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Dynamic VeloSLAM – Preliminary Report on 3D

Mapping of Dynamic Environments
Ming Li, Wei Li, Jian Wang, Qingquan Li, and Andreas Nüchter

Abstract—3D mapping using point cloud registration is a basic
inevitable problem for many applications, especially for modeling

of large scale complicated environments. This paper presents a
novel approach for mapping highly dynamic environments, i.e.,
we present a system capable for mapping road traffic scenarios.
Given 3D laser scans acquired at a high frame rate and no other
sensor input, a 3D map is built by removing dynamic parts of the
scene and estimating the ego-motion of the vehicle precisely at the
same time. We extend the well-known ICP algorithm for HDL-64
laser scan data and build a system for solving the simultaneous
localization and mapping problem in urban road scenarios. This
paper presents initial results on two data sets.

I. INTRODUCTION

T
HIS paper focuses on the problem of solving the si-

multaneous localization and mapping (SLAM) problem

in urban road scenarios. The proposed algorithms allow to

digitize large environments fast and reliably without any

intervention. A car equipped with a Velodyne HDL-64 laser

scanner acquires 3D data in urban scans – in heavy traffic. We

consider that the Velodyne scanner is moving along a path, and

that there are many moving vehicles and pedestrians around.

Figure 1 shows some camera images of the scenarios we want

to map.

The general problem we want to solve is to consistently

align overlapping 3D point clouds, captured by a high-speed

moving Velodyne HDL-64 Lidar, into a complete model. To

create such a model, the scans have to be merged into one

coordinate system. This process is called registration. If the

car carrying the 3D scanner were precisely localized, the
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Figure 1. Typical scenario, where we aim at precise 3D mapping. See also http://youtu.be/bHaZpQ_5wg8

registration could be done directly based on the pose of the

car. As the pose of the car is unknown, the geometric structure

of overlapping 3D scans has to be considered for registration.

However, this structure is changing, due to change of position

of the other moving objects. Therefore, moving objects need

firstly to be identified and be removed. We use a semantic-

driven approach for solving this task of identifying dynamic

objects in 3D scans. The overall system is called dynamic

VeloSLAM.

II. STATE OF THE ART

A. 3D point cloud registration

The goal of registration is to find the relative position and

orientation of one 3D scan, called the scene D, to another,

called model scan M . The most famous method for solving

this task is the iterative closest point (ICP) algorithm originally

developed by Besl and McKay [6], by Chen and Medioni [10]

and by Zhang [38] at the same time in 1991. The algorithm

relies on minimizing the following cost function:

E(R, t) =
1

N

N
∑

i=1

∥

∥mi − (Rdi + t)
∥

∥

2

. (1)

All corresponding points are represented in a tuple (mi,di)
where mi ∈ M ⊂ M̂ and di ∈ D ⊂ D̂. Two things

have to be calculated: First, the corresponding points, and

second, the transformation (R, t) that minimizes E(R, t) on

the basis of the corresponding points. The ICP algorithm uses

closest points as corresponding points. A sufficiently good

starting guess enables the ICP algorithm to converge to the

correct minimum. Four closed form solutions are known for

minimizing the ICP error function [24], such as a SVD-based

solution [1], a solution based on orthonormal matrices [19],

a unit quaternion [18], and a dual quaternion solution [34].

Rusinkiewicz and Levoy [30] provide a detailed analysis
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of efficient variants of the ICP approach, discussing point-

to-point vs. point-to-plane metrics, nearest neighbor assign-

ment strategies and different rejection rules. In the case that

the scene includes points which are not part of the model

(from a non-overlapping or previously occluded area), wrong

correspondences are assigned for these points which might

lead to an erroneous result [13]. The simplest solution is

the use of a distance threshold. Corresponding tuples are

rejected if their Euclidean distance exceeds this value. Several

strategies are possible to determine suitable thresholds, e.g.,

a gradual decreasing threshold with respect to the iteration

step. In general, these thresholds increase the registration per-

formance on partially overlapping point clouds significantly,

but are difficult to parameterize for not getting stuck in a

local minimum. Many extensions to the ICP approach have

been published addressing the determination of valid point

correspondences from overlapping parts. Chetverikov et al.

proposed the Trimmed ICP (TrICP) approach [12]. It employs

a parameter representing the degree of overlap, i.e., the number

of corresponding points N .

Recently, alternatives to ICP have been presented. These

include [28], which uses a squared distance function and the

normal distribution transform (NDT) [7], [26]. An extension

to the NDT algorithm to globally consistent scan matching is

still missing.

While registering several 3D data sets using the ICP al-

gorithm errors sum up. These errors are due to imprecise

measurements and small registration errors. Therefore, glob-

ally consistent scan matching algorithm aim at reducing these

errors.

B. Globally consistent 3D scan matching

Chen and Medioni [11] aimed at globally consistent range

image alignment when introducing an incremental matching

method, i.e., all new scans are registered against the so-

called metascan, which is the union of the previously acquired

and registered scans. This method does not spread out the

error and is order-dependent. Bergevin et al. [5], Stoddart and

Hilton [33], Benjemaa and Schmitt [3], [4], and Pulli [29]

present iterative approaches. Based on networks representing

overlapping parts of images, they use the ICP algorithm for

computing transformations that are applied after all corre-

spondences between all views have been found. However, the

focus of research is mainly 3D modeling of small objects

using a stationary 3D scanner and a turn table; therefore,

the used networks consist mainly of one loop [29], where

the loop closing has to be smoothed. On the other hand,

approaches like TORO and HOG-Man by Grisetti et al. [14],

[16], [15] focus on optimizing large networks of 3D scans

and lack a proper data association, i.e., scan matching module.

A probabilistic approach to such a module was proposed by

Williams et al. [35], where each scan point is assigned a

Gaussian distribution in order to model the statistical errors

made by laser scanners. This causes high computation time

due to the large amount of data in practice. Krishnan et al. [23]

presented a global registration algorithm that minimizes the

global error function by optimization on the manifold of 3D

Figure 2. SmartV-II: An Autonomous car developed at Wuhan University.

rotation matrices. Borrmann et al. first presents a globally

consistent scan registration framework called 6DSLAM [9]

and Nüchter et al. presents a study of parameterizations for the

rigid body transformations of general SLAM problem [27].

C. Mapping dynamic environments

Only a little work has been done in the area of mapping

dynamic environments, especially in 3D. Seminal work was

done by Dirk Schultz where a mobile robot explored and

mapped an indoor environment [31]. The localization was

done using Monte Carlo, and dynamic objects were detected

using the idea of templates. Promising work was done by

Becker et al. in [2]. Using 2D laser scans, the approach

successfully managed to detect dynamic objects and mark

them as such in the resultant map. However, the vehicle was

stationary when the scans were taken. Further approaches were

presented in [37], [8]. Bobruk and Austin use grid mapping

for localization, and then scan subtraction to find dynamic

objects [8]. Yu et al., Himmelsbach et al., and Kondaxakis et

al. use scan matching and/or odometry to localize robot, and

then scan comparison to detect dynamic objects [37], [17],

[21].

The approach described by Wu and Sun [36] uses motion

detection to remove dynamic objects from the final map and

create accurate 3D maps using SLAM. Currently, the best

results were achieved by Katz et al [20]. The approach used

segmentation and clustering of data, and scan matching for

localization, and gave very good results for a forward looking

laser sensor. Full 6D SLAM in dynamic environments is still

not solved.

III. PRELIMINARIES

The system used in this paper consists of an automatic

vehicle developed at Wuhan University, called SmartV-II (cf.

Fig. 2). In this study we use only the Velodyne HDL-64 laser

sensor mounted on top of the car at a height of 2.10][m.

Figure 3 presents the algorithmic overview. The most impor-

tant part is the red box, i.e., the method for removing dynamic

objects. However, mapping a static environment does not need

to consider this part.

IV. SLAM WITH A VELODYNE SCANNER IN STATIC

ENVIRONMENTS

We use our 6D SLAM method [9]. Its basis is a fast

and reliable scan matching algorithm for ICP and Lu/Milios
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Figure 3. Overview of the VeloSLAM method.

style relaxation [25]. Please see [9] for the estimation of the

covariance matrices and the equation solver, the latter one is

our current SLAM back end. The back end is based on a sparse

Cholesky decomposition.

A. 6D SLAM based ICP Based Scan Matching

We use the ICP algorithm to calculate the transformation

while the car is acquiring a sequence of 3D scans by minimiz-

ing Eq. (1). Consider a car driving along a path, and traversing

(n+1) 3D scan poses X0, . . . ,Xn. A straightforward method

for aligning several 3D scans taken from the poses X0, . . . ,Xn

is pairwise ICP, i.e., matching the scan taken from pose X1

against the scan from pose X0, matching the scan from X2

against the one from X1, and so on.

Once a closed loop is detected, a 6 DoF graph optimization

algorithm for global relaxation is employed, a variant of

GraphSLAM. Our method relies on a notion of the uncertainty

of the poses, calculated by the registration algorithm. We

extend the probabilistic approach first proposed in [25] to

6 DoF. For a more detailed description of the extension refer to

[9]. However, before we apply the graph optimization, we use

the explicit loop closing heuristic (ELCH) [32] at the point,

where a loop closing is detected.

ELCH aims at reducing the run time of our mapping

system such that it performs fast in large environments. ELCH

efficiently closes the loop and aligns scans consistently by

avoiding or reducing the iterative 3D scan matching over all

scans, in the extension of Lu/Milios Scan Matching to 6 DoF,

i.e., in principle, it is possible to neglect the bottom gray box

in Fig. 3. ELCH operates with 6D poses, i.e., is able to handle

robot motion with six effective degrees of freedom (translation

and rotation). A detailed description of the heuristics is given

in [32].

B. Mapping results in static environments

Data for this experiment was acquired at Wuhan university

at night to ensure that there are no moving objects in the scene.

The static dataset contains 953 3D point clouds, acquired every

0.1 second, each containing 138240 3D points.

For processing data of a Velodyne scanner, we preprocess

the data using octree-based subsampling. Starting from a cube

surrounding the scan data, we subdivide the cube recursively

until its side length is smaller than 0.1 m and select randomly

one point from the cube. Using these down-sampled 3D

point clouds we use incremental ICP-based scan matching

for obtaining an initial pose estimate. The threshold for the

maximal allowed point-to-point distance is set to 0.2 m. Fig. 4

(top left) shows the mapping result using this plain vanilla

ICP.

Since the points on the ground do not provide any in-

formation for the registration task, ICP is only successful,

after removing these points below 1.80 m from the scanner,

the registration becomes much more precise. Fig. 4 (bottom)

presents a result.

While registering several 3D point clouds small registration

inaccuracies sum up and therefore the loop is not closed.
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Figure 4. Mapping results using a Velodyne scanner. Top left: Plain vanilla ICP. Top right: Precise registration result using ICP and globally consistent scan
matching. Bottom: ICP-based registration after removing ground points.

Table I
RUNTIMES IN SECONDS FOR THE STATIC ENVIRONMENT DATA SET ON AN

INTEL(R) CORE(TM)2 QUAD CPU Q9450 @ 2.66GHZ.

algorithm run time

ICP scan matching 225.28 s
ELCH heuristic 0.41 s
Global relaxation 740.55 s

Since the car is returning to its initial position, we can form a

network of overlapping scans, i.e., a pose graph. The loop

closing is triggered whenever the pose estimate of the car

reaches a position within 7.5 m to a previously encountered

position. We optimize the resulting graph using the globally

consistent scan matching method [9], again with a maximal

allowed point-to-point distance is set to 0.2 m for 50 iterations.

The final result is given in Fig. 4 (top right) and the run times

are given in Table I.

V. SLAM IN DYNAMIC ENVIRONMENTS

The process of point cloud registration by our dynamic

VeloSLAM can be formulated as two steps. First, we remove

the points of ground and moving objects. Second, we perform

ICP-based 6D SLAM of the points labeled as static.

A. Ground and moving objects detection

To build a unified framework for dynamic VeloSLAM,

we do not extend our previously discussed straight-forward

ground point cutoff. Our general method for point cloud

segmentation is to put all 3D points into a 2D occupancy

grid data structure aligned to the (X,Z)-axis of the coordinate

system. Then, the features of points in the grid are computed,

such as the variance (σ). The variance indicates the tendency

of variable dispersion, so if the variance of the cell is below

a certain threshold, we treat this cell as flat and then delete

all points belonging to that cell. In our approach, the grid cell

size is 0.1 m × 0.1 m and the threshold of variance for ground

points is set to 0.23.

When segmenting a 3D point cloud, a problem arises with

all objects standing on the ground. For example, the feet of a

human have roughly the same height value as the ground at

the point he is standing on. The feet and the floor form only a

crease edge, no jump edge. This problem is solved by ground

point removal described above.

After the ground segmentation, one scan of point cloud

was divided into many separated objects. In a typical urban

environment, there is a wide variety of objects such as vehi-

cles, pedestrians, buildings, etc. We use low-level geometric

features, i.e., PCA features, for classification of the objects.

This approach is motivated by the tensor voting approach

of Kornprobst and Medioni [22]. The local spatial point

distribution over some neighboring area is captured by the

decomposition into principal components of the covariance

matrix of the 3D point’s position. The size of the neighborhood

is considered as the support region and defines the scale of the

features. The symmetric positive definite covariance matrix for

a set of N 3D points (pi) = ((xi, yi, zi)) with p̄ = 1

n

∑

n

1
pi

is defined in Equation (2).

1

N

N
∑

i=1

(pi − p̄)(pi − p̄)T . (2)

The matrix is decomposed into principal components ordered
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Figure 5. Illustration of the PCA features.

by increasing eigenvalues. e0, e1, e2 are the eigenvectors

corresponding to the eigenvalues λ0, λ1, λ2 respectively, i.e.,

λ0 ≥ λ1 ≥ λ2.

In the case of scattered points, we have λ0 ≈ λ1 ≈ λ2 and

no dominant direction is found. In the case of a linear struc-

ture, the principal direction will be the tangent at the curve,

with λ0, λ1, λ2. Finally, in the case of a solid surface, the

principal directions are aligned with the surface normal with

λ0, λ1, λ2 and e0, e1, e2 span the local plane of observations.

Those features, named scatter-ness, linear-ness and surface-

ness, are linear combinations of the eigenvalues. Figure 5 (top)

illustrates the three features used to find moving objects such

as vehicles and pedestrians.

To be invariant to the rotation of occupancy grid, we

identify a reproducible orientation for the interest points. After

removing of ground and dynamic objects we proceed with 6D

SLAM as described in section IV-A.

B. Results in dynamic environments

To validate our approach, we collected a data set on the

road from Wuhan to Huangshi . We select a roundabout in the

road as main experimental scene. Figure 6 shows the traffic

circle. We processed 2000 3D scans each containing 2160×64
range data points. Figure 7 (top left) shows the result of ICP

matching without object and ground removal in comparison to

the final results (top right). Interestingly, the plain vanilla ICP

is able to recover the basic orientation, while the estimated

rotations and translations are too small. This might be due to

the fact, that a high overlap and low error value of Eq. (1)

is obtained by registering scans exactly at the same pose.

Figure 7 (bottom) shows two intermediate mapping results,

before and after loop closing. The car continued driving as

given in Figure 7 (top right). When comparing the mapping

result with a given map, i.e., with Figure 6 one sees, that the

result is a circle. However, the traveled distance is still too

Figure 6. The traffic circle used for mapping evaluation.

Table II
RUNTIMES IN SECONDS FOR THE DYNAMIC ENVIRONMENT DATA SET ON

AN INTEL(R) CORE(TM)2 QUAD CPU Q9450 @ 2.66GHZ.

algorithm run time

removal of objects 2.1 s
ICP scan matching 450.24 s
ELCH heuristic 0.51 s
Global relaxation 186.08 s

small and therefore, the resulting circle is too large. Neither

with the ICP algorithm nor with loop closing nor with global

relaxation is possible to obtain a accurate map. The detailed

runtimes of this experiment are given in Table II.

VI. CONCLUSIONS

This paper has presented results on 3D mapping with a

Velodyne scanner. Furhtermore, we show our initial mapping

results in highly dynamic environments. Road traffic as well as

stop and go traffic provide a highly challenging scenario and

using the Velodyne HDL-64 laser scanner one is in principle

able to acquire sufficient information for reliably 3D mapping.

The crucial part is the removal of dynamic objects. Needless to

say a lot of work remains to be done. In future work, we will

concentrate on improving the removal of dynamic objects. To

this end, we plan to implement a hierarchal, i.e., octree-based,

tracking of objects.
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