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Abstract: The planning of mining operations in water filled open-pit mines requires detailed
bathymetry to create a mine plan and assess the involved risks. This paper presents post-
processing techniques for creating an improved 3D model from a survey carried out using
an autonomous surface vehicle with a multibeam sonar and a GPS/INS navigation system.
Inconsistencies of the created point cloud as a result of calibration errors or GPS signal loss
are corrected using a continuous-time simultaneous localization and mapping (SLAM) solution.
Signed distance function (SDF) based mapping is employed to fuse the measurements from
multiple runs into a consistent representation and reduce sensor noise. From the signed distance
function model we reconstruct a 3D surface mesh. We use this terrain model to establish a
virtual reality scene for immersive data visualization of the mining operations for testing and
planing during development. Results of the proposed approach are demonstrated on a dataset
captured in an abandoned submerged inland mine.
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1. INTRODUCTION

The presented work was carried out within the Horizon
2020 research project Viable Alternative Mine Operating
System (¡VAMOS!). The objective of this project is the
development of a prototype mining system to extract raw
materials from an abandoned water-filled open-pit mine.
These inland mines have been considered depleted in the
past because with previous mining techniques it was not
economically viable anymore to continue operations. To-
day, with rising prices of certain rare ores it might become
interesting again to re-open these mines in order to access
deeper seated minerals. However, once the mining oper-
ations stop and no water control is carried out anymore
open-pit mines eventually fill up with ground or surface
water. Conventional mining techniques require high treat-
ment and dewatering costs. This is especially problematic
in the presence of high pressure aquifers. Moreover, from
an environmental perspective it is desirable that the wa-
ter table of these flooded inland mines is not changed.
Therefore, the ¡VAMOS! project aims to develop a new
remotely controlled underwater mining technique, which
is environmentally and economically more viable than the
state-of-the-art.

A virtual reality scene of the envisioned mining system is
depicted in Fig. 1. From a launch and recovery vessel a

mining vehicle is lowered to the bottom of the mine pit.
It is remotely controlled from a control center located on
the surface via optical fiber and electrically powered by
an umbilical cord. The mining vehicle cuts the ore using a
hydraulic roadheader type cutter. The ore is collected by
a suction mouth located below the cutter and the slurry
is pumped to the surface through a vertical riser hose.

For planning these types of operations and assessing the
viability of performing mining trials detailed bathymetry
of potential mining sites are necessary. However, many
older mines do not have detailed historic records available.
Moreover, the records might not represent the current
state due to backfilling or instabilities. Therefore, updated
map data is necessary to asses the mine site.

The presented bathymetric survey was carried out at the
Bejanca mine site near Queirã village in Portugal. Mining
operations were conducted there between 1919 and 1942.
The minerals of interest in the open-pit mine are tin and
tungsten. After the mine was closed in 1945 the pit filled
with water from the winter rains. The survey showed that
there has been significant backfilling, which results in a
rather shallow waterbody. The submerged mine exhibits
water depths of up to 27 m and a size of 125 m× 90 m.

The dataset was recorded with an autonomous surface
vehicle (ASV) equipped with a multibeam sonar, Global



Fig. 1. Virtual reality scene of the ¡VAMOS! underwater mining system with the created terrain surface model.

Positioning System (GPS) and inertial navigation system
(INS). Some errors are introduced in the multibeam sur-
vey due to inaccuracies of the vehicle motion data and
calibration errors.

In this paper we propose post-processing techniques for
creating a more consistent 3D mine model. The ASV
took multiple passes of the mine with varying amount of
overlap between individual laps, which can be exploited
to compute an improved solution using a simultaneous
localization and mapping (SLAM) algorithm. In this work
we look at the problem of SLAM as a global trajectory
optimization problem. We find an improved trajectory,
such that the global consistency of point measurements
is optimized. Moreover, we show how signed distance
function (SDF) based mapping can be applied to fuse
multiple observations into a single consistent surface rep-
resentation. From the established mine model we create
a virtual reality scene for immersive data visualization
to find suitable landing positions for the mining vehicle,
create a mine plan, or perform simulations.

2. STATE OF THE ART

Typically bathymetric maps are created with multibeam
echosounders. The vehicle motion is compensated using an
attitude reference system and Global Navigation Satellite
System (GNSS). Nowadays, different SLAM techniques
have been proposed to improve the underwater surveys.

In man-made structured environments, such as harbors,
feature-based SLAM approaches have been proven to
be effective. Typically employed features include planar
patches (Pathak et al., 2010; Ozog and Eustice, 2013) and
line features (Ribas et al., 2008).

An example of a feature-less approach is the algorithm
described by Barkby et al. (2012). They use Particle
Filter based SLAM to create a 2.5D point cloud of the

seafloor. Individual particles are weighted based on how
well the multibeam measurements agree with the global
elevation map. Loop closures are detected using a Gaussian
process regression of previous sonar beam observations.
This allows to detect loop closures with minimal overlap
and enforces consistency of neighboring map borders even
if there is no overlap.

Roman and Singh (2005) divide the terrain map into
smaller sub-maps that are assumed to be error free. Over-
lapping sub-maps are first coarsely aligned using cross
correlation and then the Iterative Closest Point (ICP)
algorithm is used for fine registration. The relative pose
measurements are then used to further constrain an Ex-
tended Kalman Filter (EKF) based mapping procedure.
Bichucher et al. (2015) extend this approach with a Graph
SLAM based framework to improve the full trajectory.
Palomer et al. (2016) propose a coarse-to-fine scan match-
ing technique using ICP, which takes point measurement
uncertainties into account during submap registration.
The proposed approach in this paper differs from these
methods in the sense that it does not partition the trajec-
tory into submaps, which are matched using rigid regis-
tration, but employs a continuous-time SLAM algorithm.

For many bathymetry application 2.5D digital elevation
maps (DEM) are created. More recently creating dense
surface models from sonar imaging has become of interest.
However, the significant amount of noise in acoustic mea-
surements makes it challenging to extract surface meshes
directly from the point cloud. Therefore, for reconstructing
meshes from noisy data often the point measurements are
integrated into an implicit surface description (Hornung
and Kobbelt, 2006) or robust local surface descriptors are
fitted to the 3D point cloud (Campos et al., 2014). Our
work follows this direction and uses an SDF voxel map as
an intermediate implicit surface model to create a more
noise free representation.



3. MULTIBEAM SONAR SURVEY OF A
SUBMERGED INLAND MINE

The robotic boat used for the mine mapping is the ASV
ROAZ (Ferreira et al., 2009). It is a 4m long twin hull
robotic vehicle with electric propulsion and autonomous
navigation and control, see Fig. 2. For bathymetric map-
ping it is equipped with an Imagenex Delta T multibeam
profiling sonar, which has a fan angle of 120 deg and a max-
imum range of 100 m. The experiments were conducted
with a resolution of 480 beams and a beam width of
1.5 deg. Sonar data was recorded at 10 Hz.

For positioning and localization of the vehicle a L1/L2 pre-
cision GPS unit with Real Time Kinematic (RTK) differ-
ential corrections and a fiber optic based INS were installed
on the robotic boat. The employed fiber optic gyro features
a very low drift rating of only 0.05 deg /h. A high precision
localization solution is later obtained by post-processing
the raw INS data in combination with the raw GPS data.
The post-processing step is performed using the Inertial
Explorer software (NovAtel, 2016), where all raw GPS
observations are processed in RTK and integrated with
raw inertial measurements in a tightly coupled manner.

The multibeam sonar, GPS antenna and INS were
mounted rigidly to the same sensor bar. This was done
to ensure that the relative positions and orientations stay
consistent even during transport, which requires some
disassembly. The sensor bar was mounted to the front
of the vehicle with the multibeam sonar only a few cen-
timeters below the water surface. The translation offsets
between the individual sensors were measured manually.
Rotational offsets between the INS and multibeam sonar
are later estimated using a calibration routine as described
in Sec 4.1. All sensor measurements are recorded with GPS
timestamps for correct data association.

The use of an ASV with autonomous navigation and
synchronized on board logging capabilities allowed for
an efficient data acquisition process. A trajectory was
chosen, such that there is about 30 - 50% overlap between
individual laps of the surface vehicle and all parts of the
mine are covered multiple times.

Fig. 2. ROAZ surface vehicle at the Bejanca mine site.

4. 3D MINE MAPPING AND MULTIPLE-VIEW
DATA INTEGRATION

For integrating measurements from multiple passes with
the multibeam sonar we choose to employ SDF-based
mapping. SDF voxel maps represent the surfaces implicitly
by storing in each voxel cell the signed distance to the
closest surface. Typically, the signed distance is only stored
in a narrow band around the surfaces, which is referred
to as a truncated signed distance function (TSDF). This
representation became popular in the robotic mapping
community with the work of Newcombe et al. (2011) on
KinectFusion, which demonstrated excellent real time 3D
reconstruction and tracking results.

A SDF map is a beneficial surface representation because
noisy measurements are smoothed over multiple observa-
tions. However, overlap errors between multiple laps of the
multibeam survey due to inaccuracies of the vehicle trajec-
tory measurement or calibration errors can result in errors
of the SDF model. In this case individual scan segments
might not line up very well, which creates artifacts in
the resulting surface model, such as additional surfaces or
gaps in the 3D reconstruction. Therefore, we first apply a
continuous-time SLAM technique to compute an improved
trajectory of the robotic vehicle, which optimizes point
cloud consistency. The examples shown in this paper are
specific to a multibeam sonar, and the surface vehicle does
not perform fully unconstrained 6-DOF motion. Please
note that the proposed approach generalizes well to other
types of sensors and unrestricted motion.

4.1 Calibration

Although great care was taken to mount the INS and
multibeam sonar aligned to the sensor bar, we need to
calibrate the rotational offset between the two reference
systems. Even very small alignment errors introduce large
inconsistencies in the resulting point cloud. To do this we
manually select a short trajectory segment, which we can
assume to have minimal drift. Then the rotational offset
is optimized based on an error measurement which deter-
mines point cloud quality similar to Sheehan et al. (2012).
The error measurement is computed by splitting the tra-
jectory into overlapping parts and calculating a point
distance error based on closest point correspondences. We
find the rotational offset parameters that minimize the
error and verify the result on different trajectory segments.

4.2 Continous-time SLAM

For processing the multibeam sonar data, we employ
a continuous-time SLAM solution, also called semi-rigid
SLAM. To understand the basic idea, we summarize its
basis, 6D SLAM, which was initially designed as a Graph-
SLAM solution for point clouds. 6D SLAM works similarly
to the the well-known ICP algorithm, which minimizes the
following error function

E(R, t) =
1

N

N∑
i=1

∥∥mi − (Rdi + t)
∥∥2 (1)

to solve iteratively for an optimal transformation T =
(R, t) with rotation R and translation t, where the tuples



(mi,di) of corresponding model M and data points D are
given by minimal distance, i.e., mi is the closest point to
di within a close limit (Besl and McKay, 1992). Instead of
the two-scan-Eq. (1), we look at the n-scan case:

E =
∑
j→k

∑
i

|Rjmi + tj − (Rkdi + tk)|2 , (2)

where j and k refer to scans of the SLAM graph, i.e., to
the graph modelling the pose constraints in SLAM. If they
overlap, i.e., closest points are available, then the point
pairs for the link are included in the minimization. We
solve for all poses at the same time and iterate like in
the original ICP. The derivation of a GraphSLAM method
using a Mahalanobis distance that describes the global
error of all the poses

W =
∑
j→k

(Ēj,k −E′j,k)TC−1j,k(Ē′j,k −E′j,k) (3)

where E′j,k is the linearized error metric and the Gaus-

sian distribution is (Ēj,k,Cj,k) with computed covariances
from scan matching as given in Borrmann et al. (2008)
does not lead to different results. Please note, while there
are four closed-form solutions for the original ICP Eq. (1),
linearization of the rotation in Eq. (2) or (3) is always
required.

Semi-rigid SLAM. The algorithm is adopted from Else-
berg et al. (2013), where it was used in different mobile
mapping contexts. We make no rigidity assumptions, ex-
cept for the computation of the point correspondences.
We also require no explicit motion model. This means
the specific dynamics of the employed vehicle do not need
to be known. The continuous-time SLAM for trajectory
optimization works in full 6 DoF. The algorithm requires
no computation of high-level visual or geometric feature
descriptors, i.e., we require only the points themselves.

In case of multibeam sonar mapping, we do not have
separate 3D point clouds, just slices. In the current state of
the art developed by Bosse and Zlot (2009) for improving
overall map quality of mobile mappers in the robotics
community the time is coarsely discretized. This results in
a partition of the trajectory into sub-scans that are treated
rigidly. Then rigid registration algorithms like the ICP
and other solutions to the SLAM problem are employed.
Obviously, trajectory errors within a sub-scan cannot be
improved in this fashion. Applying rigid pose estimation
to this non-rigid problem directly is also problematic since
rigid transformations can only approximate the underlying
ground truth. When a finer discretization is used, single 2D
scan slices or single points result that do not constrain a
6 DoF pose sufficiently for rigid algorithms.

Mathematical details of our algorithm are given in Else-
berg et al. (2013). Essentially, we first split the trajec-
tory into sections, and match these sections using the
automatic high-precise registration of terrestrial 3D scans,
i.e., globally consistent scan matching (Borrmann et al.,
2008). Here, the graph is estimated using a heuristics
that measures the overlap of sections using the number of
closest point pairs. After applying globally consistent scan
matching on the sections the actual semi-rigid matching
as described in Elseberg et al. (2013) is applied, using
the results of the rigid optimization as starting values to
compute the numerical minimum of the underlying least

square problem. To speed up the calculations, we make use
of the sparse Cholesky decomposition.

A key issue in continuous-time SLAM is the search for
closest point pairs. We use an octree and a multi-core im-
plementation using OpenMP to solve this task efficiently.
A time-threshold for the point pairs is used, i.e., we match
only to points, if they were recorded at least td time steps
away. For the presented experiments we choose a duration
of 30 s which corresponds to 300 sonar scan slices. In ad-
dition, we use a maximal allowed point-to-point-distance
which has been set to 50 cm.

4.3 Signed Distance Function Based Mapping

We integrate all sonar scans into a SDF voxel model based
on the optimized trajectory computed by the continuous-
time SLAM solution. The signed distance measurement
d(v) for a voxel with center v is computed as follows

d(v) = m−
∥∥p− v

∥∥ , (4)

where p is the sensor position and m is the distance mea-
surement of the sensor. Multiple measurements of the same
voxel cell are integrated based on a weighting function
f . This way noise cancels out over multiple observations.
We store in each voxel cell the signed distance s(v) and
the weight w(v). To integrate a new measurement d(v) at
iteration k + 1 we compute the weighted average

sk+1(v) =
wk(v)sk(v) + fdk+1(v)

wk(v) + f
, (5)

where f is a weight assigned to the new measurement. The
signed distance is truncated to the interval [smin; smax].
Since we do not have an accurate noise model of the sonar
sensor uniform weights (f = 1) are employed. The weight
is updated by

wk+1(v) = min(wk(v) + f, wmax) , (6)

where wmax is the maximum weight. For the experiments
in this paper we choose wmax = 20.

SDF-based mapping is not completely robust to coarse
outliers. Noisy surfaces are only smoothed if the individual
measurements lie within a certain band, which is deter-
mined by the penetration depths Dmin and Dmax of the
TSDF. Underwater sonar sensors typically exhibit some
amount of coarse outliers. Measurement points that lie
outside the truncation thresholds are integrated as addi-
tional surfaces. To address this problem we choose a large
truncation threshold of 1.5 m. This limits the minimum
thickness of objects that can be represented by the SDF
model. However, in the particular case of the submerged
inland mine this is not an issue because we only want to
represent a single surface of the mine floor. To remove
erroneous integrated surfaces we filter the SDF voxels
based on the weight. This is based on the assumption that
voxels representing real surfaces carry a higher weight, i.e.,
are observed more often, compared to voxels filled from
measurement outliers.

For modeling the mine we choose a voxel resolution of
10 cm. This means the TSDF space of the entire mine has
a size in the order of a billion voxels. In order to store
large maps with low memory consumption we need to
encode free space efficiently. Different techniques to do
this have been proposed: Whelan et al. (2012) store a
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Fig. 3. Initial (black dashed line) and optimized (red line) trajectory (a,b), and cross sections of the point clouds created
using the initial GPS/INS (c) and optimized trajectory (d).

dense representation of the TSDF dynamically in a small
predefined volume around the sensor in motion. The parts
of the map that move outside this volume are converted to
a triangular mesh and only the mesh is stored. Methods
for storing the entire TSDF are voxel hashing (Nießner
et al., 2013) or octree data structures (Steinbrücker et al.,
2014). For this work we use a B-tree based data struc-
ture (Museth, 2013) to store the complete sparse TSDF
grid. The tree has constant depth, which allows constant
time local and random traversals. We use a three-level tree
with branching factors decreasing closer to the leaves.

To integrate the multibeam data in the TSDF we follow
the generalized sensor fusion approach proposed by May
et al. (2014). We model the multibeam as a polar line
sensor with a beam width of 1.5 deg. Individual voxel cells
within measurement range are then updated based on back
projection using this sensor model. From the scalar TSDF
grid we finally extract a surface mesh for visualization
using the marching cubes algorithm.

4.4 Results

To demonstrate the continuous-time SLAM algorithm
Fig. 3 shows results on a trajectory with significant drift of
multiple meters. In this specific case the GPS signal was
lost temporarily during data acquisition, which explains
the large trajectory errors. The dataset consists of 7291
multibeam scans captured at 10 Hz. It was captured in
13 min and the trajectory is 757 m long (result of the
SLAM solution). Fig. 3 (a,b) depict the initial GPS/INS
trajectory as a black dashed line and the optimized trajec-
tory as a red continuous line. The x/y-plane is aligned par-
allel to the water surface. We can see that SLAM converges
to a solution that puts the sensor poses closer to a planar
motion as expected for a surface vehicle. Please note that
the algorithm does not impose any movement constraints
or rely on a vehicle motion model. Cross sections of the
resulting point cloud are displayed in Fig.3 (c,d). We can
clearly see misalignment between multiple passes of the
multibeam sonar in the initial result shown in Fig.3 (c).
Point measurements line up well using the improved tra-
jectory estimate based on continuous-time SLAM visual-
ized in Fig.3 (d).

Moreover, also data captured with a good GPS/INS result
can be further improved using the proposed techniques

as depicted in Fig. 4. Fig. 4(a) shows the resulting point
cloud using the GPS/INS trajectory while Fig. 4(b) shows
the result using the optimized trajectory from continuous-
time SLAM. The color encodes the depth. This dataset
consists of 12786 multibeam scans captured at 10 Hz. It
was captured in 22 min and the trajectory is 1567 m long
(result of the SLAM solution). Especially at the bottom
of the mine it is visible that the multibeam measurements
are more consistent in the optimized results. This can be
seen more clearly in the cross sections of the point clouds
presented in Fig. 4(e) and Fig. 4(f).

Consequently, the extracted mesh from the SDF represen-
tation using the optimized continuous-time SLAM solu-
tion, depicted in Fig. 4(d), exhibits smoother surfaces than
the initial result depicted in Fig. 4(c). Despite the noise of
the measurements a smooth surface can be extracted if a
sufficient amount of repeated observations are available.

The borders of the mine show holes in the mesh. This is a
result of the irregular and low point density of the sonar
measurements due to limited coverage close to the borders
of the mine. Since this is undesirable, we later interpolate
the holes for display in the virtual reality system.

5. CONCLUSION

In this paper we showed first results on creating a de-
tailed terrain model of a submerged inland mine from
a multibeam sonar survey. We demonstrate that SLAM
techniques are effective to remove inconsistencies due to
inaccuracies of the motion data. Moreover, we presented a
signed distance function based approach for data fusion.

Rendering a surface mesh for visualization compared to a
point cloud is advantageous because it allows the human
operator to see the surfaces and structure more clearly.
We integrate the terrain model into a virtual reality scene
together with prototype models of the envisioned mining
system, which is used for pre-planning, visualization and
development.
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Fig. 4. Initial (a) and optimized (b) 3D point cloud, surface mesh extracted from SDF model using initial GPS/INS (c)
and continuous-time SLAM solution (d), and a cross section of initial (e) and optimized (f) point cloud.
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