
Development of a Cheap Chess Robot: Planning and
Perception

Billy Okal and Oliver Dunkley

Jacobs University, Automation Group
Campus Ring 1, 28759 Bremen

{b.okal, o.dunkley}@jacobs-university.de

Type of Work: Bachelor Thesis
Supervisor: Prof. Dr. Andreas Nüchter

1 Introduction

Interest in chess playing robots started as early as 1770 when Wolfgang von Kempelen
unveiled what appeared to be an automatic chess player, that astonished and fascinated
crowds, even after its fake nature was discovered in the 1820s [Sch99]. Chess playing
robots caught more attention when the Deep Blue computer beat Gary Kasparov in a chess
game [NN97], making a major breakthrough in artificial intelligence. Despite the fact
that development of robots capable of playing chess has been historically known to be a
complex task, major attempts have been made over the years. Classroom efforts such as
Groen’s lab course in sensor integration [GdBvIS92] are an early example. More recently,
the Association for Advancement of Artificial Intelligence (AAAI) organized a small scale
manipulation challenge with playing of chess as the competition task1. Today, many chess
playing robots exist in various forms ranging from humanoids to industrial grade manipu-
lators. However, the majority of these rely on either modified chess boards in terms using
present colors and sizes to simplify the scene interpretation problem and/or modified chess
pieces to aid the robot sensors, or use fixed vision sensors e.g. overhead mounted cameras
with a fixed boards all of which serve to simplify the problem at a cost of flexibility, gen-
erality and reproducibility of designed methodology. Furthermore, most of the existing
chess playing robots do not use established motion planning algorithms mainly because
only a few degrees of freedom are involved and hence solving Inverse Kinematics equa-
tions to locate end effector poses is not considerably difficult although it could get easily
expensive. We develop a system based solely on a single off the shelf webcam as a camera
sensor, a cheap 4-DOF robotic arm assembled from standard robotics kits as an actuator
and standard chess components. The robot arm was powered by Dynamixel AX-12 ser-
vos. We also develop a software solution that is both modular and generic allowing for

1http://aaai-robotics.ning.com/forum/topics/icra2010-and-aaai2010



easy interchange of major components such as the perception system, chess engine and
motion planner.

2 Methods

To have a robot play a game of chess there are two main problems that need to be solved
namely, perceiving the environment in which the chessboard and chess pieces exist and
interpreting the state of the game from such perception sensor data and computing a feasi-
ble collision free path for moving a given chess piece on the chessboard. We do not delve
into strategies and game logic for deciding which piece to move and use a standard chess
engine to generate moves based on the given state of the game. For building a modular
system, we use of the Robot Operating System (ROS) [QCG+09] for coordination and
communication. We developed a system that is depicted in Figure 1. We solve the percep-
tion and planning problems using the procedures described in the sections that follow.

Figure 1: System Overview

2.1 Perception

We use of various first principles like approaches to solve the perception problem. In
particular, we search for the chessboard in the scene at every game instance. We take an
image of the scene at every game step and compare successive images to determine what
has changed i.e. which moves have been played. We use image processing techniques
such as line detection, Canny edge detection [SHB07] and image differences to determine
the location of the four corners of the chessboard as well as the location of changes on the
board and transform the resulting chessboard into a known frame by perspective projec-
tion. Once we get the positions of the changes on the chessboard using its size information
and scaling, we determine which move to make by querying a standard chess engine. For
implementation of the techniques, we use of the OpenCV2 library.

2http://opencv.willowgarage.com



2.2 Manipulation

With the new move determined, we again use chessboard size information to determine
the precise locations to move a given piece, which provides the goal and start pose for
the planning process. We use a seasoned motion planning algorithm called BiRRT (Bi-
directional Rapidly Exploring Random Trees) [Dia10] a variant of RRT which provides a
probabilistically complete algorithm [LaV98]. We compare this method to that of comput-
ing the Inverse Kinematics of the end effector (gripper) each time with the belief that the
BiRRT motion planning algorithm would take advantage of the topological compactness
of the search space as most of the goals are very close in this scenario. Either of the pro-
cedures gives us a trajectory to follow. We then execute the computed trajectories on the
robot taking into account further joint considerations and reachability of the workspace.
We added some constraints into the planning system so that the chess pieces are moved
in an ’upright’ manner throughout the manipulation process and also to filter the found
solutions. For implementation, we make use of OpenRAVE [Dia10] motion planning suite
which comes with a set of motion planning algorithms including BiRRT and open inter-
faces for using the planners.

3 Results

Experiments with the perception procedures showed reliable chess move detection with
real-time performance comparable to previous cases with modified chessboards and/or
modified chess pieces or fixed cameras. The trajectories generated using seasoned motion
planning algorithms were also of better quality compared to those generated by simple
Inverse Kinematics. We also noticed that the BiRRT algorithm took considerably shorter
time for planning compared to solving Inverse Kinematics for locating the end effector
pose. Figure 2 shows the setup of the experiments and a sample trajectory.

(a) Real Setup (b) Simulation Setup (c) Sample Trajectory

Figure 2: Real and simulated setup and a sample trajectory

Further media including video material depicting the results can be found on our groups



video archive at http://www.youtube.com/user/AutomationAtJacobs and
further details and discussion of the work is provided in a corresponding thesis document.

4 Conclusion

We demonstrated that the constraint of using a modified chessboard and/or pieces can be
relaxed without greatly compromising performance. We have also demonstrated that the
constraint of having a fixed camera directly above the chessboard can be done away with
while still enjoying reasonable real-time performance. Use of seasoned motion planning
algorithms with various optimizations and constraints was also found to produce smoother
paths for manipulation chess pieces. We showed all of these using very simple hardware
and a limited amount of time. We also noticed that our imprecise hardware and limited
DOF posed great difficulties even for seasoned planning algorithms making realization of
a full successful game not possible due to overheating of motors. The limitation in DOF
can however be easily averted at cheap cost by adding just two more DOF to the robot
arm.

References

[Dia10] R. Diankov. Automated Construction of Robotic Manipulation Programs. PhD thesis,
Carnegie Mellon University, Robotics Institute, August 2010.

[GdBvIS92] F. C. A. Groen, G. A. der Boer, A. van Inge, and R. Stam. A chess playing robot: lab
course in robot sensor integration. In Instrumentation and Measurement Technology
Conference, 1992. IMTC ’92., 9th IEEE, pages 261 –264, May 1992.

[LaV98] S.M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Techni-
cal Report TR-98-11, Iowa State University, Computer Science Department, 1998.

[NN97] M. Newborn and M. Newborn. Kasparov Vs. Deep Blue: Computer Chess Comes of
Age. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[QCG+09] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and Y. N.
Andrew. ROS: an open-source Robot Operating System. In ICRA Workshop on Open
Source Software, 2009.

[Sch99] S. Schaffer. Enlightened Automata. In The Sciences in Enlightened Europe. (Eds.
William Clark, Jan Golinski, and Simon Schaffer), pages 126– 165, 1999.

[SHB07] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision.
Thomson-Engineering, 2007.


