LOCALIZATION CORRECTIONS FOR MOBILE LASER SCANNER USING LOCAL
SUPPORT-BASED OUTLIER FILTERING

V.V. Lehtola, J-P. Virtanen:, P. Ronnholm:, A. Nichter®

« Department of Real Estate, Planning and Geoinformatics, Po. Box 15800, 00076 AALTO, Finland, ville.lehtola@iki.fi, juho-
pekka.virtanen@aalto.fi, petri.ronnholm@aalto.fi
» Robotics and Telematics, University of Wiirzburg, andreas@nuechti.de

Commission 1V, WG IV/7

KEY WORDS: Localization, Intrinsic localization, Noise Filtering, Outlier Removal, Mobile Laser Scanner

ABSTRACT:

Following the pioneering work introduced in [Lehtola et al., ISPRS J. Photogramm. Remote Sens. 99, 2015, pp. 25-29], we extend
the state-of-the-art intrinsic localization solution for a single two-dimensional (2D) laser scanner from one into (quasi) three
dimensions (3D). By intrinsic localization, we mean that no external sensors are used to localize the scanner, such as inertial
measurement devices (IMU) or global navigation satellite systems (GNSS). Specifically, the proposed method builds on a novel
concept of local support-based filtering of outliers, which enables the use of six degrees-of-freedom (DoF) simultaneous localization
and mapping (SLAM) for the purpose of enacting appropriate trajectory corrections into the previous one-dimensional solution.
Moreover, the local support-based filtering concept is platform independent, and is therefore prone to be widely generalizable. The
here presented overall method is yet limited into quasi-3D by its inability to recover trajectories with steep curvature, but in the

future, it may be further extended into full 3D.
1. INTRODUCTION

Mobile laser scanning (MLS) enables dynamic and rapid data
collection. Various MLS systems exist, such as vehicle MLS
(e.g., Kaartinen et al., 2013), backpack MLS (e.g. Ellum and El-
sheimy, 2000; Naikal et al., 2009; Kukko et al., 2012; Elseber et
al., 2013, Nchter et al., 2015), and rolling MLS (Lehtola et al.,
2015). The common problem is to solve accurate orientation of
the scanner for all acquired 3D points. Many systems are
relying on global navigation satellite systems (GNSS) and an
inertial measurement unit (IMU) supported by, for instance,
post-processing with a Kalman filter (EI-Sheimy et al., 2006).
However, GNSS is not feasible in all environments, making the
localization of a mobile laser scanner without a reference
coordinate system one of the persisting grand problems in laser
scanning research. Besides its theoretical importance, any
prominent solution is likely to enable applications in indoor
environments, construction sites, and other areas that lack
satellite coverage, such as urban canyons.

Following the pioneering work conducted in (Lehtola et al.,
2015), we set out to extend the concept of intrinsic localization
from 1D into 3D. By intrinsic localization, we mean that no
other sensor data is used, such as that from inertial measurement
units (IMU) or global navigation satellite systems (GNSS). In
particular, we attempt to employ non-linear corrections to the
theoretical one-dimensional trajectory so that the original three-
dimensional scanner trajectory is recovered. For this purpose,
we utilize the 3D Toolkit or 3DTK (Nchter et al., 2011), which
implements the well-known 6D SLAM with iterative closest
points (ICP) algorithm and globally consistent scan matching.
The algorithm is adopted from (Elseberg et al., 2013a), where it
was used in a different mobile mapping context, i.e. with multi-
wheeled platforms. Unlike other state-of-the-art algorithms,
such as Stoyanov and Lilienthal (2009) and Bosse and Zlot
(2009), it is not restricted to purely local improvements.
Furthermore, we do not make rigidity assumptions, except for
the computation of the point correspondences, and neither do
we require an explicit motion model of the platform. The semi-

rigid SLAM for trajectory optimization works with six degrees
of freedom (DoF). Finally, the algorithm requires no high-level
feature computation so that we require only the points
themselves.

The caveat however is that outliers typically need to be filtered
from the data before an ICP-based solution can be successfully
employed. Other non-GNSS state-of-the-art works reminiscent
to ours by Stoyanov and Lilienthal (2009) and Bosse and Zlot
(2009) do not filter outliers. In the first, the error in the point
positions is distributed along the vehicle path to produce a
locally consistent measurement. The latter voxelizes the data
and performs an additional weighting to match constraints with
a Lorentzian function in order to reduce the impact of outliers.
However, they note that “environments dominated by moving
objects can also challenge the algorithm since it becomes
difficult to distinguish true outliers”.

In the GNSS-scene, outlier filtering is conducted in the post-
processing phase for the already registered data. Lin and Zhang
(2015) searched planar objects with the region growth method
developed by Vosselman and Klein (2010) and discarded the
points that did not belong to segmented objects. Interestingly,
however, region growing methods have been reported to suffer
from over and under segmentation (Nurunnabi et al., 2015).
Leslar et al. (2011) performed two outlier removal algorithms,
where they either applied the moving fixed interval smoother
algorithm in which trajectory and sensor data is utilized in
Kalman filter that compares predicted and computed points and
thus detects outliers, or they evaluate each point by fitting a
quadratic curved-surface in its neighborhood which reveals
remaining outlier points. Voxel-based methods search the
number of points in the neighborhooding voxels (e,g.,
LASTools) or within multiple sifted voxels (R6nnholm et al.,
2015). Wang et al. (2012) created MLS-based depth maps and
filtered outliers by utilizing bins and distance-based adaptive
thresholds. Zhu et al. (2011) projected MLS data to three
orthogonal planes and divided them into bins, with a threshold
for the bins that contained too few points. Vaaja et al. (2013)

mailto:ville.lehtola@iki.fi
mailto:juho-pekka.virtanen@aalto.fi
mailto:juho-pekka.virtanen@aalto.fi
mailto:andreas@nuechti.de

Figure 1. (a) A schematic describing the path parameter 6 (t) and constants R,, R, and R.. Measured distances are marked with d..

>

b) VILMA assembly schematics. c) A 2D laser scanner, here Faro Focus 3D in helical mode, is attached in between two metallic
discs so that it retains a wide viewing angle through the oval holes carved on the discs. This figure is reproduced from (Lehtola et

al., 2015).

detected outlier points by searching if there was less than ten
points within a 0.50 meters radius. TerraScan also examines
spherical area with given radius when removing unwanted air
points utilizing median elevations and standard deviations
(TerraScan). To conclude, the noise filtering in these works is
based on the assumption that full information is available in the
3D neighborhood of the point in focus. Therefore, the GNSS-
scene approach is unsuitable for our needs, as the filtering must
take place before the ICP-based registration.

In this paper, we present an inherently local outlier filtering
method that is optimized for MLS data, and takes place before
the ICP-based registration. Then we show how to correct the
relative orientations between the laser scanning profiles
obtained from the theoretical solution of (Lehtola et al., 2015).

The paper is organized as follows. The 1D theoretical solution
for intrinsic localization is briefly summarized in Section 2.
Then, the data processing is done in two steps. First, mobile
laser scanner data is filtered, for which we introduce a novel
concept of local range support in Section 3.1. Second, a semi-
global point cloud matching using 3DTK 6D SLAM is done to
adjust the trajectory to its environment, leading to a 3D
solution. This is presented in Section 3.2. Results are shown in
Section 4, after which follows the Conclusion.

2. INTRINSIC LOCALIZATION FOR A ONE-
DIMENSIONAL TRAJECTORY

The localization of the laser data requires a successful
reconstruction of the sensor trajectory. The trajectory j(t) is
time-dependent with six degrees of freedom, namely, three from
location and three from orientation. We write out

i®=16®, ¥ ®, ¢ ®.x®),y(1),2(O]" @

where 0 is the pitch, v is the roll, and ¢ is the yaw angle. Time
is denoted by t. Without any reference coordinate system, the
successful reconstruction of the trajectory requires that these
degrees of freedom are eliminated. Previously, this was done by
Lehtola et al. (2015) for a holonomic system in one dimension
(1D). We briefly outline this solution here.

In order to capture a 3D environment with a 2D laser scanner,
the scanner must be rotated about at least one axis. The 2D
scanner is mechanically attached to the platform, so that it can
only rotate about one axis of rotation, namely 6. Therefore
rotational degrees of freedom are reduced by two, i.e. ¢ and vy
are constant. By assuming that the platform does not slip against
the floor x, y, and z all become direct functions of 6.

The scanner sits on the hypotenuse at a distance of Ry — R; from
VILMA'’s central axis, where Ry = 0.25m is the radius of the
metal disc and R; = 0.13m, see Fig. 1 (a). Assuming that the
floor is flat, simple trigonometry is employed to write

6 = arccos(R, /d),)

where d = d, + (Ry — Ry), and dy, is the minimum measured
distance to the floor over one full 2D circle observation.
Considering the minimum distance to the floor, the position of
the scanner on disk radius varies between two values, depending
on whether the scanner is upside down, Eq. (2), or upside up,

in which case 6 = & —arccos (R, /d), with d = R + cos 27.5" (dp,
—Ry), and R, = 42cm. Here, the 27.5 degrees is half of the dead
angle of the scanner.

The pitch angle 6(t) is the path parameter that describes the
scanner trajectory, and obtaining it from the scanner data solves
localization in 1D. Initially, the zenith is pointing upwards, 6(t
=0) = 0. Then, 6 is incremented by 2z for each cycle that the
platform rolls. Each time the 2D scanner is perpendicular
towards the floor (PTF), 6(t) = n + 2an, n =0, 1, 2, ..., the
scanning distance reduces to the minimum R;. We call this a
PTF-observation, and keep track of these occurrences in the
laser data obtaining a time series. The PTF observation is robust
to error, since data points from a large field of view can be used
to interpolate the floor point precisely below the sensor. Also,
stochastic errors in PTF observations do not cumulate with time
as long as the no-slip condition with the floor applies.

Once 6(t) is obtained, a coordinate transformation for the 2D
sensor data (X, Z) is obtained considering the trajectory of a
contracted cycloid,

x=X
y =Ry0+ (Ry— R, +Z)sind (3)
Zz=Ry+ (Ry— R, +2Z)cosb

where (x,y,z) are the coordinates of the resulting 3D point
cloud. Note that the platform propagates in the positive y-
direction.

3. METHODS

Outliers, in general, are caused by multiple factors. All scanners
experience some level of inherent noise, but outliers follow also
from the environment and from the way the scanner is operated.
The latter two are here the main sources of outliers. The built
environment typically contains reflecting surfaces, such as
mirrors and those made of shiny metals, causing multiple
reflections and gaps in data. Also, the platform movement is
prone to be non-smooth, such as in our experiments, where the
concrete floor is littered with dirt and small rocks. These

reasons alone create the need to filter data for outliers. In
(Lehtola et al., 2015), filtering was done only at a global level
for the purpose of improving the visual properties of the final
3D point cloud. Here, it is necessary to filter data before the
trajectory corrections, which in turn must be done before
obtaining the final point cloud. The outlier removal is especially
important because the points at long distance have crucial
weight on the total SLAM optimization, explained in detail in
Section 3.2. Hence, instead of employing global point cloud
properties, the filter needs to rely on the temporally local
properties of the measured data. For curious readers, the time
series of range data is visualized as supplementary material. The
Faro Focus 3D scanner in 2D helical mode, which was used in
our experiments, has a field of view of 300 degrees. The mirror
rotation frequency is 95 Hz.

3.1 LOCAL FILTERING BASED ON SUPPORT

Figure 2. Schematic of local support-based filtering. A 2D
scanner is depicted by a triangle. Range measurements from
consecutive channels, represented by solid black lines, do not
obtain support from each other, if the range difference Ar is too
large. Here, the middle point gets support from its left, but not
from its right. On the other hand, the red dotted imaginary beam
going through the obstacle would get support from the right, but
not from the left.

The 3D point cloud data is divided into slices. Each slice,
captured during one rotation of the scanner mirror, contains
8534 range measurements. Furthermore, each slice is captured
from a different position and angle, because the scanner
platform is maobile and rolling. The orientation of each slice is
obtained from the procedure explained in Section 2.

We introduce a concept of support-based local noise filtering,
see Fig 2. The idea is that each point, i.e. a time-of-flight
measurement, either has support or is rejected. For this purpose,
the point data processing employs two filters: inter-slice support
and intra-slice support. Any accepted point must pass both
filters. Now, consider a point on slice i and channel c. For the
inter-slice support, the change in range is checked against
previous i-1 and next i+1 slice, keeping the channel ¢ constant
(i.e. the beam angle within the slice). If for both differences Ar
> 5.0 m, then the current point does not have support, and is
rejected.

Formally, the inter-slice support 3; for point j is written as

N _{1, ifajzl @)
710, otherwise'

where the count
& = Tkem, O (5)

Here, N; is the 2-point neighborhood of point j, and @ is a
Heaviside step function

~ 1, if Ary, <50m

0., = { ! J 6

ko, otherwise ©)

that responds to the measured range distance Arj = [r; — 7|
between points j and k.

For the intra-slice support, 8 nearest neighbors are considered
for each point on a 2D slice. Any accepted point must be
supported by at least three of these neighbors. Support is gained
if the pair-wise difference in range measurement Ar < 0.15 m
between the point and its neighbor. Formally, the intra-slice
support s; for point j is written as

_ (1
sf_{o

¢j = Xken; Oji- (8)

ifcg =3
otherwise

™

where the count

Here, N; is the 8-point neighborhood of point j, and 0y is again
a Heaviside step function

0, = {1, if Arj, <0.15cm .
J 0, otherwise

Let us discuss the support cut-off with respect to the
measurement geometry. The most challenging inter-slice
geometry is with respect to the floor, as this forms a triangle
strongly elongated in one direction. Now, each full cycle
contains about from 180 to 600 slices. Therefore, the orientation
difference between the slices is of the order of one degree. If the
scanner rotates by one degree on a flat floor, the inter-slice
support condition in Egs. (4-6) with Ary, < 5.0 m means that
that the points on the floor two degrees below horizon still pass
this condition. On the other hand, any points that violate this
rule can be safely discarded as outliers. For the intra-slice
geometry, support from a single closest point could suffice in
Egs. (7-9). However, we take into account that one single
measurement in the supporting neighborhood may fail for e.g.
internal reasons of the scanner. Also, we do not allow that a
small set of two or three erroneous points would support each
other. Therefore, considering the range discontinuity between
two surfaces at different depths, a majority from four points
(=3) is required to lie within the threshold in order for the point
being considered to gain support.

©)

Considering generalizability, the local properties of the filtering
algorithm allow its use for on-chip computation, when a cache
of three slices of points can be provided. This is bound to gain
relevance as the scanner sizes become smaller, see e.g.
Kostamovaara et al. (2015).

3.2 LOCALIZATION CORRECTIONS

We convert the scanner output into a form suitable for 3DTK -
The 3D Toolkit (Nichter et al., 2011). 3DTK is a general point
cloud processing framework with an emphasis on registration
and mapping. It efficiently implements the well-known 6D
SLAM to the similarly well-known iterative closest points (ICP)
algorithm and globally consistent scan matching, resulting into
an ICP-like solution to the simultaneous localization and
mapping (SLAM) problem (Nichter et al., 2010). To
understand the basic idea of the localization correction, we
summarize its basis, 6D SLAM. It works similarly to ICP,
which minimizes the following error function

ERO =3, lIm; — (Rd; + 9| (10)

to solve iteratively for an optimal rotation (R, t), where the
tuples (m;, d;) of corresponding model M and data points D are
given by minimal distance (Besl, 1992). Instead of the two-
scan-equation above, we look at the n-scan case

E=3,,% |Rm;+t;) — (Red; + &) || (11)

where j and k refer to scans of the SLAM graph, i.e., to the
graph modelling the pose constraints in SLAM or bundle
adjustment. If they overlap, i.e. closest points are available, then
the point pairs for the link are included in the minimization. We
solve for all poses at the same time and iterate like in the
original ICP. Please note that while there are four closed-form
solutions for the original ICP, linearization of the rotation in the
second equation is always required.

We also applied an algorithm that improves the entire trajectory
of VILMA simultaneously. The algorithm is adopted from
(Elseberg et al., 2013a), where it was used in a different mobile
mapping context, i.e., on wheeled platforms. Previously, this
trajectory correction has also been applied to a sensor-skid
inside production environments and to a backpack-mounted
scanning solution. Unlike other state-of-the-art algorithms, such
as Stoyanov and Lilienthal (2009) and Bosse and Zlot (2009), it
is not restricted to purely local improvements. We make no
rigidity assumptions, except for the computation of the point
correspondences. We require no explicit motion model of a
vehicle for instance. The semi-rigid SLAM for trajectory
optimization works with six DoF. The algorithm requires no
high-level feature computation, i.e., we require only the points
themselves.

For VILMA, we do not have separate terrestrial 3D scans. In the
current state-of-the-art developed by Bosse and Zlot (2009) for
improving overall map quality of mobile mappers in the
robotics community the time is coarsely discretized. This results
in a partition of the trajectory into sub-scans that are treated
rigidly. Then rigid registration algorithms like the ICP and other
solutions to the SLAM problem are employed. Obviously,
trajectory errors within a sub-scan cannot be improved in this
fashion. Applying rigid pose estimation to this non-rigid
problem directly is also problematic since rigid transformations
can only approximate the underlying ground truth. When a finer
discretization is used, single 2D scan slices or single points do
not constrain a six DoF pose sufficiently for rigid algorithms.

Mathematical details of our algorithm are given in Elseberg et
al. (2013a). Essentially, we first split the trajectory into sections,
and match these sections using the automatic high-precise
registration of terrestrial 3D scans, i.e., globally consistent scan

matching. Here the graph is estimated using a heuristics that
measures the overlap of sections using the number of the closest
point pairs. After applying globally consistent scan matching on
the sections the actual semi-rigid matching as described in
Elseberg et al. (2013a) is applied, using the results of the rigid
optimization as starting values to compute the numerical
minimum of the underlying least square problem. To speed up
the calculations, we make use of the sparse Cholesky
decomposition.

For VILMA, the amount of data gathered per distance traveled
along the trajectory varies, because the platform velocity is not
constant. Each cycle contains about 180 to 600 slices. Hence, as
input parameters, we choose to perform a 6D SLAM match
between every 150 slices, and use 600 slices to perform each of
these.

(a)

Figure 3. (a) Unfiltered point cloud vs. (b) filtered point cloud
visualized from the top. Almost all of the outliers vanish in
filtering.

4. RESULTS

The amount of outliers in VILMA data is significant, but the
local filtering method introduced in Section 3.1 manages to
eliminate almost all of them, see Fig. 3. The point cloud is
reduced from 43.1 million to 40.8 million points, equaling to a
mere 5.2% reduction. The outliers, and their removal, has
impact on both the overall shape of the point cloud, and its
inside structure. For convenience, the displayed point clouds are

randomly downsampled before filtering to one tenth of their
original size.

Glass and metallic surfaces present in the garage result to
specular reflections so that the reflected light follows a different
path from the incident light for all cases other than the light
normal to the surface. This is one source of outliers for time-of-
flight measurements, as the flight path of the laser is elongated
by the reflections. Outliers from small reflecting areas, such as
those occurring from side mirrors of the cars, are eliminated by
the inter-slice support requirement. On the other hand, the intra-
slice support requirement keeps the data consistent with respect
to most other error sources.

After the filtering, the trajectory is corrected as explained in
Section 3.2, and respectively, a new point cloud is written out.
Refer to Fig. 4 to see what the visual impact of the correction to
the resulting 3D point cloud is. As the trajectory tilts right
through correction, recovering its original shape, the shape of
the surrounding environment is also simultaneously recovered.
For example, apparently oblique walls are straightened.

Figure 4. Top: Close-up view on concrete pillars without outlier
filtering and a (green) straight trajectory (shown in violet).
Objects are dislocated, and may assume oblique shapes. With
filtering and corrections, objects are properly located inside the
point cloud, and recover their natural shapes (shown in black).
The point cloud is derived from the (red) corrected trajectory.
Bottom: Only the filtered and corrected point cloud is shown.
Both trajectories are visible in both images for visualization
purposes.

In order to see if the presented filtering only has a visual effect
or a quantifiable effect that as well affects the correction
procedure, corrections are run for both unfiltered and filtered
point clouds, see Fig 5. The obtained trajectories differ in the
sense that the corrections made for the unfiltered point cloud,
compared to the filtered case, do not reach the same amplitude.
In other words, the corrections are left too small, because
trajectory corrections made with the unfiltered point cloud are
more likely to get stuck in local nearest neighbor minima than
those made on the filtered point cloud. For horizontal

displacement Ax, the difference is over 30 cm for a trajectory of
the length of 30 m, equaling to a ratio of 1:100. In other words,
the proposed filtering is crucial to avoid a significant
incrementation of drift, even when the underlying trajectory is
close to a straight one. We have also reproduced the plot data
from Lehtola et al. (2015) (see Fig. 5 (b)) for comparison
purposes. This plot was obtained by manually orientating
separate segments of VILMA data to the TLS reference scans
leading into - what can be judged from Fig. 5 - a crude estimate.

=P

Figure 5. Top views of the point cloud. The point cloud is
calculated based on (a) a straight trajectory (shown in green)
leading into oblique shapes of straight features, e.g. vertical
lines bending left, and (b) the corrected trajectory (shown in
red), which has recovered the physical path of VILMA, leading
to a point cloud that better corresponds to the physical
environment. Both trajectories are visible in both images for
visualization purposes.

O
lafomes .

-5 =

. =! >
*""'gv;;n P
—_— - / »«/

o

Figure 7. An attempt to correct a steep curve fails. The point cloud is shown from the top with the floor and the ceiling removed.
The computed trajectory is plotted in red. The location of the actual trajectory is manually approximated with a dotted red line,
and differs from the computed trajectory. Therefore, the walls and objects are displaced by a counter-clockwise rotation. We have
colored some of them for visualization purposes with the color fading from green (displaced data) to blue (correctly placed data).
However, the trajectory is successfully corrected in the lower part of the image, where the curvature is low enough in both the

horizontal and the vertical dimensions.

125
1.00} 0.08
075} 0.06
4 osof 1 <004

0.25F 0.02

0.00 |
0 _’I: lb 1l5 2I0 2I5 3I0 0 é 1‘0 1‘5 Zb 2I5 30
Y v
Figure 6. Corrected trajectory plots for filtered (red) and
unfiltered (blue) data (in m). (a) The horizontal displacement
Ax, and (b) the vertical displacement Az, from the straight
trajectory are shown. The straight trajectory assumption, i.e.
without semi-global 6D SLAM corrections, is shown on the
bottom with a black solid line. The slashed lines represent the
crude manual estimates from Lehtola et al. (2015)(see Fig. 5 (b)
there-in), with the black part being more reliable than the

magenta part.

0.00

The filtering has already proven to be quite effective, since it
removed only about 5% of the total points, while both
significantly improving the visual properties of the point cloud,
and notably improving the functionality of the correction
algorithm.

103 T T T T T T T

102 _ﬂ._-k]

1011 ;
10°
10!
1072
107

3 pEeEep—————— T o
10-4%— §
10°0 * ;

10°

0 10 20 30 40 50 60 70 80
N

Figure 8. Displacement & (in cm) from the straight trajectory
estimate as a function of N semi-global correction iterations.
The displacement of the top (bottom) end of the trajectory is
shown with black (blue) lines. Dashed (solid) lines represent
absolute displacements in the x (y) -direction. Note the
logarithmic scale. Displacements converge after some N=40
iterations.

Surprisingly, the proposed method encounters difficulties when
the trajectory contains too steep curves, see Fig. 6. The method
fails to recover the underlying physical trajectory, shown with a
dotted red line, because it gets stuck in local minima of the ICP-
based error function of Eq. (8). Data of the environment
captured from this part of the trajectory is displaced
accordingly. We have colored some of it for visualization
purposes to provide an intuitive view for the reader of the
consequences of this failure. For quantitative purposes, the
displacement & from the straight trajectory estimate as a
function of N semi-global correction iterations is shown in Fig.
7. Both ends of the trajectory shown in Figure 6 are taken under
the magnifying glass, because the sum of all corrections
inflicted upon the trajectory is reflected on these. We see that
both displacements converge after some N=40 iterations. This
means that a local minimum in the n-scan matching is reached,
and that further computation does not help in recovering the
original physical trajectory. Considering the dotted red line in
Fig. 6, the scan matching fails due to a large viewpoint change
associated with the steep curvature. Furthermore, the
environment is not bountiful enough with suitable data to
compensate for this. Ultimately, we must conclude that the
usability of the proposed method is limited to so-called quasi-
3D, the method working only for rather small displacements
from the original 1D trajectory. This sets a goal for future work
to close to gap between the theoretical 1D trajectory estimate
and - not necessarily a six DoF solution, as this seems quite
challenging - but the physical movement on the 2D manifold
embedded into 3D space.

10.000
8.500

7.000

5.500
4.000
2500

1.000

-1.000
-2.500

-4.000

-6.500 I
-7.000 =
O

Figure 9. Top: Contour plot from the reference TLS point cloud
displays the floor height profile (in cm). The largest
displacements from a virtual horizontal plane are shown with
deep blue (descent) and orange (ascent). Bottom: The difference
of triangulated surface models between the straight trajectory
estimate and the corrected VILMA data. Both plots use the
same units that are in cm, and display one pillar circled with
white color to guide the eye.

Finally, we explore the abilities of the presented method to
recover the height differences instilled into the recorded data.
Conveniently, the car park has a sloped concrete floor in order
to guide the water that is created from melted snow brought in
by cars, into the sewer sinkholes. In Fig. 8 top image, a contour
plot from the reference TLS point cloud displays this floor
height distribution. The maximum height deviation along the
trajectory is around 12 cm. Next, we check whether comparing
the corrected VILMA data with the point cloud obtained with
the straight trajectory estimate displays a similarly behaving
height profile. Before the difference calculation, the two point
clouds were separately oriented using a semi-manual ICP-tool
to for a best match with the TLS point cloud. The result is
shown in Fig. 8 bottom image. The computed height differences
adopt a profile similar to what was obtained from the TLS data,
meaning that the 6D SLAM approach is successful also for the
vertical dimension. However, in both ends of the trajectory, the
method overcorrects the descent due to finite data from the
environment. This is shown by the blue regions that extend
from one end of the image to its other end.

5. CONCLUSIONS

The presented filtering method proves to be quite effective,
removing only about 5% of the total points, while both
significantly improving the visual properties of the point cloud,
and notably improving the functionality of the correction
algorithm. In the future, it may be implemented on-chip for
faster computation, as its cache requirement is small. On the
other hand, the correction properties of the presented method
require further development, as its usability is limited into so-
called quasi-3D. In other words, the method works only when
the curvature of the underlying physical trajectory to be
recovered is not too steep. Finally, this paper paves the road
towards the grand goal where one can show that the intrinsic
localization for a 2D laser scanner is generally feasible in
multiple dimensions. By intrinsic localization, we mean that no
other sensor data is used, such as that from inertial measurement
units (IMU) or global navigations satellite systems (GNSS).

ACKNOWLEDGEMENTS

The authors wish to thank Academy of Finland for funding this
research, Grant No. 257755 (VL), CoE-LaSR Grant No. 272195
(VL, J-PV, PR), and Strategic Research Council project
COMBAT No. 293389 (VL, J-PV).

REFERENCES

Besl, P. and McKay, N., 1992. A method for Registration of 3-
D Shapes. IEEE Trans. Pattern Analysis and Machine
Intelligence (PAMI) 14(2), pp. 239-256

Borrmann, D., Elseberg, J., Lingemann, K., Nichter, A., and
Hertzberg, J., 2008. Globally consistent 3D mapping with scan
matching. Robotics and Autonomous Systems, 56(2), 130-142.

Bosse, M. and Zlot, R., 2009. Continuous 3D Scan-Matching
with a Spinning 2D Laser. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA
’09), Kaobe, Japan, pp. 4312-4319.

El-Sheimy, N., 2006. Kalman Filter Face-Off: Extended vs.
Unscented Kalman Filters for Integrated GPS and MEMS
Inertial. InsideGNSS, 1(2), pp. 48-54.

Ellum, C. and El-sheimy, N., 2000. The development of a
backpack mobile mapping system. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 33, pp. 184-191.

Elseberg, J., Borrman, D., Niichter, A., 2013. A study of scan
patterns for mobile mapping. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Volume XL-7/W2, pp. 75-80.

Kaartinen, H., Hyyppé, J., Kukko, A., Lehtomaki, M., Jaakkola,
A., Vosselman, G., 2013. Mobile Mapping - Road Environment
Mapping using Mobile Laser Scanning. EuroSDR Official
Publication No 52, pp. 49-93.

Kostamovaara, J., Huikari, J., Hallman, L., Nissinen, I.,
Nissinen, J., Rapakko, H., Avrutin, E., and Ryvkin, B. (2015).
On Laser Ranging Based on High-Speed/Energy Laser Diode
Pulses and Single-Photon Detection Techniques. Photonics
Journal, IEEE, 7(2), 1-15.

Kukko, A, Kaartinen, H., Hyyppa J., and Chen, Y., 2012.
Multiplatform Mobile Laser Scanning: Usability and
Performance. Sensors, 12 (9), pp. 11712-11733.

LAStools.
https://www.cs.unc.edu/~isenburg/lastools/download/lasnoise_
README.txt. [Visited on 4 December]

Lehtola, V. V., Virtanen, J. P., Kukko, A., Kaartinen, H., and
Hyyppé, H., 2015. Localization of mobile laser scanner using
classical mechanics. ISPRS Journal of Photogrammetry and
Remote Sensing, 99, 25-29.

Leslar, M., Wang, J-G., Hu, B., 2011. Comprehensive
Utilization of Temporal and Spatial Domain Outlier Detection
Methods for Mobile Terrestrial LIDAR Data. Remote Sens.
2011, 3, 1724-1742.

Naikal, N., Kua, J., Chen, G., Zakhor, A., 2009. Image
Augmented Laser Scan Matching for Indoor Dead Reckoning.
Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4134-4141

Nurunnabi, A., West, G., Belton, D., 2015. Robust methods for
feature extraction from mobile laser scanning 3D point clouds.
In: B. Veenendaal and A. Kealy (Eds.): Research@Locate'15,
Brisbane, Australia, 10-12March 2015, pp. 109- 120.

Nichter, A., Elseberg, J., Schneider, P., and Paulus, D., 2010.
Study of parametrizations for the rigid body transformations of
the scan registration problem. Computer Vision and Image
Understanding, 114(8), 963-980.

Nichter, A., Borrmann, D., Koch, P., Kiihn, M., May, S., 2015.
A Man-Portable, IMU-free Mobile Mapping System. ISPRS
Ann. Photogramm. Remote Sens. Spatial Inf. Sci., 11-3/W5, 17-
23.

Nichter A. et al., 2011. 3DTK - The 3D Toolkit.

http://slam6d.sourceforge.net/

Roénnholm, P. Kukko, A., Liang, X., Hyyppa, J., 2015. Filtering
the outliers from backpack mobile laser scanning data. The
Photogrammetric Journal of Finalnd, 24(2), pp. 20-35.

Stoyanov, T. and Lilienthal, A. J., 2009. Maximum Likelihood
Point Cloud Acquisition from a Mobile Platform. In:

Proceedings of the IEEE International Conference on Advanced
Robotics (ICAR ’09), Munich, Germany.

TerraScan. TerraScan User’s Guide, 566 pages.
https://www.terrasolid.com/download/tscan.pdf. [visited on 4
December]

Vaaja, M., Kukko, A., Kaartinen, H., Kurkela, M., Kasvi, E.,
Flener, C., Hyyppd, H., Hyyppd, J., Jarveld, J., Alho, P., 2013.
Data Processing and Quality Evaluation of a Boat-Based Mobile
Laser Scanning System. Sensors, 13, pp. 12497-12515.

Vosselman, G and Klein, R., 2010. Visualization and
structuring of point cloud. In: Airborne and Terrestrial Laser
Scanning, 1st ed.; Vosselman, G., Maas, H.G., Eds.; Whittles
Publising: Dunbeath, pp. 43-79.

Wang, R., Bach, J., Macfarlane, J. and Ferrie, F., 2012. A new
upsampling method for mobile LIiDAR data. In: IEEE
Workshop on Applications of Computer Vision (WACV), pp.
17-24.

Xiangguo Lin, X. and Zhang, J., 2015. Segmentation-based
ground points detection from mobile laser scanning point cloud.
The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, Volume XL-7/W4,
pp. 99-102.

Zhu, L., Hyyppd, J., Kukko, A., Kaartinen, H., Chen., R., 2011.
Photorealistic Building Reconstruction from Moaobile Laser
Scanning Data. Remote Sensing, 3, pp. 1406-1426.

http://slam6d.sourceforge.net/

	1. INTRODUCTION
	2. INTRINSIC LOCALIZATION FOR A ONE-DIMENSIONAL TRAJECTORY
	3. METHODS
	3.1 LOCAL FILTERING BASED ON SUPPORT
	3.2 LOCALIZATION CORRECTIONS

	4. RESULTS
	5. CONCLUSIONS

