ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88

journal homepage: www.elsevier.com/locate/isprsjprs

Contents lists available at SciVerse ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

i isprs

PHOTOGRAMMETRY
AND REMOTE SENSING

One billion points in the cloud - an octree for efficient processing of 3D laser scans

Jan Elseberg, Dorit Borrmann, Andreas Niichter *

Jacobs University Bremen gGmbH, Automation Group, School of Engineering and Science, Campus Ring 1, 28759 Bremen, Germany

ARTICLE INFO ABSTRACT

Article history:
Available online 4 December 2012

Keywords:

Octree

Tree data structure
Data compression
Frustum culling

Ray casting

RANSAC

Nearest neighbor search

restrial laser scans.

Automated 3-dimensional modeling pipelines include 3D scanning, registration, data abstraction, and
visualization. All steps in such a pipeline require the processing of a massive amount of 3D data, due
to the ability of current 3D scanners to sample environments with a high density. The increasing sam-
pling rates make it easy to acquire Billions of spatial data points. This paper presents algorithms and data
structures for handling these data. We propose an efficient octree to store and compress 3D data without
loss of precision. We demonstrate its usage for an exchange file format, fast point cloud visualization,
sped-up 3D scan matching, and shape detection algorithms. We evaluate our approach using typical ter-

© 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.

1. Introduction

Laser range scanning provides an efficient way to actively ac-
quire accurate and dense 3D point clouds of object surfaces or
environments. 3D point clouds provide a basis for rapid modeling
in industrial automation, architecture, agriculture, construction
or maintenance of tunnels and mines, facility management, and ur-
ban and regional planning. Modern terrestrial and kinematic laser
scan systems acquire data at an astonishing rate. For example, the
Faro Focus®P delivers up to 976,000 3D points per second and the
Velodyne HDL-64E yields 1.8 million range measurements per sec-
ond. Kinematic laser scan systems often use multiple line scanners
and also produce a huge amount of 3D data points. A common way
to deal with the data is to process only a small subset of it. While
this is an acceptable way of handling the data for some applica-
tions it calls into question why so many measurements were ac-
quired in the first place.

In this paper we describe a spatial data structure called an oc-
tree. Using innovations from the computer graphics community,
we develop an octree implementation with advantageous proper-
ties. First, we prefer a data structure that stores the raw point cloud
over a highly approximative voxel representation. While the latter
one is perfectly justifiable for some use cases, it is incompatible
with tasks that require exact point measurements like data visual-
ization and scan matching. Second, the octree ought to be fast, i.e.,
access, insert and delete operations must be in O(logn), where n is
the number of stored points. Last and most important, the data
structure has to be memory efficient. We present an easy to imple-

* Corresponding author.
E-mail addresses: j.elseberg@jacobs-university.de (J. Elseberg), d.borrmann@
jacobs-university.de (D. Borrmann), a.nuechter@jacobs-university.de (A. Niichter).

ment octree encoding that fulfills these requirements and is capa-
ble of storing 1 billion points in 8 GB of memory. It is also possible
to employ disk caching with the data structure, i.e., larger data sets
can be streamed from a mass storage device when processing it.
For achieving our goal to process 1 billion points in main mem-
ory on a standard computer, we have implemented an efficient
data structure for 3D point clouds. In addition to the octree, this
paper presents several algorithms exploiting the properties of
our data structure. These algorithms include a novel and efficient
RANSAC implementation for shape detection and a novel nearest
neighbor search algorithm for ICP-based scan matching. Further-
more, we show that our memory efficient encoding is also univer-
sal enough to allow for other uses such as fast visualization. All
presented algorithms are available under the GPL license in the
3DTK - The 3D Toolkit and can be downloaded from http://three-
dtk.de. The toolkit contains a small show application that uses
the frustum culling and processes 1 billion points while still en-
abling the user to navigte smoothly through the point cloud. In
case more points have to be rendered than the graphics card is able
to process in a given time, the point density is reduced dynami-
cally, by sending only a fraction of points to the graphics card.
Thus, the user is able to inspect large 3D scenes. Fig. 1 shows a
scene with dynamic point reduction. The scene was recorded on
the campus of the Jacobs University using a Riegl VZ-400 scanner.
The data set contains 876,820,018 3D points and is easily process-
able with our octree implementation. The data set and windows
executables are given at http://plum.eecs.jacobs-university.de/
download/isprs2011/JacobsUni.zip. To view the 3D point cloud
using the described frustum culling on a 64-Bit Windows system,
please unzip it and change into the directory win_x64. Afterwards,
call the program as show -s 31 -e 80—loadOct../dat/, which
loads the provided 50 terrestrial 3D scans (starting with scan

0924-2716/$ - see front matter © 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004

http://threedtk.de
http://threedtk.de
http://plum.eecs.jacobs-university.de/download/isprs2011/JacobsUni.zip
http://plum.eecs.jacobs-university.de/download/isprs2011/JacobsUni.zip
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
mailto:j.elseberg@jacobs-university.de
mailto:d.borrmann@ jacobs-university.de
mailto:d.borrmann@ jacobs-university.de
mailto:a.nuechter@jacobs-university.de
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs

J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88

77

EIEE] = 30_viewer- -|[0](x

¥ Draw Points
¥ Draw Camera
¥ Draw Path

Point Size:[7.000002 &
Fog : +f

Fog Density:[0.0001 3]
Color +f

Invert
Anim delay:| 5 !
Animate

Camera Path : +
Psition i

Selection : -
File: [selected 30|

Save selected points

Clear selected points

W Selact/Unselect
I Selact Vaxals

pegth: [T
Brushsize: |0 -

Quit

- 3D_Viewer - Controls _][](x

Setlings
Apex Angle : [69.632 3]
Parallel Zoom :[20000 2]

Mode:

Top view

Reset position_|

Camera:

Choose Camera[0 2]

Add Canera_|

Delete Camera

Navigation
\r ‘\ ¥ MouseNav
it G| | I~ Ahvays all Points
\".J,'> \I \ 7 Always reduce Foints
Rotation | Move XY Move X MoveY MoveZ

EIEEN = 30_viewer-[-)(0][x

W Draw Points
[Draw Camera
[+ Draw Path

Point Size:[1.00000¢ |2
Fog: +
Fog Density.[00001 | 2

Color : =

Invert
Anim delay:|5 [
Animate

Camera Path - +
Pasition : -

Selection : =
File: [setecten 3d

Save selected points

Clear selected points

¥ Select/Unselect
™ Select Voxals

Depth: |1 [y
Brushsize : [0 -

Quit

& 3D_Viewer - Controls -J(o][x

Settings:
Apex Angle: [63632 | 3
Paralle] Zopm :[20000, 3

Mode:

Top view

Reset position |

Camera:

Chaose Camera[0 | 2]

Add Camera_|

Delete Camera

Navigation:
= P ¥ MouseNav
f> = T ¥ Always all Points
2. i 2 N/ | [Always reduce Points
Move ¥ Move Z

Rotation | Move XY Move X

Fig. 1. Dynamic point reduction in 3DTK - The 3D Toolkit (http://threedtk.de). Top: reduced point cloud to obtain a frate rate of 20 fps. Bottom: All 3D points.

number 31 ending with scan number 80) and shows them in a
small OpenGL-based viewing program.

2. Octrees for storing 3D point clouds

An octree is a tree data structure that is used for indexing
3-dimensional data. It is the generalization of binary trees and
quadtrees, which store one and 2-dimensional data respectively.
Each node in an octree represents the volume formed by a rectan-
gular cuboid, often, also in our implementation, simplified to an
axis aligned cube. This is analogous to representing a line segment,
or rectangle for binary and quadtrees. Consequently an octree node
has up to eight children, each corresponding to one octant of the
overlying cube/node. A node having no children usually implies
that the corresponding volume can be uniformly represented, i.e.,
no further subdivision is necessary to disambiguate. This conven-
tion is not completely applicable when storing points, which are

technically dimensionless, i.e., there is no volume associated with
them. When storing a point cloud, we must therefore define a stop-
ping rule for occupied volumes. We define both a maximal depth
and a minimal number of points as a stopping criteria. If either
the maximal depth is exceeded or the number of points is below
the given limit leaf nodes, instead of inner nodes, are generated.
Defining a maximal depth is equivalent to defining the smallest
possible leaf size, also referred to as the voxel size. A list of points
is stored in each occupied leaf. By applying two simple criteria we
avoid building a perfect octree, i.e., an octree, where all leaves are
at the same depth and all other nodes have exactly eight children.
First and foremost the uniformity criteria above is applied to vol-
umes without points, such that subdivision is not necessary in
empty nodes. In fact, we only create child nodes for octree volumes
that contain points. All nodes without children are interpreted as
empty space. Second, we do not subdivide a volume further that
contains only a single point. Laser scanners sample only the surface

http://threedtk.de

78 J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88

Fig. 2. Left: Spatial subdivisions of an octree up to level 3. Occupied leaf nodes are
shaded grey. Right: The corresponding tree structure of the sparse datastructure.

of objects, and usually provide only a single distance measurement
per angle pair. This leads to a 3-dimensional point cloud that is not
fully volumetric. Consequently, most space is not occupied, and
therefore most octree nodes will only have few children. The octree
data structure is therefore ideally suited to store and retrieve 3D
laser scanner data efficiently. A recursive refinement of an octree
is illustrated in Fig. 2.

2.1. Memory efficient encoding of an octree

Implementations of an octree often do not prioritize memory
efficiency. A relevant property of an octree is that uniform subvo-
lumes are represented as single nodes that do not subdivide fur-
ther. For applications, where the octree stores a pure voxelmap,
this property compresses the data to a large degree. Of course, this
is in comparison to a simple 3D grid stored linearly in memory.
Thus arises the term sparse voxel octree in the computer graphics
community, where an octree structure is used to efficiently access
otherwise large amounts of data.

On the opposite side are the serialized pointer-free encodings.
These have the highest potential for memory efficiency, since they
do not need to store the actual octree structure. One such encoding
is given by Girardeau-Montaut et al. (2005) and is implemented in
the point cloud comparison software CloudCompare (Girardeau-
Montaut, 2011). They employ the Morton order to store only the
leaf level of an octree at 16 bytes per leaf. The Morton order or
Z-order is an ordering of, in this case, 3-dimensional data (Morton,
1966). This approach has several drawbacks. Traversing the Octree
is not possible in the classical sense. Instead binary search algo-
rithms have to be applied when looking for a certain voxel.

Serialization is a very useful tool when storing the data for later
use or when communicating over channels with limited band-
width. Schnabel and Klein (2006) combine a serialized octree with
arithmetic coding to provide superior point cloud compression.
While this approach excels at compressing point clouds, it be-
comes infeasible to efficiently process the data for most applica-
tions, i.e. finding a point in this encoding is in O(n) as the tree
has to be traversed from the root in breadth-first order until the
point has been found. A more detailed discussion of octree related
work is given in Section 5.

We opt for a pointer based octree since it allows for several
operations and applications which are not feasible with the above
designs. Modification, i.e. adding or deleting points from a serial-
ized octree involves shifting the entire region before or after the
position, where the modification takes place. Wand et al. (2007)
use a pointer based octree for interactive editing of large point
cloud data. They also employ out-of-core storage to deal with data
sets that do not fit into main memory. This technique, too, is out of

the question for serialized octrees, since it cannot as easily be pre-
dicted which data chunk needs to be fetched. Even though our effi-
cient octree design is capable of the above applications, this paper
focusses on the algorithmic questions of visualization and
processing.

Many implementations store redundant information in each oc-
tree node. In computer graphics, for example, neighbor pointers as
well as a parent pointer are used to facilitate extremely fast ray
tracing at the cost of additional memory. Another encoding, that
redundantly stores the position and size in each node is given in
Fig. 3, where center and size store the position and size of the
node while child is an array of pointers to the eight children. This
allows to stop subdivision for empty nodes having to divide the
volume into equal subvolumes, thus potentially reducing the num-
ber of nodes required for storage. On a standard 64-bit architec-
ture, each node requires 100 bytes of memory. Although the
implementation is somewhat naive, it nicely illustrates the possi-
ble memory gains that can be achieved.

We create an efficient octree implementation that is free of
redundancies and is nevertheless capable of fast access operations.
Our implementation allows for access operations in O(logn). Add
and delete operations are also in O(logn). In the worst case long
blocks of memory will have to be allocated or deallocated in a leaf
node.

Most information about inner nodes of an octree is computed
when recursing through the structure. The depth of a node is cal-
culated as the depth of its parent plus one. Due to the properties
of the regular octant subdivisions the size of a node is a function
of its depth. Similarly the position of a node is computed by dis-
placing the position of the parent node by half of the cell size in
the appropriate direction. The direction follows trivially from the
size of the node and its position in the parent’s list of children. Only
the root node must therefore store some information about the oc-
tree as a whole, i.e., the position and size of the spanned volume. In
the same manner parent pointers may be computed, or rather
remembered, by pushing visited parents onto a stack. It is even
possible to compute neighbor pointers by a fast indexing scheme.
Section 4.2 explains this process. Unfortunately, as this operation
requires backtracking along the parent stack it is necessarily less
efficient than computing the other properties. For the sake of
memory efficiency, we omit any information that is computable
by traversing the tree. However, referring to the baseline imple-
mentation in Fig. 3 the removed redundancy accounts for only
24 of 100 bytes. 64 remain for child pointers and 12 bytes for the
point storage. We downsized this by moving the information about
whether or not a node exists from the node itself into its parent.
We add a single byte, where each bit corresponds to one octant
of the node. This allows us to remove the constraint to always store
eight children, so that only those child nodes need to exist that
contain valuable information in the first place. We can therefore
remove 56 further bytes by storing only a single pointer to all chil-
dren. Adding another byte, where each bit signals whether the

struct OcTree {
float center[3];
float sizel[3];
OcTree *child[8];
int nr_points;
float **points;

};

Fig. 3. Definition of an octree with redundant information and eight pointers to
child nodes. The size of this node is 100 bytes.

J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88 79

valid | leaf | valid | child pointer | o |

child pointerl o

Fig. 4. The two proposed encodings of an octree node optimized for memory
efficiency. The child pointer as the relative pointer is the largest part of an octree
node, but varies in size to accomodate different systems. In our implementation for
64 bits systems, it is 48 bits. valid and leaf are 8 bits large. Left: The proposed
encoding with separate bit fields for valid and leaf. An entire node is thus contained
in only 8 bytes of memory. Right: Alternative solution resulting in a constant depth
octree.

corresponding octant is a leaf allows the removal of the point infor-
mation that is unnecessary in inner nodes. Two alternative enco-
dings that result from these considerations are presented in Fig. 4.

Our encoding consists of three parts. The child pointer is the
largest part of each node and is implemented as a relative pointer
to the first child. All other valid children are arranged linearly in
memory as shown in Fig. 4. The pointer can vary in size for differ-
ent systems. For 64 bits architectures we have chosen 6 bytes. As
this is sufficient to address a total of 256 terabyte, there is no need
for an additional bit signaling for a far pointer as proposed by
Samuli and Tero (2010). Using a far pointer flag would require
more sophisticated memory management, but it would enable
one to reduce the size of the child pointer to two or fewer bytes.
There is a second, easier way to reduce the number of bytes re-
quired for the child pointer, if we are willing to sacrifice O(logn)
add and delete operations. In this case, the octree can be stored
in a linear array in breadth first order, with each child pointer sim-
ply indexing the array. However, further discussion will focus on
using this 6 bytes pointer implementation.

valid and leaf are each a single byte large, 1 bit for each sub-
volume. valid bits signal whether the corresponding octant is
present, while 1eaf bits signal whether the corresponding child
is a leaf node. This encoding is somewhat redundant, as non-valid
children cannot be leaf nodes. There are only 3% = 6561 combina-
tions possible. These could be compressed and represented with
only 13 instead of 16 bits. Due to concerns about the runtime effi-
ciency and the relatively minor reduction of the memory require-
ments, we decided against such a compression. It is possible to
remove the leaf byte, by enforcing a constant depth of the octree
(cf. Fig. 4, right). Similar to the other properties of a node, that
are determined recursively, the depth of a node is always well de-
fined. While the size of an octree node is reduced by enforcing a
constant depth this procedure is certain to increase the number
of nodes. Let n be the number of bytes used for a node implemen-
tation without a leaf byte, the percentaged increase in the number

Table 1

of nodes is limited by ! to achieve increased memory efficiency. For
our implementation, this amounts to approximately 15% increase
that is allowed at most. We found that point clouds acquired by la-
ser scanners are so sparse that they require a smaller percentage
only for shallow trees. Increasing the resolution and thereby the
depth also increases the number of nodes significantly, which in
turn increases the size in memory exponentially as demonstrated
in Table 1. Even for the most compact dataset balance is obtained
for a voxelsize of 10 cm. For resolutions above that, the difference
in required memory space is so small as to be insignificant for most
applications. Counterintuitively, then, the 8 bytes encoding is the
more robust and more memory efficient choice for data that is as
sparse or more sparse than laser scanner point clouds.

Our implementation stores points in the leaf nodes, thus they
need to be represented differently from inner nodes. In Fig. 5, leaf
nodes are pointers to arrays of points. The first entry is always the
total number of points, then sequentially the information for each
point, i.e., the coordinates and additional attributes such as reflec-
tance. In that representation, leaf nodes would be n bytes larger
than inner nodes, where n is the number of bytes used to encode
the number of points. In our case it is more than sufficient to re-
serve n =4 bytes for this purpose. Such a point list representation
is then already more memory efficient than the usual float**,
as it cuts down on a pointer.

2.2. Octree based compression of 3D point clouds

Our octree encoding drastically decreases the overhead for
obtaining the data structure itself (cf. Table 1). As opposed to the
reference implementation the memory for the point cloud exceeds
now the overhead (cf. Fig. 6). Therefore, we seek to compress the
point list as well. For a simple technical reason we like to store
each point coordinate using only 2 bytes. Two bytes are exactly
the resolution at which most laser scanners measure additional
point attributes, such as reflectance, deviation. To store floating
point coordinates in only 2 bytes without significant loss of preci-
sion, we use each bit of the 2 bytes coordinate as 5% increments to
the lower left front corner of the rectangular cuboid of the leaf
node, where s is the side length of the cuboid. This is similar to col-
or quantization as used for example by Gervauts and Purgathofer
(1990).

Data of terrestrial laser scanners represented as 4 bytes floating
point value has a precision of approx. 100 pm (100 pm) at the
maximal distance of 500 m. At a smaller distance, e.g., at 1.5m,
the precision increases to 1pum. To achieve the same 1 um

Memory requirements for the sparse Kurt3D point cloud using several octree implementations and different resolutions. The first column gives the size of the smallest leaf in the
tree, i.e., half of its side length. The second and third columns give the number of nodes and leaf nodes for the 8 bytes per node implementation. The real size in memory as well as
the average construction time follows in the next two columns. After those, the number of nodes for the 7 bytes implementation is given as well as the percentual increase and
the real size in memory. Construction time has been omitted, as it is virtually equally to the 8 bytes implementation. The memory requirements and construction time for the

implementation with 100 bytes per node are listed in the last two columns. (cf. Fig. 3).

8 bytes 7 bytes 100 bytes
Leaf size (cm) # Nodes # Leaves Mem. size Constr. time (ms) # Nodes Incr. % Mem. size Mem. size Constr. time (ms)
876 1 8 104 B 4.0 1 0 103 B 954 B 1.1
438 9 26 384 B 4.6 9 0 375B 3.71 kB 2.0
219 34 77 1.19 kB 5.2 35 2.9 1.16 kB 11.87 kB 2.6
109.5 103 202 3.24 kB 6.0 112 8.7 3.2 kB 33.28 kB 32
54.76 282 505 8.31 kB 6.7 314 113 8.25 kB 86.81 kB 3.7
27.38 698 1352 21.8 kB 7.6 819 173 21.95 kB 230.12 kB 4.2
13.69 1777 3688 58.47 kB 8.6 2171 221 59.45 kB 621.05 kB 4.8
6.846 4121 8840 139.04 kB 10.2 5859 421 147.09 kB 1.55 MB 5.8
3.423 9327 19,064 303.38 kB 119 14,699 57.5 331.66 kB 3.57 MB 6.4
1.711 17,219 34,697 554.11 kB 13.4 33,763 96 652.7 kB 7.25 MB 7.0
0.855 27,668 52,836 855.37 kB 143 68,460 147 1.11 MB 12.85 MB 7.9
0.427 37,351 68,253 1.11 MB 143 121,296 224 1.66 MB 20.09 MB 8.7

80 J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88

01001100 | 00001000

11100101 | 10100001

pointer to 01001100 | 00000000

v

child pointerl

child pointerl *

data | child pointerl ?

L—{e

v

Fig. 5. An example of a simple octree as it is stored using the proposed encoding. The node in the upper left has three valid children, one of which is a leaf. Therefore, the child
pointer only points to three nodes stored consecutively in memory. The leaf node in this example is a simple pointer to an array which stores both the number of points and

the points with all their attributes.

precision the smallest volume in the octree must have a side length
of 6.5 cm. Assuming a desired precision of 10 pm, which is still two
orders of magnitude smaller than typical specified measurement
precisions, the largest node is allowed to have a side length of
65 cm. At this voxel size the octree overhead is minimal even for
large scans.

2.3. Efficient construction of an Octree

When constructing octrees from unorganized pointclouds care
must be taken not to exceed the available memory while still pro-
cessing the high number of points as fast as possible. We give an

algorithm that has negligible memory requirements and a runtime
of O(nlog(n)) in the number of points. First, the bounding box of
the point cloud is computed and the root node is initialized. The
construction of the tree is then accomplished by sorting the point-
list similar to quicksort. At each node the given list of points is first
reorded with respect to the center of the node in one dimension.
The resulting two sublists are then both reordered with respect
to the center in the next dimension. The same is done with the last
dimension. This operation results in eight possibly empty lists of
points, one for each possible child. As this is done recursively in
quicksort fashion for every node the initial list is sorted into the
Morton order. The construction of the tree that takes place

Fig. 6. Three point clouds are used for the following analysis. The left point cloud is a 3D scan that was acquired by the mobile robot Kurt3D using an actuated SICK LMS200
laser scanner in an office environment with 81,360 points (~1.5 MB). Statistics for this data set is given in Table 1. The middle scan is a high resolution scan taken in the city
center in Bremen using the Riegl VZ-400 3D scanner. The point cloud contains 15,896,875 points (~303 MB). Refer to Table 2 for data on this point cloud. The right scan was
also acquired by the RIEGL VZ-400, but in a large scale indoor environment, the bunker Valentin in Bremen-Farge. The point cloud is therefore very dense with 22,538,374

points (~420 MB). Results are given in Table 2.

J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88 81

Table 2
Statistics for the Bremen city data set (cf. Table 1).
8 bytes 7 bytes 100 bytes

Leaf size (cm) # Nodes # Leaves Mem. size Constr. time (ms) # Nodes Incr. % Mem. size Mem. size Constr. time (ms)
8560 6 12 192 B 1019.2 6 0 186 B 1.9 kB 557.1
4280 18 28 480 B 1321.2 18 0 462 B 4.8 kB 694.1
2140 46 86 1.4 kB 1535.7 46 0 1.3 kB 13.9 kB 939.2
1070 129 296 4.5 kB 1706.1 132 2.3 4.4 kB 45.3 kB 1165.7
535 408 800 12.8 kB 1909.7 428 4.9 12.5 kB 130.1 kB 1279.3
267 1166 2595 40.4 kB 2081.8 1228 53 39.7 kB 405.2 kB 1529.4
133 3616 7993 124.8 kB 2299.7 3823 5.7 122.6 kB 1.25 MB 1656.5
66.8 11,130 24,587 384.1 kB 24733 11,816 6.1 377.7 kB 3.85 MB 1895.5
334 33,965 75,999 1.18 MB 2687.5 36,403 7.1 1.16 MB 11.91 MB 2002.3
16.7 102,728 233,413 3.62 MB 2873.3 112,402 9.4 3.58 MB 36.65 MB 2146.5
8.35 302,573 687,529 10.67 MB 31349 345,815 14.2 10.67 MB 109.53 MB 22903
417 814,040 1,808,993 28.22 MB 3432.0 1,033,344 26.9 28.94 MB 301.28 MB 2471.9
2.08 1,927,234 4,166,979 65.42 MB 3721.0 2,842,337 474 69.9 MB 742.98 MB 2576.0
1.04 4,031,140 7,783,889 125.65 MB 3901.8 7,009,316 73.8 142.47 MB 1.568GB 2899.6
0.52 5,592,151 10,142,923 166.45 MB 4077.7 14,793,205 164.5 225.26 MB 2.643 GB 3199.9

Table 3

Statistics for the bunker Valentin data set (cf. Table 1).

8 bytes 7 bytes 100 bytes

Leaf size (cm) # Nodes # Leaves Mem. size Constr. time (ms) # Nodes Incr. % Mem. size Mem. size Constr. time (ms)
5589 1 8 104 B 1330.0 1 0 103 B 954 B 565.1
2794 9 22 336 B 1631.9 9 0 327 B 3.28 kB 824.1
1397 30 59 948 B 1906.6 31 33 925 B 9.54 kB 1102.8
698 88 209 3.21 kB 2173.8 90 2.2 3.13 kB 31.69 kB 1367.7
349 294 755 11.41 kB 2403.9 299 1.7 11.15 kB 111.72 kB 1665.0
174 1038 2611 39.63 kB 2718.8 1054 1.5 38.71 kB 388.49 kB 1977.2
87.3 3602 8761 133.94 kB 2964.6 3665 1.7 130.78 kB 1.31 MB 2136.9
43.6 12,106 30,330 460.8 kB 3146.0 12,426 2.6 450.94 kB 4.53 MB 2434.0
21.8 41,098 101,743 1.54 MB 3409.5 42,756 4.0 1.52 MB 1531 MB 2688.1
109 134,366 324,058 4.96 MB 3739.3 144,499 7.5 4.9 MB 49.667 MB 2767.0
5.45 412,174 969,512 14.93 MB 4079.1 468,557 13.6 14.91 MB 152.43 MB 31238
2.72 1,158,782 2,679,693 41.42 MB 4544.5 1,438,069 241 42.22 MB 436.48 MB 32279
1.36 2,977,454 6,617,215 103.22 MB 5057.0 4,117,762 38.2 108.23 MB 1.137 GB 3503.0
0.68 6,356,651 13,130,561 208.41 MB 5303.6 10,734,977 68.8 232.71 MB 2.529 GB 3895.8

simultaneously is therefore in O(nlog(n)). The necessary memory
never exceeds the point list plus the octree structure.

2.4. Experiments and results

To demonstrate the effectiveness of the proposed octree enco-
dings, we computed the required memory for the octree data
structure (without the points) with different depths. This was done
for three representative scans of differing density as given in Fig. 6.
The data is given in Table 1-3 for different leaf sizes. It is important
to note that the leaf size is only half of the side length of the leaf
nodes, due to the way the octree volume is stored in our imple-
mentation. For all tests, the root volume and therefore all octree
volumes axis aligned cubes. The size and position of the root is
such that it represents the smallest cube possible to contain the
entire data set. The time needed to construct the reference as well
as the proposed octree has also been determined experimentally.
For each leaf size the average construction time for the octrees
out of 10 trials performed on an Intel(R) Xeon(R)
E5520@2.27GHz is shown in Table 1-3.

The first data set has the smallest number of points, and is the
least dense, i.e., it contains many points with large distances to
their neighbors. Consequently, the performance of the constant
depth octree very quickly deteriorates (cf. Table 1. Already, at a
depth of five the memory benefit of the smaller node representa-
tion is negated. In the larger and denser datasets (cf. Tables 2
and 3), the octree reaches a depth of 10 before the constant depth
requirement results in a larger memory footprint. Yet, even in the

most dense dataset, several things speak against this constraint. At
no resolution the memory benefit is particularly significant in the
first place. The maximal memory saving in the bunker Valentin
data set is only approx 20 kB. Compared to the size of the point
cloud itself, which is about 700 MB this is neglegible. On the other
hand, when the constant depth restriction results in a larger mem-
ory footprint, the penalty is several orders of magnitude larger
than the benefit could ever be. The penalty also tends to increase
polynomially with the tree depth. On level 15 the constant depth
implementation requires almost 100 MB more memory. This is of
course caused by the drastically increasing number of nodes re-
quired to pad the tree. A further consequence of this padding is
the increased computations involved in iterating over the octree
structure.

The time needed for the construction of either octree is near lin-
ear in the depth of the octree.. The reference octree is always faster
by some fixed amount of time. This time difference is caused by the
reallocation of the point data in the leaves, which happens in the
proposed octree but not in the reference. In fact, if the construction
of the reference also reallocates the points in a more compact fash-
ion, it is slower than the proposed variant.

3. An open file format for exchanging 3D point clouds
Due to the great diversity of terrestrial 3D modeling applica-

tions several software products exists, which are suitable for spe-
cial tasks. For airborne and kinematic laser scans there exists a

82 J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88

common lidar data exchange format, the .1as format (Samberg,
2007). “This binary file format is an alternative to proprietary sys-
tems or a generic ASCII file interchange system used by many com-
panies. A problem with proprietary systems is that data cannot be
easily taken from one system or process flow to another. In addi-
tion, processing performance is degraded because the reading
and interpretation of ASCII elevation data can be very slow and
the file size can be extremely large, even for small amounts of
data.”(American Society for Photogrammetry and Remote Sensing,
2011). This applies also for terrestrial 3D modeling pipelines, but
there is currently no standard format available. Kern et al. (2009)
defines a binary point cloud format that hence reduces the process-
ing time.

The octree as given in Section 2 is well suited for storing large
point cloud data, as it is a lossless compression, which reduces
the size of a point cloud by a factor of roughly two and comes with
a fast indexing. Table 4 presents the compression results for the
three data sets. The serialization of the proposed octree results in
an efficient method for storing point clouds.

4. Efficient algorithms on octrees
4.1. Adaptive visualization using frustum culling

To exploit the octree structure for fast visualization we imple-
mented frustum culling. The octree then works as a hierarchy of
bounding volumes. Much like in the software gsplat (Rus-
inkiewicz and Levoy, 2000) it is used to quickly decide which
points are visible. In addition, it also enables one to dynamically
vary the level of detail to enforce a high framerate by rendering
only a faction of points.

In computer graphics the frustum is the visible region of space.
For a perspective projection, this region is a rectangular pyramid,
constituted of six planes. Frustum culling is the process of distin-
guishing which parts of the scene are within and which parts are
outside of the frustum, thus finding the visible parts of the scene.
Non-visible elements do not need to be drawn, hence increasing
the performance. Algorithm 1 describes how to efficiently imple-
ment the frustum culling using the octree data structure. The algo-
rithm is initally called at the root of the octree, with the full
viewing frustum.

Algorithm 1. display(set(plane) frustum, octree node)

set(plane) childfrustum;
for all p € frustum do
if PlaneAABBCollision(p, this) = within then
childfrustum.insert(p)
els if PlaneAABBCollision(p, this) = outside then
return
end if
end for
if isLeaf(node) then
drawPoints(node)
else
for all child € node.children do
display(childfrustum, child)
end for
end if

Algorithm 1 employs the function PlaneAABBCollision(), which
determines the position of an octree volume with respect to a
plane, i.e.,, whether the plane is within the volume or outside.
The latter case has two subcases. Each plane of the frustum is ori-
ented such that it is trivial to determine on which side a given

Table 4

Compression results for the data sets. The compression ratio between the original
binary data and the octree representation as well as the average error for representing
the point of the data sets and their octree representation are given.

Data set File size File size binary File size Ratio % Error pm
.txt MB 64 (32 Bits) MB compressed
octree MB
Kurt3D 1.907 1.862 (0.931) 0472 50.73 4.165
Bremen city 477.0 424.4 (242.5) 1216 50.14 5.102
Bunker Valentin 665.7 601.8 (343.9) 1721 50.04 6.677

point is. Consequently, if an octree volume is outside with respect
to a plane, the node and all its children are not visible. If, on the
other hand, the volume is entirely on the inside, culling with the
respective plane is discontinued for all children.

To summarize, the given algorithm first determines which
frustum planes are relevant for the children. Simultaneously, it
checks wether the current octree volume is visible and termi-
nates accordingly. The second step is to either display the points
in the current leaf, or to recursively continue culling in the child
nodes. In this fashion, one foregoes unneccessary collision checks
both inside and outside of the viewing frustum. Furthermore,
checks are also minimized for the intersection case, as only rel-
evant frustum planes will be wused. Fig. 7 illustrates this
principle.

The main bottleneck in a software culling implementation is
transmitting the point information to the graphics card when a
large number of them is within the viewing frustum. Using the
octree structure this problem can be mitigated in several ways.
First, when an octree volume would appear as a single pixel it
is sufficient to also send only a single vertex instead of all con-
tained points without decreasing image quality. Second, we may
dynamically adjust rendering quality to allow for navigation in
the scene, similar to Richter and Déllner (2010) and Dachsbach-
er et al. (2003). As before, we send only single vertices in any
octree volume that falls below a level-of-detail threshold
(number of pixels on screen). The size of the rendered vertex
is adjusted accordingly. With thresholds greater than 1, this
trades resolution for speed. An example of levels of details
are given in Fig. 8.

We have conducted experiments to find the optimal voxel res-
olution. Fig. 9 presents framerates for a point display employing
the frustum culling implemented on the CPU. Several different
voxel resolutions as well as the standard implementation with
no software culling are plotted. To achieve comparable situations
the point display has rendered a 3D-flight-through, where the
camera moves on a path through the Bremen city data set. The
camera started at a position, where the entire point cloud was
visible, then proceeded to move through the point cloud close
to the point of origin until it reached a position within the vol-
ume, where about 1% of the point cloud is visible. One observes
a low framerate in the beginning, and an ever increasing speedup.
The time for the rendering of each frame was measured by a
clock with millisecond accuracy, so that the maximal framerate
is 1000 frames per second.

The speedup gained by the frustum culling is small when large
portions of the point cloud occupy the frustum. Reducing the num-
ber of points increases the framerate considerably more when
using the octree culling as compared to the default point display.
Note, that for scans that occupy an area this large it is more typical
to only view a small fraction of the scene.

Comparing performances for various voxel sizes, we see that
while large voxel sizes still result in some speedup, performance
becomes more and more unsteady when a large number of points

J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88 83

="

Camera

Camera

Camera

Fig. 7. The principle of frustum culling using octrees. Gray nodes are known to be partially within the frustum, so that culling must continue. Light gray Nodes are known to
be entirely within the frustum, so that culling is discontinued. Dark gray nodes are entirely on the outside of the frustum.

Fig. 8. Three levels of detail for the octree visualisation The point cloud is taken
from the Bremen city data set.

is to be displayed. Framerates for large voxelsizes experience
sudden jumps when voxels enter or leave the viewing frustum.
This becomes apparent for a voxel size of 267 cm, but only some-
what noticable with the next smaller size of 133 cm. Generally,
voxel sizes between 10 cm and 100 cm are optimal for these types
of scans.

4.2. Ray casting

Ray casting is the method of finding an intersection of a ray
with a surface. It is an important problem in computer graphics,
where it is used to render images, typically of iso-surfaces (Roth,
1982; Knoll et al., 2006), and in robotics, where it is commonly
used to sample potentional measurements (Thrun et al., 2000;
Wurm et al., 2010). For rendering images, each pixel is followed
from the viewpoint to the first object that is encountered. This is
different from ray-tracing, where rays are reflected from objects
so that multiple rays per image pixel are cast into the geometry.
Ray-casting is thus a simplified ray-tracing technique.

Before efficient ray casting is possible in an octree without
neighbor pointers, we detail how to perform fast indexed node ac-
cess and neighbor traversal. Indexed node access is a lookup-query
with (x,y,z) integer coordinates valid on the deepest level of the oc-
tree, i.e., an octree with depth d has integer coordinates 0-2¢ — 1 in
each dimension. Naive lookup implementations perform collision
checks with the octree planes. As this is an expensive task, we
use integer coordinates for an efficient traversal of the octree with
only a few bit operations. Similarly to Knoll et al. (2009) we assume
the existence of a pre-computed array childBitDepth with childBit-
Depth[d] = 1 <« (maxDepth —d — 1). An efficient lookup is per-
formed as in Algorithm 2. The key to this algorithm lies in the
second line. Here the integer coordinates are mapped to the index
of the child that contains the given coordinates. The algorithm also
shows how parent pointers are simulated by a simple trace that is
extended during the traversal of the tree. The function to find a
neighbor node is merely an extended lookup. To find a neighbor
of a given node, the node in the parent trace is selected that is
the deepest that still contains the desired index. This can be effi-
ciently computed by comparing the current node index with the
desired index (cf. Algorithm 3). Then a lookup starting at that par-
ent is started to locate the corresponding neighbor.

84 J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88

1.04cm ——
417 cm -------
16.7¢cm ——
33.4cm
133 cm
267 cm
No culling
Vilsible points

600 800 1000

Frame index

Fig. 9. Framerates of the octree culling with different voxel sizes over the frame index in the rendered video. The percentage of visible points in each frame is also plotted.
Please note that the y-axis is on a logarithmic scale to be able to differentiate in the areas of both low and high framerates.

Algorithm 2. lookup(Vector3i index, octree node, octree *parent-
Trace, int depth)

loop
int childBit = childBitDepth[depth]
int childIndex = (index.x & childBit #0) <« 2 | (index.y &
childBit #0) < 1 | (index.z & childBit #0)
octree *parentTrace[depth] = & node
depth++
node=node.children[childIndex]
if isLeaf(node) then
return
end if
end loop

Algorithm 3. findNeighbor(Vector3i dindex, Vector3i cindex,
octree *parentTrace)

int depth=mostSignificantBit((cindex.x A dindex.x) |
(cindex.y A dindex.y) |
(cindex.z A dindex.z));

lookup(dindex, parentTrace[depth], parentTrace, depth);

We eliminated the need for neighbor pointers for this algo-
rithm. This comes at the cost of increased computational complex-
ity. In the worst case we must backtrace completely up to the root
and completely back down again. While these situations do not oc-
cur very often the traversal to a neighbor is still in O(logn). With
the help of this function it is now feasible to implement ray casting,
which is given in Algorithm 4. Here, Bresenham implements the
3-dimensional version of the well-known Bresenham line-algorithm,
such that it consecutively returns 3-dimensional integer coordi-
nates, that are traversed by the given ray.

Algorithm 4. castRay(Ray ray, octree root)

octree *parentTrace[maxDepth]
int depth =0
octree node = lookup(ray.origin, root, parentTrace, depth)
Vector3i ci = Bresenham(ray);
Vector3i cci = ci;
loop
while contains(node, ci) do
cci=ci;
ci=Bresenham(ray)
end while
node = findNeighbor(ci, cci, parentTrace)
if isLeaf(node) then
drawPoints(node)
return
end if
end loop

This naive ray casting can still be improved by collecting rays
into packets as presented recently by Knoll et al. (2009). Using a
technique called coherent octree traversal, access operations to
the data structure is further minimized.

4.3. Nearest neighbor search for scan matching

Nearest neighbor search (NNS) is a part of many scan matching
algorithms for establishing corresponding points. The most prom-
inent example of this is the Iterative Closest Point (ICP) algorithm,
which spends most of its processing time in the lookup of closest
points (Besl and McKay, 1992). It is therefore of utmost importance
for this application to reduce the computing time of this task.
Naively implemented, finding a closest point requires iterating over
the entire dataset, i.e., it is in O(n), where n is the number of points
in the point cloud. This expensive running time is avoided by
employing metric data structures. The most popular data structure
to speed up NNS in scan matching is the k-d tree (Friedman et al.,

J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88 85

Table 5

Average computing time for the ICP algorithm employing nearest neighbor search
using k-d trees and octrees. The average was computed over 100 and 20 runs of ICP
for the Kurt3D data set and the larger Riegl data sets, respectively. Default parameters
were used for every test, with a maximal point-to-point distance of 25 cm and 50 ICP
iterations. Random noise was added to the initial pose estimate for each run. The
translational error was linearly distributed between —25 and 25 cm, whereas the
rotational error was linearly distributed between —10° and 10°. Construction time for
the trees is not included, all times are in milliseconds.

Data set k-d Tree Octree
Kurt3D 3043.099 2386.881
Bremen city 355848.476 314506.905
Bunker Valentin 837675.381 784241.905
Kurt3D reduced 757.514 625.683
Bremen city reduced 91735.667 74706.85
Bunker Valentin reduced 91153.0 74821.238

1977), where k = 3. As k-d trees are binary trees they allow an effi-
cient implementation of NNS. Principally, octrees should allow for
the same efficiency. In fact, due to the octree’s regular subdivision
it ought to be better suited for NNS than the popular k-d tree (Arya
et al., 1998). The complication arises during the implementation of
NNS in an octree. The key to an efficient traversal to the node con-
taining the nearest neighbor for both tree variants is the order in
which children are visited. The number of nodes that we need to
visit is best reduced by the closest child first criteria (best bin first),
i.e.,, the order of traversal is determined by the distance to the
query point. This is trivial to do for the binary k-d tree, but requires
some effort for an octree which may have one to eight child nodes.

For any octree node with eight children there is a total of 48
possible sequences in which to traverse the children. Every child
corresponds to an octant of the entire coordinate space. The query
point may fall into any of those eight octants. For each of those
cases there are six possible traversals determined by the order of
proximity of the query point to the three split planes. Therefore,
NNS in an octree has to make proximity checks to three split

planes, sort them and select the appropriate sequence of traversal
for a closest child first search for every traversed node. Compared
to this, the traversal order for a k-d tree order is instantly deter-
mined by a single proximity check, thereby avoiding unnecessary
computations if nodes need not to be visited.

The regular subdivisions of an octree are still leveraged for an
NNS that is in most cases faster or as fast as in a k-d tree. The larg-
est benefit is that fast indexing as in Section 4.2 is possible in an
octree. This allows us to directly traverse to the deepest octree
node, which contains the bounding sphere of the query point, with
a constant number of floating point operations. The full NNS with
closest child first and backtracking is then performed on this node.
The initial node lookup is considerably faster than the equivalent
operation, essentially a point lookup that is already in the tree, is
in a k-d tree. However, the speedup gained by this is clearly depen-
dant on the maximal allowed distance to the query point. The
smaller the maximal distance, the deeper the initial node lookup
can traverse on average. The deeper said node is, the fewer compu-
tations are performed in the following NNS. To evaluate the perfor-
mance of the NNS for varying maximal distances, we performed
ICP scan matching employing the octree and a k-d tree NNS. Re-
sults are given in Table 5 and Fig. 10. Despite the previous argu-
mentation, the octree based NNS does not suffer considerably
more from larger maximal distances than the kd tree based NNS.
We observe however, that there is an increase in the variance for
the time required for the NNS using the octree. Conversely, the var-
iance of the k-d tree based NNS is stable over all distances. This
suggests that the octree is more vulnerable to the combination of
large maximal distances and unfavorable starting pose estimates.

For ease of implementation and to further reduce the number of
floating point operations, we restrict the number of traversals to
eight instead of 48. Since the order of traversal only depends on
the octant into which the query point falls, there is no need for
proximity checks or sorting. Consequently, no floating point oper-
ations are required in our NNS implementation except in the leaves
of the octree, where the list of stored points are checked against

time s

Octree
kd-tree

0 250

500 750 1000

minimal distance cm

Fig. 10. Plot of the average and standard deviation of the computing time of ICP using k-d trees and octrees with respect to the maximal allowed matching distance. For each
data point 100 runs of ICP, with 50 iterations each, were done with noise applied to the initial starting pose estimate as in Table 5.

86 J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88

the query point. The approach is summarized in Algorithm 5. We
use the function FindClosestinLeaf(), which is a straightforward
check of the points stored in the leaf. The initial lookup for finding
the deepest octree node that contains the bounding box around the
query point is a modified indexed lookup. For this purpose the two
diametrically opposed corners of the bounding box are converted
into integer coordinates. The tree is then traversed as in Algorithm
2 until both indices disagree on the child that is to be traversed
next.

Algorithm 5. FindClosest

Input: query point g, maximal allowed distance d
lookup deepest node N containing bounding box of g
convert q to octree coordinate i
return FindClosestInNode(N, ¢, i, d)

Algorithm 6. FindClosestinNode

Input: query point q and its coordinate i
Input: maximal allowed distance d and the current node N

1: compute child index c from i

2: forj=0to8do

3 get next closest child C = N.children[sequence]c][j]];
4: if C is outside of bounding ball then
5: return currently closest point p

6: else

7: if C is a leaf then

8: FindClosestInLeaf(C, g, d)

9: update currently closest point p
10: else

11: FindClosestInNode(C, q, i, d)

12: update currently closest point p
13: end if

14: end if

15: end for

16: return currently closest point p

4.4. RANSAC for efficient parameter estimation

The Random Sample Consensus (RANSAC) algorithm is an ap-
proach for estimating parameters of a model that best describes
a set of sample points (Fischler and Bolles, 1981). While it is tradi-
tionally used for line and plane detection RANSAC can also be used
for any other parameterized model. It is an iterative algorithm that
repeatadly draws a small number of samples from the data to be
modelled. From this subset of samples the parameters of the model
are computed and the number of points in the entire data set that
intersect with the model is calculated. As the process is repeated
the model with the largest number of points is selected as the
result.

The most expensive step of the algorithm is determining the
number of points that agree with the candidate model. In an unor-
ganized point cloud this requires iterating over all points. We em-
ploy the octree data structure and obtain a significant speedup.
Similar to Section 4.2, where a frustum is checked against an oc-
tree, the candidate model is recursively intersected with the octree
nodes to determine which nodes may contain points on the model.
The process is exemplary depicted for the 2-dimensional case in
Fig. 11. After a candidate line has been generated, intersection tests
are performed on the children of nodes known to be at least par-

Fig. 11. Speed-up of RANSAC using a tree data structure. Top left: The initial sample
set, where a line should be detected. Top right: A line has been generated from a
sample set and is intersected with the octree. The dashed lines signify the maximal
distance threshold of RANSAC. Dark gray Nodes are outside of the model, light gray
nodes intersect the line. Bottom: The intersection test continues only in those
children of the nodes that are known to intersect the model.

tially on the line. This process is executed from top to bottom. Fi-
nally, the points in the leaves are counted. In this way a large
number of points is automatically excluded from being checked
against the model, thus leading to a speedup. A comparison of
the computing time of a standard RANSAC for plane detection with
octree-enabled version is given in Table 6. Even including the con-
struction time of the octree we achieve significant speed-up.
Examples of detected planes for the three data sets are given in
Fig. 12.

In addition octrees are able to speed up RANSAC by a smart
sampling scheme. Schnabel et al. (2007) have shown that by care-
fully selecting samples that are in proximity to each other, the
number of iterations required to detect a shape with a certain
probability is reduced by several orders of magnitude. This is done
by first selecting a sample in some random leaf /, and then selecting
further samples only from children of a randomly selected parent
node of L.

5. Related work

Since its introduction in the early 80’s by Meagher (1982), the
octree data structure has experienced widespread use among var-
ious fields that deal with large quantities of 3-dimensional data,
especially computer graphics (Knoll et al., 2006; Knoll et al.,

Table 6

Average computing time of RANSAC for plane detection with 5000 iterations with as
well as without the octree. Results were averaged over 100 runs. For each data set
5000 iterations of the RANSAC were done. The octree times include the construction
of the octree (~8 s for Bremen city and ~10 s for the Bunker data set). All times are in
milliseconds.

Data set No octree Octree Speed-up
Kurt3D 1666.57 176.69 9.43
Bremen city 388551.55 11084.81 35.05
Bunker Valentin 539536.13 26399.15 20.43

J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88 87

Fig. 12. Extracted planes using RANSAC for the three data sets presented in Fig. 6.

Table 7

Memory requirements for a single node of different libraries in bytes on 64 bits
systems. An x notifies that the library is templated, and a number of bytes must be
added to the total byte count. The number depends on the size of the type stored in
the tree and can be expected to be several bytes.

Library Node size Remarks

xgrt 144 +x

octomap 72 +x

PCL 64 +Xx

PCL low memory base 25+x (since ver 1.1.1. September 2011)
CloudCompare 16 size of leaf node

3DTK 8

2009; Enrico et al., 2008; Samuli and Tero, 2010) but also theoreth-
ical physics (Bielak et al., 2005) and, of course, robotics (Wurm
et al,, 2010).

In computer graphics and visualization the octree has recently
had a resurgence under the term sparse voxel octree. Here, the oc-
tree is used for efficient ray tracing and casting. An octree simulta-
neously represents large datasets with a small memory footprint
and provides ray casting in O(logn), which yields superior perfor-
mance, since realtime visualization using ray tracing is usually in
O(n), where n is the number of objects in the scene. In this applica-
tion octrees are representations of a voxelmap only, i.e., leaf nodes
do not store other data, apart from the inherent properties needed
for the visualization of a voxel such as color and normals. Samuli
and Tero (2010) have presented an octree encoding for the GPU
which is similar to ours. Their implementation stores countours
in each node to improve visualization quality in addition to the
usual color and normal information. Knoll et al. (2006), Knoll
et al. (2009) have developed powerful ray tracing algorithms on oc-
trees. They employ the fast indexing scheme as presented by Fris-
ken and Perry (2002) and improve upon standard ray traversal
with slice-based coherent octree traversal.

QSplat is a non-octree based visualization program for point
clouds (Rusinkiewicz and Levoy, 2000). Points, their normals and
colors are stored in a hierarchy of bounding spheres. Responsive
display of massive amounts of data can be maintained by dynam-

ically reducing the complexity of the object or scene. This is
achieved by visualizing the hierarchy only to a certain depth. The
bounding sphere data structure, although compact, is not well sui-
ted to applications other than visualization. Construction thereof is
non-trivial and ambiguous. Due to its regularity, an octree is more
compact and suited for other applications, too.

Several libraries exist which employ the octree data structure
for storing and processing point clouds, like PCL (Rusu et al.,
2011; Rusu and Cousins, 2011), octomap (Wurm et al., 2011),
CloudCompare (Girardeau-Montaut, 2011) and xgrt (Wand
et al., 2012). We give the node sizes for each library and compare
them to our approach in Table 7.

Furthermore, octrees are used in the color quantization algo-
rithm as designed by Gervauts and Purgathofer (1990) to minimize
memory requirements. Each level in their octree represents 1 bit of
the colors contained therein, beginning with the most significant
bit in the first level. This is similar to our compression of points,
where the more significant bits are implicitly stored in the octree
data structure.

6. Conclusions and outlook

This paper presents a novel implementation of a basic data
structure for 3D point clouds. The data structure, an octree, ex-
ceeds the purpose of storing data. The pipeline for obtaining 3-
dimensional models is sped-up. To this end, we have presented
an efficient exchange file format, fast point cloud visualization,
effective 3D scan matching, and a clever plane detection algorithm.

In future work we will continue using our octree for efficient 3D
point cloud processing, e.g., for globally consistent scan registra-
tion (Borrmann et al., 2008), for automatically deriving semantic
information, for dynamic maps, i.e., maps that can handle changes
of the scene, and for next-best-view planning.

Acknowledgments

We would like to thank Nikolaus Studnicka (RIEGL Laser Mea-
surement Systems) for his idea to propose the octree as exchange

88 J. Elseberg et al./ISPRS Journal of Photogrammetry and Remote Sensing 76 (2013) 76-88

file format. Furthermore, we would like to thank Prashant K.C. for
acquiring many terrestrial laser scans on our campus.

References

Morton, 1966. Tech. Rep. Ottawa, Ontario, Canada, IBM Ltd.

Friedman, J.H., Bentley, J.L., Finkel, R.A., 1977. An algorithm for finding best matches
in logarithmic expected time. ACM Transaction on Mathematical Software 3 (3),
209-226.

Fischler, M.A., Bolles, R.C., 1981. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography.
Communications of the ACM 24 (6), 381-395.

Meagher, Donald, 1982. Geometric modeling using octree encoding. Computer
Graphics and Image Processing 19 (2), 129-147.

Roth, Scott D., 1982. Ray casting for modeling solids. Computer Graphics and Image
Processing 18 (2), 109-144.

Gervauts, M., Purgathofer, W., 1990. A Simple Method for Color Quantization:
Octree Quantization. In: Graphics Gems. Academic Press Professional Inc., San
Diego, CA, USA, pp. 287-293.

Besl, P., McKay, N., 1992. A method for registration of 3-D shapes. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI) 14 (2), 239-256.

Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y., 1998. An optimal
algorithms for approximate nearest neighbor searching in fixed dimensions.
Journal of the ACM (JACM) 45 (6), 891-923.

Thrun, S., Fox, D., Burgard, W., 2000. A Real-time Algorithm for Mobile Robot
Mapping with Application to Multi Robot and 3D Mapping. In: Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA ’'00), San
Francisco, CA, USA, pp. 321-328.

Szymon Rusinkiewicz, Marc Levoy, 2000. QSplat: A multiresolution point rendering
system for large meshes. In: Proceedings of the ACM SIGGRAPH. pp., 343-352.

Frisken, Sarah F., Perry, Ronald N., 2002. Simple and efficient traversal methods for
quadtrees and octrees. Journal of Graphics Tools 7 (3), 1-11.

Dachsbacher, C., Vogelgsang, C., Stamminger, M., 2003. Sequential point trees. In:
ACM SIGGRAPH 2003 Papers. SIGGRAPH '03, pp. 657-662.

Girardeau-Montaut, D., Roux, M., Marc, R., Thibault, G., 2005. Change detection on
points cloud data acquired with a ground laser scanner. International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (Part
3/W19), 30-35.

Bielak, J., Ghattas, O., Kim, E.J., 2005. Parallel octree-based finite element method for
large-scale earthquake ground motion simulation. Computer Modeling in
Engineering and Sciences 10 (2), 99-112.

Knoll, A,, Wald, L, Parker, S., Hansen, C., 2006. Interactive isosurface ray tracing of
large octree volumes. 115-124.

Schnabel, R., Klein, R., 2006. Octree-based point-cloud compression. In: Symposium
on Point-Based Graphics 2006, pp. 111-120.

Samberg, A., 2007. An Implementation of the ASPRS LAS Standard. International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences
36 (Part 3/W52), 363-372.

Schnabel, R., Wahl, R, Klein, R., 2007. Efficient RANSAC for point-cloud shape
detection. Computer Graphics Forum 26 (2), 214-226.

Wand, M., Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M., Jenke, P., Maier, B.,
Staneker, D., Schilling, A., 2007. In: Proceedings Symposium on Point-Based
Graphics (PBG '07), pp. 37-46.

Enrico, Gobbetti, Fabio, Marton, Guiti, Iglesias, Antonio, Jose, 2008. A single-pass
GPU ray casting framework for interactive out-of-core rendering of massive
volumetric datasets. The Visual Computer: International Journal of Computer
Graphics 24 (7), 797-806.

Borrmann, D., Elseberg,]., Lingemann, K., Niichter, A., Hertzberg,]., 2008. Globally
consistent 3D mapping with scan matching. Journal Robotics and Autonomous
Systems (JRASs) 56 (2), 130-142.

Knoll, Aaron M., Wald, Ingo, Hansen, Charles D., 2009. Coherent multiresolution
isosurface ray tracing. The Visual Computer: International Journal of Computer
Graphics 25 (3), 209-225.

Fredie Kern, Michael Pospis, Olaf Priitmm, 2009. In: Photogrammetrie Laserscanning
Optische 3D-Messtechnik, Beitrdge der Oldenburger 3D-Tage, pp. 20-30.

Laine, Samuli, Karras, Tero, 2010. Efficient sparse voxel octrees. In: Proceedings of
the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (13D
'10), pp. 55-63.

Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W., 2010. OctoMap:
a probabilistic, flexible, and compact 3D map representation for robotic
systems. In: Proceedings of the IEEE ICRA Workshop on Best Practice in 3D
Perception and Modeling for Mobile Manipulation. Anchorage, AK, USA.

R. Richter,]. Ddllner, 2010. Out-of-core real-time visualization of massive 3D point
clouds. In: Proceedings of the 7th International Conference on Computer
Graphics, Virtual Reality, Visualisation and Interaction in Africa, AFRIGRAPH '10,
pp. 121-128.

Radu Bogdan Rusu, Steve Cousins, 2011. 3D is here: Point Cloud Library (PCL). In:
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA '11), ICRA Communications, pp. 1-4.

Girardeau-Montaut, D., 2011. Cloudcompare. <http://www.danielgm.net/cc>
(Accessed 14.08.12).

American Society for Photogrammetry and Remote Sensing, 2011. Common Lidar
Data Exchange Format. <http://www.asprs.org/Committee-General/LASer-LAS-
File-Format-Exchange-A%ctivities.html> (Accessed 14.08.12).

Wurm, KM, et al., 2011. Octomap. <http://octomap.sourceforge.net/> (Accessed
14.08.12).

Radu Bogdan Rusu, et al., 2011. Point Cloud Library. <http://pointclouds.org/>
(Accessed 14.08.12).

M., Wand, Berner, A., Bokeloh, M., Fleck, A., Hoffmann, M., Jenke, P., Maier, B.,
Staneker, D., Parys, R, 2011. xgrt. <http://www.gris.uni-tuebingen.de/xgrt>
(Accessed 14.08.12).

http://www.danielgm.net/cc
http://octomap.sourceforge.net/
http://pointclouds.org/
http://www.gris.uni-tuebingen.de/xgrt

	One billion points in the cloud – an octree for efficient processing of 3D laser scans
	1 Introduction
	2 Octrees for storing 3D point clouds
	2.1 Memory efficient encoding of an octree
	2.2 Octree based compression of 3D point clouds
	2.3 Efficient construction of an Octree
	2.4 Experiments and results

	3 An open file format for exchanging 3D point clouds
	4 Efficient algorithms on octrees
	4.1 Adaptive visualization using frustum culling
	4.2 Ray casting
	4.3 Nearest neighbor search for scan matching
	4.4 RANSAC for efficient parameter estimation

	5 Related work
	6 Conclusions and outlook
	Acknowledgments
	References

