

extrinsic rotations. However, as for translation, we have to

introduce a new procedure specifically tailored for our use

case. Our approach is also marker-less and uses only the

geometry of the environment via globally consistent scan-

matching and utilizes the different radii that the sensor has

when rotating around the center point.

B. LiDAR-inertial odometry

Many state-of-the-art approaches exist to solve the LIO

problem, which is especially important for autonomous sys-

tems in GPS-denied environments. Often, these methods

have been developed and evaluated on cars [22], UAV [23],

or other rotationally more restricted systems when compared

to a rolling ball. Currently, the most prominent approach to

solving the LIO problem is to construct a tightly coupled

Fig. 2: Calibration principle of a sensor inside a ball, illus-

trated in one axis. The sensor will make a circular trajectory

(red) with radius rz when rotating without translation around

the z-axis. The key to extrinsic parameter calibration is

finding the offsets dy and dx that define the radius rz .

optimization problem. Some examples include [24], where

a factor graph is utilized to solve the optimization prob-

lem, or [25], where the authors use an iterated error-state

Kalman Filter. Usually, state-of-the-art LIO methods also

provide a motion distortion correction algorithm via IMU

preintegration. The most popular methods are open-source

implementations like [26] for systems experiencing racing

velocities, LIO-SAM [27] which utilizes local keyframes and

also estimates the IMU bias errors, FAST-LIO [28] which

keeps a representation of the global map in an iteratively

growing KD-tree, or DLIO [29] which provides a computa-

tionally efficient continuous-time coarse-to-fine approach. In

this work, we deploy two of the abovementioned state-of-

the-art approaches on our spherical mobile mapping system,

namely FAST-LIO in its most current version [28], and

DLIO [29]. In doing so we test if state-of-the-art methods

are able to keep up with the faster than usual rotations and

if these methods can reconstruct the trochoidal trajectory

of the LiDAR. We expect these methods to perform sub-

optimally because the motion state propagation includes the

accelerometer readings which, on rolling balls, are mostly

governed by centripetal forces degrading their quality.

III. EXTRINSIC CALIBRATION

In this section, we introduce a method of finding the

extrinsic 3D translation parameters of the LiDAR sensor with

respect to the center of the ball. Knowing these offsets in

all principal axes is of utmost importance for the trochoidal

motion model to work. If the ball rotates precisely around

its center point, the sensor mounted rigidly inside the ball

follows a circular trajectory. The key idea behind the pro-

cedure is to measure the radii of the circular trajectory that

the sensor follows when rotating around all three principal

axes, and then use these radii to calculate the offsets. This is

illustrated for one principal axis in Figure 2, where a rotation



Fig. 3: Left: The spherical mobile mapping system housing

a laser-scanner, IMUs, and an onboard computer inside

the spherical protective shell. Right: 3D printed calibration

apparatus needed to perform rotations of the spherical system

without translation around the center point of the ball.

Fig. 4: Calibration results. Each column corresponds to one

principal axis. The first row shows the input data, i.e., the

unaligned point clouds using the orientation provided by the

IMUs. The second row shows the aligned point clouds and

refined poses. The third row shows the fitted circles.

around the z-axis results in a radius rz which depends on

the extrinsic offsets in the x and y direction, dx and dy
respectively. The same is true for rotations around the other

principal axes, leading to

r2x = d2y + d2z

r2y = d2x + d2z

r2z = d2x + d2y , (1)

which we solve directly by expressing the equation system

in matrix-form




0 1 1
1 0 1
1 1 0



 ·





d2x
d2y
d2z



 =





r2x
r2y
r2z





⇒





d2x
d2y
d2z



 =
1

2





−1 1 1
1 −1 1
1 1 −1



 ·





r2x
r2y
r2z



 .

(2)

We use Equation (2) to calculate the extrinsic offsets from

the measured radii, as described in the next subsections.

A. Estimating the radii

In order to measure the radii as precisely as possible, it

is necessary to rotate the ball around its center point. We

achieve this by using a 3D-printed design that houses three

ball bearings, as shown in Figure 3. The ball bearings touch

the spherical shell at three positions, such that any rotation

of the system will happen around its center point. When

rotating the system in that way, we first assume that the

LiDAR sensor is placed in the center point and use the data

of the IMUs to estimate the orientation. The first row of

Figure 4 shows the resulting poses and misaligned point

clouds, which is the input to the globally consistent, time-

continuous, offline LiDAR-SLAM algorithm “Semi-Rigid

Registration” (SRR) [30]. The second row of Figure 4 shows

the corresponding output, i.e., the aligned point clouds and

circular trajectories. In both rows, each column corresponds

to one principal axis of the system. For the purpose of

obtaining the radii, we fit circles through the SRR-estimated

sensor positions for each axis using the following steps:

First, we use singular value decomposition (SVD) to fit a

plane through the sensor positions, then project all sensor

positions to that plane. Second, now that the sensor positions

are projected onto a 2D plane, we fit a circle by the method

of least-squares to obtain the radius. Both of these steps

are common, well known techniques [31]. The last row of

Figure 4 shows the fitted circles.

B. Obtaining the offsets

Note that often it is not possible to direclty use the radii

from the previous subsection in Equation (2). Insisting that

the offsets must not be imaginary yields the constraints

0 < −r2x + r2y + r2z

0 < r2x − r2y + r2z

0 < r2x + r2y − r2z , (3)

which are prone to be violated in the presence of measure-

ment noise from the LiDAR or residual registration errors.

Thus, we use the sums of the squared residuals Si from

the least-squares circle fitting method to calculate a 95%
confidence interval for the radii:

ri ± z0.975
Si

n− 1

1√
n
, (4)



Fig. 5: The calibration space corresponding to the estimated

radii and their confidence intervals. Each voxel represents a

solution that contains only non-imaginary offsets.

where n is the number of measurments taken with the LiDAR

and z0.975 is the value of the 97.5% quantile of the unit nor-

mal distribution needed for a double-sided 95% confidence

test. We check the whole calibration space spanned by the

confidence intervals in a greedy fashion for non-imaginary

solutions, picking the one that is closest to the estimated

radii ri. Figure 5 shows the calibration space where a voxel is

plotted if a solution only has non-imaginary extrinsic offsets.

As illustrated by the color of the voxels, which represent the

distance to the originally estimated radii, we pick the closest

one corresponding to the extrinsic offsets

d =





±0.972401
±0.0639203
±13.2604



 cm .

Note that both negative and positive directions are possible

due to the squares in Equation (2), thus it is up to the user

to inspect the axes definitions of their system and choose the

correct sign.

IV. TROCHOIDAL MOTION MODEL

In this section we introduce the 3D trochoidal motion

model for the LiDAR, using the previously calculated ex-

trinsic offsets to the center of the ball. Figure 6 introduces

the notation used in this section. The superscript ·r denotes

a vector with respect to the local coordinate system of the

ball with its origin at the center point, e.g., ωr is the angular

velocity vector as given by the gyroscope. We deduce the

extrinsic parameters of the LiDAR with respect to the local

frame sr = (0.972401, 0.0639203,−13.2604)τ , using d

obtained from the previous section. Furthermore, the normal

vector of the floor in the global frame, n, must be available,

for example via a flat-floor assumption or measurement

via the LiDAR sensor. In this work, we use a flat-floor

assumption but plan on measuring the normal vector using

the LiDAR sensor in future work. We denote the current

orientation of the ball with R which is available from the

onboard IMUs. Using this orientation we express the angular

velocity in the global frame:

ω = R−1 · ωr . (5)

The linear velocity of the balls center over ground must be

v = rsω × n , (6)

where rs is the radius of the ball. The position of the balls

center p is the integral over the linear velocity

p =

∫

v , (7)

whereas the position of the LiDAR s is the sum of p and

the extrinsic parameters expressed in the global frame

s = R−1 · s r + p . (8)

Thus, the combined motion model using Equations (5)-(8) is

s = R−1 · s r +

∫

([

R−1 · rs · ωr
]

× n
)

, (9)

which expands, not ommiting the time dependence, to

s(t) = R(t)−1s r +

∫ t

0

([

R(τ)−1rsω
r(τ)

]

× n(τ)
)

dτ .

(10)

V. EXPERIMENTS AND EVALUATION

In this section, we deploy our motion model from Equa-

tion (10) on our spherical mobile mapping system, shown

in the left image of Figure 3. It is equipped with a “Hesai

PandarXT32” LiDAR sensor and three “Phidgets Spatial

3/3/3 1044b” IMUs which are mounted rigidly inside the

spherical shell of the system. A “BMAX B2ro” Mini PC

running Ubuntu Linux on an “Intel Celeron N4120” 4-core

CPU (2.6GHz) serves as the onboard processing unit. We

currently roll the spherical system manually to record our

datasets, yet we plan on including a locomotion mechanism,

e.g., the ones mentioned in Section I, with future prototypes.

In this work, we compare the trochoidal motion model

with two LIO methods: FAST-LIO [28] and DLIO [29],

by utilizing an offline-batch continuous-time globally con-

sistent SLAM algorithm, SRR [30], to provide reference

trajectories. Figure 7 shows that we use the output of the

motion model directly as an initial guess for SRR, which

outputs a globally consistent map and trajectory. The latter

serves as a reference to compare against the trajectories

of the other three estimators. Figure 9 shows the position

components for all 4 trajectories. Qualitatively speaking,

the motion model has notable drift in the yaw axis, which

is due to the inability of the IMUs to provide reliable

yaw estimations without the use of their magnetometer. We

forbid the use of the magnetometer by design because the

prototype has been designed in an exoplanetary exploration

context [32]. Notably, the motion model provides the most

consistent estimate in the z-axis, where most of the trochoidal



Fig. 6: Schematics and notation of the motion model. The xr, yr, zr frame describes the local coordinate system of the

center point of the ball. The x, y, z frame is the fixed global coordinate system in which the trochoidal motion of the sensor

is described by the vector s(t).

Fig. 7: Left: The trajectory is the output of the trochoidal motion model, which is applied to the LiDAR data. Integration

errors are present especially in the yaw axis leading to drift. Right: The LiDAR and trajectory data from the left image is

used as input for SRR [30], which results in a globally consistent point cloud and trajectory. The color of the points denote

intensity of the laser return.

motion is happening. Figure 10 shows also the resulting point

clouds when applying the trajectories to the LiDAR data in a

zoomed sliced birds-eye view. Again, the drift of the motion

model, especially in the yaw axis, is apparent. FAST-LIO has

issues with scan matching leading to ghosting in the point

cloud. DLIO provides the best point cloud, although some

residual error is still present, considering the misalignment

of objects like chairs.

A. Error metrics

We have considered recording ground truth trajectory

data with an external tracking system based on infrared

markers, as we did in previous work [17]. However, we have

deliberately chosen not to do that in this paper due to tracking

problems caused by marker reflections off the spherical

shell and loss of vision on them when rolling. To evaluate

the accuracy of the estimated trajectories quantitatively, we

compare them against the reference trajectory obtained by

SRR. We use the “evo” odometry evaluation tool from

Grupp [33] to calculate the full absolute pose error (APE)

of the trajectories, which splits into two parts: position and

rotation error.

• Position error:

The absolute pose error with respect to position in

meters (APE [m]) represents the unsigned error for each

pose between the estimated position pest,i and refernce

position pref,i

|pest,i − pref,i| . (11)

• Rotation error:

The abolute pose error with respect to rotation in

degrees (APE [ ◦]) represents the error for each pose

between the orientation estimation Rest,i and the orien-

tation reference Rest,i

∣

∣∠
(

R−1

est,iRref,i

)∣

∣ . (12)



B. Results

Metrics for both individual components of the APE are

listed in Table I, whereas the full APE for each trajec-

tory is plotted in Figure 8. The results indicate that the

motion model is outperformed by DLIO and FAST-LIO,

especially for the rotation part, which is unsurprising since

these methods use additional LiDAR data instead of only

magnetometer-denied IMU data. However, the metrics are in

the same order of magnitude and the motion model seems to

perform better than FAST-LIO regarding the positional error

for some metrics. We make that statement cautiously, though,

since the motion model alone has no way of recovering

from the accumulated drift in longer trajectories. It is for

this reason, that we plan to implement the motion model

into a LIO method specifically tailored towards spherical

systems. Our results show that both FAST-LIO and DLIO

do perform sub-optimally in this context, and also that our

motion model has the potential to aid such methods to reach

their full capabilities which have been demonstrated in their

respective papers [28], [29]. Furthermore, keep in mind that

the LIO methods only provide their pose estimates at the

LiDAR frequency, 20Hz in our case, whereas the motion

model provides them at the higher IMU frequency which is

125Hz.

VI. CONCLUSIONS

In this work, we have addressed the prediction of the

trochoidal motion that a LiDAR sensor experiences when

mounted rigidly inside a spherical mobile mapping system.

Our new calibration procedure, which is specifically designed

for this use case, estimates the extrinsic LiDAR-to-center-

point parameters needed to construct the trochoidal trajec-

tory. We evaluated the predicted motion model trajectory

and compared it to the trajectories that state-of-the-art LIO

methods produce. The results show that the motion model

trajectory better resembles the trochoidal geometry than the

state-of-the-art approaches, which have no information on the

spherical nature of the system. Nevertheless, a lot of work

remains to be done. We need to measure the ground normal

vector using the LiDAR data to account for rolling on slopes.

Additionally, since our motion model only utilizes IMU data

it is still prone to drift, thus we do not plan on using it as

is. Furthermore, the state-of-the-art LIO approaches perform

sub-optimally due to the motion profile of the rolling ball,

which they were not designed for. Thus, in future work,

we plan on utilizing our motion model to implement a LIO

method that is suited for this context. Another solution is to

modify existing LIO methods, e.g., bootstrap them with our

motion model or modify their state propagation mechanisms.

Our results indicate that DLIO [29] is a promising approach

for such modifications due to the overall better performance.
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(a) Motion model + SRR (reference) (b) Motion model (IMU only)

(c) FAST LIO (d) DLIO

Fig. 10: Comparison of the estimated trajectories and resulting point clouds in a zoomed, sliced birds-eye view. The color

of the points denote the intensity of the LiDAR return signal. Only in the reference point cloud every object is aligned. The

motion model drifts, FAST-LIO has ghosting, and DLIO has misaligned objects.


