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We propose a new approach to appearance-based loop detection for mobile robots, using
three-dimensional (3D) laser scans. Loop detection is an important problem in the simul-
taneous localization and mapping (SLAM) domain, and, because it can be seen as the
problem of recognizing previously visited places, it is an example of the data association
problem. Without a flat-floor assumption, two-dimensional laser-based approaches are
bound to fail in many cases. Two of the problems with 3D approaches that we address in
this paper are how to handle the greatly increased amount of data and how to efficiently
obtain invariance to 3D rotations. We present a compact representation of 3D point clouds
that is still discriminative enough to detect loop closures without false positives (i.e.,
detecting loop closure where there is none). A low false-positive rate is very important be-
cause wrong data association could have disastrous consequences in a SLAM algorithm.
Our approach uses only the appearance of 3D point clouds to detect loops and requires no
pose information. We exploit the normal distributions transform surface representation
to create feature histograms based on surface orientation and smoothness. The surface
shape histograms compress the input data by two to three orders of magnitude. Because
of the high compression rate, the histograms can be matched efficiently to compare the
appearance of two scans. Rotation invariance is achieved by aligning scans with respect
to dominant surface orientations. We also propose to use expectation maximization to fit
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a gamma mixture model to the output similarity measures in order to automatically de-
termine the threshold that separates scans at loop closures from nonoverlapping ones. We
discuss the problem of determining ground truth in the context of loop detection and the
difficulties in comparing the results of the few available methods based on range infor-
mation. Furthermore, we present quantitative performance evaluations using three real-
world data sets, one of which is highly self-similar, showing that the proposed method
achieves high recall rates (percentage of correctly identified loop closures) at low false-
positive rates in environments with different characteristics. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

For autonomously navigating mobile robots, it is es-
sential to be able to detect when a loop has been
closed by recognizing a previously visited place. One
example application is when performing simulta-
neous localization and mapping (SLAM). A com-
mon way to perform SLAM is to let a robot move
around in the environment, sensing its surroundings
as it goes. Typically, discrete two-dimensional (2D) or
three-dimensional (3D) laser scans are registered us-
ing a local scan registration algorithm in order to cor-
rect the robot’s odometry and improve the estimate
of the robot’s pose (that is, its position and orienta-
tion) at each point in time. The scans can be stitched
together at their estimated poses in order to build
a map. However, even though good scan registra-
tion algorithms exist [for example, 3D-normal distri-
butions transform (NDT) (Magnusson, Lilienthal, &
Duckett, 2007)], pose errors will inevitably accumu-
late over longer distances, and after covering a long
trajectory the robot’s pose estimate may be far from
the true pose. When a loop has been closed and the
robot is aware that it has returned to a previously
visited place, existing algorithms can be used to dis-
tribute the accumulated pose error of the pairwise
registered scans in order to render a consistent map.
Some examples are the tree-based relaxation meth-
ods of Frese, Larsson, and Duckett (2005) and Frese
and Schröder (2006) and the 3D relaxation methods
of Grisetti, Grzonka, Stachniss, Pfaff, and Burgard
(2007) and Borrmann, Elseberg, Lingemann, Nüchter,
and Hertzberg (2008). However, detecting loop closure
when faced with large pose errors remains a difficult
problem. As the uncertainty of the estimated pose of
the robot grows, an independent means of detecting
loop closure becomes increasingly important. Given
two 3D scans, the question we are asking is, “Have
I seen this before?” A good loop detection algorithm
aims at maximizing the recall rate; that is, the per-
centage of true positives (scans acquired at the same

place that are recognized as such), with a minimum of
false positives (scans that are erroneously considered
to be acquired at the same place). False positives are
much more costly than false negatives in the context
of SLAM. A single false positive can render the map
unusable if no further measures are taken to recover
from false scan correspondences. On the other hand,
a relatively low number of true positives is often ac-
ceptable, given that several scans are acquired from
each overlapping section. As long as a few of these
scans are detected, the loop can be closed.

We present a loop detection approach based
on the appearance of scans. Appearance-based ap-
proaches often use camera images (Booij, Terwijn,
Zivkovic, & Kröse, 2007; Cummins & Newman, 2007,
2008a, 2008b, 2009; Konolige et al., 2009; Valgren &
Lilienthal, 2007). In this work, however, we consider
only data from a 3D laser range scanner. Using the
proposed approach, loop detection is achieved by
comparing histograms computed from surface shape.
The surface shape histograms can be used to recog-
nize scans from the same location without pose in-
formation, thereby helping to solve the problem of
global localization. Scans at loop closure are sepa-
rated from nonoverlapping scans based on a “differ-
ence threshold” in appearance space. Pose estimates
from odometry or scan registration are not required.
(However, if such information is available, it could be
used to further increase the performance of the loop
detection by restricting the search space.) Though
we have chosen to term the problem “loop detec-
tion,” the proposed method solves the same prob-
lem that Cummins and Newman (2009) refer to as
“appearance-only SLAM.”

Existing 2D loop detection algorithms could po-
tentially be used for the same purpose, after extract-
ing a single scan plane from the available 3D scans.
However, in many areas it may be advantageous to
use all of the available information. One example is
for vehicles driving over rough surfaces. Depending
on the local slope of the surface, 2D scans from nearby
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positions may look quite different. Therefore the ap-
pearance of 2D scans cannot be used to detect loop
closure in such cases. In fact, this is a common prob-
lem for current 2D-scanning semi-autonomous min-
ing vehicles.1 Places where there are nearly horizon-
tal surfaces close to the level of the 2D laser scanner
are especially problematic. Another example is places
where there are deep wheel tracks, meaning that a
small lateral offset can result in a large difference in
the vehicle’s roll angle. Using 3D data instead of 2D
is of course also important for airborne robots whose
orientation is not restricted to a mainly planar align-
ment.

The work described in this paper builds on pre-
viously published results (Magnusson, Andreasson,
Nüchter, & Lilienthal, 2009), with the main additions
being a sound method for estimating the difference
threshold parameter, a more complete performance
evaluation, and more experimental data, as well as a
discussion of the difficulties of determining ground
truth for loop detection.

The paper is laid out as follows. In Section 2,
we describe the details of our loop detection ap-
proach. The performance is evaluated in Section 3,
and a method for automatically selecting the differ-
ence threshold is described and evaluated in Sec-
tion 3.4. Our approach is compared to related work
on loop detection in Section 4. Finally, the paper is
summarized in Section 5, which also states our con-
clusions, and directions for future work are suggested
in Section 6.

2. SURFACE SHAPE HISTOGRAMS

Our loop detection method is inspired by NDT. NDT
is a method for representing a scan surface as a
piecewise continuous and twice-differentiable func-
tion. It has previously been used for efficient pair-
wise 2D and 3D scan registration (Biber & Straßer,
2003; Magnusson et al., 2007; Magnusson, Nüchter,
Lörken, Lilienthal, & Hertzberg, 2009). However, the
NDT surface representation can also be used to de-
scribe the appearance of a 3D scan, as will be ex-
plained in this section.

2.1. The NDT

The NDT gives a compact surface shape representa-
tion, and it therefore lends itself to describing the gen-

1This information is from personal communication with Johan
Larsson, Atlas Copco Rock Drills.

eral appearance of a location. The method is outlined
in the following. For more details, refer to previous
publications (Biber & Straßer, 2003; Magnusson et al.,
2007).

Given a range scan represented as a point cloud,
the space occupied by the scan is subdivided into a
regular grid of cells (squares in the 2D case, cubes
in the 3D case). Each cell ci stores the mean vector
μi and covariance matrix �i of the positions of the
scan points within the cell; in other words, the pa-
rameters of a normally distributed probability den-
sity function (PDF) describing the local surface shape.
Depending on the covariance, the PDF can take on
a linear (stretched ellipsoid), planar (squashed ellip-
soid), or spherical shape. Our appearance descriptor
is created from histograms of these local shape de-
scriptions.

To minimize the issues with spatial discretization
we use overlapping cells, so that if the side length of
each cell is q, the distance between each cell’s center
point is q/2. (The parameter choices will be covered
in Section 2.5.)

2.2. Appearance Descriptor

It is possible to use the shapes of the PDF of NDT
cells to describe the appearance of a 3D scan, classi-
fying the PDFs based on their orientation and shape.
For each cell, the eigenvalues λ1 ≤ λ2 ≤ λ3 and cor-
responding eigenvectors e1, e2, e3 of the covariance
matrix are computed. We use three main cell classes:
spherical, planar, and linear. Distributions are as-
signed to a class based on the relations between their
eigenvalues with respect to a threshold te ∈ [0, 1] that
quantizes a “much smaller” relation:

• Distributions are linear if λ2/λ3 ≤ te.
• Distributions are planar if they are nonlinear

and λ1/λ2 ≤ te.
• Distributions are spherical if they are

nonlinear and nonplanar (in other words,
if no eigenvalue is 1/te times larger than
another one).

The planar cell classes can be divided into
subclasses, based on surface orientation. As stated
in our earlier work (Magnusson, Andreasson, et al.,
2009), the same can potentially be done for the lin-
ear classes, and spherical subclasses could be defined
by surface roughness. However, in our experiments,
using one spherical and one linear class has been
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Figure 1. Visualization of the planar part p of a histogram vector created from the scan on the right. In this case, p = 9
planar directions are used. The thin black lines correspond to the directions P1, . . . , P9. The cones are scaled according to
the values of the corresponding histogram bins. There are two cones for each direction in this illustration: one on each
side of the origin. The dominant directions used to normalize the scan’s orientation are shaded. (The following text will
be explained further in Section 2.3.) Directions that are not in Z or Y are white. Z (dark gray) contains one direction in
this case: the vertical direction, corresponding to the ground plane. Y (light gray) includes two potential secondary peaks
(whose magnitudes are more similar to the rest of the binned directions). In this example ta was set to 0.6.

sufficient. It would also be straightforward to use
more classes such as different levels of “almost pla-
nar” distributions by using more than one eigenvalue
ratio threshold. However, for the data presented here,
using more than one threshold te did not improve the
result.

For the planar distributions, the eigenvector e1
(which corresponds to the smallest eigenvalue) coin-
cides with the normal vector of the plane that is ap-
proximated by the PDF. We define planar subclasses
as follows. Assuming that there is a set P of p ap-
proximately evenly distributed lines passing through
the origin, P = {P1, . . . , Pp}, the index for planar
subclasses is

i = arg min
j

δ(e1, Pj ), (1)

where δ(e, P ) is the distance between a point e and a
line P . In other words, we choose the index of the
line Pj that is closest to e1. The problem of evenly
distributing a number of lines intersecting the ori-
gin is analogous to distributing points evenly on
the surface of a sphere. This is an ill-posed prob-
lem because it is not possible to find a solution in
which the distances between all neighboring points

are equal. However, a number of solutions giving ap-
proximately even point distributions exist. For exam-
ple, using an equal area partitioning (Saff & Kuijlaars,
1997) to distribute p points on a half-sphere, P is
the set of lines connecting the origin and one of the
points. The distribution of lines used in this work is
visualized in Figure 1.

Using p planar subclasses, the basic element of
the proposed appearance descriptor is the feature
vector

f =

⎡
⎢⎣f1, . . . , fp︸ ︷︷ ︸

planar classes

, fp+1︸︷︷︸
spherical

, fp+2︸︷︷︸
linear

,

⎤
⎥⎦

T

=
⎡
⎣ p

fp+1
fp+2

⎤
⎦ , (2)

where fi is the number of NDT cells that belong to
class i.

In addition to surface shape and orientation, the
distance from the scanner location to a particular sur-
face is also important information. For this reason,
each scan is described by a matrix

F = [
f 1 · · · f r

]
(3)
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and a corresponding set of range intervals R =
{r1, . . . , rr}. The matrix is a collection of surface shape
histograms, where each column f k is the histogram
of all NDT cells within range interval rk (measured
from the laser scanner position).

2.3. Rotation Invariance

Because the appearance descriptor (3) explicitly uses
the orientation of surfaces, it is not rotation invariant.
For the appearance descriptor to be invariant to rota-
tion, the orientation of the scan must first be normal-
ized.

Starting from an initial histogram vector f ′, with
a single range interval R = {[0,∞)}, we want to find
two peaks in plane orientations and orient the scan
so that the most common plane normal (the primary
peak) is aligned along the z axis and the second most
common (the secondary peak) is in the yz plane. The
reason for using plane orientations instead of line
orientations is that planar cells are much more com-
mon than linear ones. For an environment with more
linear structures than planar ones, line orientations
could be used instead, although such environments
are unlikely to be encountered.

Because there is not always an unambiguous
maximum, we use two sets of directions, Z and Y .
Given the planar part p′ = [p′

1, . . . , p
′
p]T of f ′ and an

ambiguity threshold ta ∈ [0, 1] that determines which
histogram peaks are “similar enough,” the dominant
directions are selected as follows. (This selection is
also illustrated in Figure 1.) First we pick the his-
togram bin with the maximum value

i ′ = argmax
i

p′
i . (4)

The potential primary peaks are i ′ and any directions
that are “almost” as common as i ′ with respect to ta :

Z = {i ∈ {1, . . . , p} | p′
i ≥ tap

′
i ′ }. (5)

The same procedure is repeated to find the second
most common direction, choosing as a secondary
peak the largest histogram bin that is not already in-
cluded in the primary peak set:

i ′′ = argmax
i

p′
i | i /∈ Z. (6)

The potential secondary peaks are i ′′ and any direc-
tions that are almost as common as i ′′ (but not already

included in the primary peak set):

Y = {i ∈ {1, . . . , p} | i /∈ Z, p′
i ≥ tap

′
i ′′ }. (7)

This procedure gives two disjoint subsets Z ⊂ P and
Y ⊂ P .

Now we want to align the primary (most com-
mon) peak along the positive z axis. In the follow-
ing, we will use axis/angle notation for rotations:
R = (v, φ) denotes a rotation with angle φ around the
axis v. To perform the desired alignment, the rotation

Rz =
⎛
⎝P i ×

⎡
⎣0

0
1

⎤
⎦ , −arccos

⎛
⎝P i ·

⎡
⎣0

0
1

⎤
⎦

⎞
⎠

⎞
⎠ , (8)

where P i is a unit vector along the line Pi , rotates the
scan so that P i is aligned along the positive z axis.
The rotation axis P i × [0, 0, 1] is perpendicular to the
z axis. A separate rotation is created for each potential
primary peak i ∈ Z .

Similarly, for each secondary peak i ∈ Y , it is
possible to create a rotation Ry that rotates the scan
around the z axis so that P i lies in the yz plane. To de-
termine the angle of Ry , we use the normalized pro-
jection of Rz P i onto the xy plane: P ′

i . The angle of Ry

is the angle between the projected vector P ′
i and the

yz plane:

Ry =
⎛
⎝

⎡
⎣0

0
1

⎤
⎦ , −arccos

⎛
⎝P ′

i ·
⎡
⎣0

1
0

⎤
⎦

⎞
⎠

⎞
⎠ . (9)

Given a scan S, the appearance descriptor F is
created from the rotated scan RyRzS. This alignment
is always possible to do, unless all planes have the
same orientation. If it is not possible to find two main
directions, it is sufficient to use only Rz because in
that case no subsequent rotation around the z axis
changes which histogram bins are updated for any
planar PDF. If linear subclasses of different orienta-
tions are used, it is possible to derive Ry from linear
directions if only one planar direction can be found.

In the case of ambiguous peaks (that is, when
Z or Y has more than one member), we generate
multiple histograms. For each combination {i, j | i ∈
Z, j ∈ Z ∪ Y, i 
= j} we apply the rotation RyRz to
the original scan and generate a histogram. The out-
come is a set of histograms

F = {F1, . . . , F|Z|(|Z∪Y|−1)}. (10)

The set F is the appearance descriptor of the scan.
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For highly symmetrical scans, the approach pre-
sented in this section could lead to a very large num-
ber of histograms. For example, in the case of a scan
generated at the center of a sphere, where the his-
togram bins for all directions have the same value,
p2 − p histograms would be created (although a post-
processing step to prune all equivalent histograms
could reduce this to just one). In practice, this kind
of symmetry effect has not been found to be a prob-
lem. The average number of histograms per scan is
around three for the data sets used in this work.

2.4. Difference Measure

To quantify the difference between two surface shape
histograms F and G, we normalize F and G with
their entrywise 1-norms (which corresponds to the
number of occupied NDT cells in each scan), com-
pute the sum of Euclidean distances between each
of their columns (each column corresponds to one
range interval), and weight the sum by the ratio
max(‖F‖1 , ‖G‖1)/ min(‖F‖1 , ‖G‖1):

σ (F, G) =
r∑

i=1

(∥∥∥∥ f i

‖F‖1
− gi

‖G‖1

∥∥∥∥
2

)
max(‖F‖1 , ‖G‖1)
min(‖F‖1 , ‖G‖1)

.

(11)

The normalization makes it possible to use a sin-
gle threshold for data sets that contain both scans that
cover a large area (with many occupied NDT cells)
and scans of more confined spaces (with fewer cells).
If the Euclidean distance without normalization were
used instead,

σ (F, G) =
r∑

i=1

∥∥ f i − gi

∥∥
2 , (12)

scans with many cells would tend to have larger
difference values than scans with few cells. A con-
sequence is that in environments with some nar-
row passages and some open areas, the open spaces
would be harder to recognize. It would not be possi-
ble to use a global, fixed threshold, because the best
threshold for the wide areas would tend to cause false
positives in the narrow areas.

The scaling factor max(‖F‖1, ‖G‖1)/ min(‖F‖1 ,

‖G‖1) is used to differentiate large scans (with many
cells) from small ones (with few cells).

Given two scans S1 and S2 with histogram sets F
and G, all members of the scans’ sets of histograms

are compared to each other using Eq. (11), and the
minimum σ is used as the difference measure for the
scan pair:

τ (S1,S2) = min
i,j

σ (Fi , Gj ), Fi ∈ F , Gj ∈ G. (13)

If τ (S1,S2) is less than a certain difference threshold
value td , the scans S1 and S2 are assumed to be from
the same location. For evaluation purposes the two
scans S1 and S2 are classified as positive.

2.5. Parameters

Summarizing the preceding text, these are the param-
eters of the proposed appearance descriptor along
with the parameter values selected for the experi-
ments:

• NDT cell size q = 0.5 m
• range limits R = {[0, 3), [3, 6), [6, 9), [9, 15),

[15,∞)} m
• planar class count p = 9
• eigenvalue ratio threshold te = 0.10
• ambiguity ratio threshold ta = 0.60

The values of these parameters were chosen empir-
ically. Some parameters depend on the scale of the
environment, but a single parameter set worked well
for all investigated data sets.

The best cell size q and the range limits R de-
pend mainly on the scanner configuration. If the cell
size is too small, the PDFs are dominated by scan-
ner noise. For example, planes at the farther parts
of scans (where scan points are sparse) may show
up in the histogram as lines with varying orienta-
tions. If the cell size is too large, details are lost
because the PDFs do not accurately represent the
surfaces. Previous work (Magnusson et al., 2007)
has shown that cell sizes between 0.5 and 2 m
work well for registering scans of the scale encoun-
tered by a mobile robot equipped with a rotating
SICK LMS 200 laser scanner when using NDT for
scan registration. We have used similar experimen-
tal platforms for the data examined in this work.
For the present experiments, q = 0.5 m and R =
{[0, 3), [3, 6), [6, 9), [9, 15), [15,∞)} were used. Using
fewer range intervals decreased the loop detection ac-
curacy. If using a scanner with a different max range,
R and q should probably be adjusted. The same pa-
rameter settings worked well for all the data sets
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used here even though the point cloud resolution
varies, with almost an order of magnitude among
them.

Using nine planar classes (in addition to one
spherical class and one linear class) worked well for
all of the data sets. The reason for using only one
spherical and linear class is that these classes tend
to be less stable than planar ones. Linear distribu-
tions with unpredictable directions tend to occur at
the far ends of a scan, where the point density is too
small. Spherical distributions often occur at corners
and edges, depending on where the boundaries of the
NDT cells end up, and may shift from scan to scan.
However, using the planar features only decreased
the obtainable recall rate without false positives with
around one-third for the data sets used in our evalua-
tions. The small number of classes means that the sur-
face shape histograms provide a very compact rep-
resentation of the input data. We use only 55 values
(11 shape classes and 5 range intervals) for each his-
togram. To achieve rotation invariance we use multi-
ple histograms per scan, as described in Section 2.3,
but with an average of three histograms per scan, the
appearance of a point cloud with several tens of thou-
sands of points can still be represented using only 165
values.

The eigenvalue ratio threshold te and ambiguity
ratio threshold ta were also chosen empirically. Both
of these thresholds must be on the interval [0, 1]. In
the experiments, using te = 0.10 and ta = 0.60 pro-
duced good results independent of the data.

In addition to the parameters of the appearance
descriptor, it is necessary to select a difference thresh-
old td that determines which scans are similar enough
to be assumed to have been taken at the same lo-
cation. The difference threshold td was chosen sepa-
rately for each data set, as described in Section 3.3.
A method for automatically selecting a difference
threshold is presented in Section 3.4.

3. EXPERIMENTS

3.1. Data Sets

To evaluate the performance of the proposed loop
detection algorithm, three data sets were used: one
outdoor set from a campus area, one from an indoor
office environment, and one from an underground
mine. All of the data sets are available online from
the Osnabrück Robotic 3D Scan Repository (http://
kos.informatik.uni-osnabrueck.de/3Dscans/).

The Hannover2 data set, shown in Figure 2, was
recorded by Oliver Wulf at the campus of Leibniz
Universität Hannover. It contains 922 3D omniscans
(with 360-deg field of view) and covers a trajectory of
about 1.24 km. Each 3D scan is a point cloud contain-
ing approximately 15,000 scan points. Ground truth
pose measurements were acquired by registering ev-
ery 3D scan against a point cloud made from a given
2D map and an aerial LIDAR scan made while fly-
ing over the campus area, as described in the SLAM
benchmarking paper by Wulf, Nüchter, Hertzberg,
and Wagner (2007).

The AASS-loop data set was recorded around the
robot lab and coffee room of the Center for Applied
Autonomous Sensor Systems (AASS) research insti-
tute at Örebro University. An overhead view of this
data set is shown in Figure 3. The total trajectory trav-
eled is 111 m. This set is much smaller than the Han-
nover2 one. It contains 60 omnidirectional scans with
around 112,000 points per scan. For this data set, pair-
wise scan registration using 3D-NDT (given the ini-
tial pose estimates from the robot’s odometry) was
exact enough to be used for the ground truth poses.
(The accumulated pose error between scan 1 and scan
60 was 0.67 m and 1.3 deg after registration.) How-
ever, using only the laser scans without odometry
information, it is not possible to detect loop closure
with NDT scan registration.

A third data set, Kvarntorp, was recorded in the
Kvarntorp mine outside Örebro, Sweden. The origi-
nal data set is divided into four “missions.” For the
experiments presented here, we used “mission 4” fol-
lowed by “mission 1.” The reason for choosing these
two missions is that they overlap each other and that
the starting point of mission 1 is close to the end point
of mission 4. This combined sequence has 131 scans,
each covering a 180-deg horizontal field of view and
containing around 70,000 data points. The total tra-
jectory is approximately 370 m. See Figure 4 for an
overview of this data set. The Kvarntorp data set
is rather challenging for a number of reasons. First,
the mine environment is highly self-similar. Without
knowledge of the robot’s trajectory, it is very diffi-
cult to tell different tunnels apart, both from 3D scans
and from camera images, as illustrated in Figure 5.
The fact that the scans of this data set are not omni-
directional also makes loop detection more difficult,
because the same location can look very different de-
pending on which direction the scanner is pointing
toward. Another challenge is that the distance trav-
eled between the scans is longer for this data set. For
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Figure 2. The Hannover2 data set, seen from above with parallel projection.

Figure 3. The AASS-loop data set, shown from above with the ceiling removed. The inlay in the right-hand corner shows
the accumulated pose error from pairwise scan registration using 3D-NDT when returning to location B.
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Figure 4. The Kvarntorp data set, seen from above with
the ceiling removed.

this reason, scans taken when revisiting a location
tend to be recorded farther apart, making the scans
look more different.

Scan registration alone was not enough to build
a consistent 3D map of the Kvarntorp data set, and
an aerial reference scan was not available for obvious
reasons. Instead, ground truth poses were provided
using a network-based global relaxation method for
3D laser scans (Borrmann et al., 2008). A network
with loop closures was manually created and given
as input to the algorithm in order to generate a refer-
ence map. The result was visually inspected for cor-
rectness. The relaxation method of Borrman et al. will
be briefly described here. Given a network with n +
1 nodes x0, . . . , xn representing the poses v0, . . . , vn

and the directed edges di,j , the algorithm aims at es-
timating all poses optimally. The directed edge di,j

represents the change of the pose (x, y, z, θx, θy, θz)
that is necessary to transform one pose vi into vj ;
that is, vi = vj ⊕ di,j , thus transforming two nodes of
the graph. For simplicity, the approximation that the
measurement equation is linear is made; that is,

di,j = xi − xj . (14)

A detailed derivation of the linearization is given in
the paper by Borrman et al. (2008). An error function

is formed such that minimization results in improved
pose estimations:

W =
∑
(i,j )

(di,j − d̄i,j )TC−1
i,j (di,j − d̄ i,j ), (15)

where d̄i,j = di,j + �di,j models random Gaussian
noise added to the unknown exact pose di,j . This rep-
resentation involves resolving the nonlinearities re-
sulting from the additional roll and pitch angles by
Taylor expansion. The covariance matrices Ci,j de-
scribing the pose relations in the network are com-
puted based on the paired closest points. The error
function (15) has a quadratic form and is therefore
solved in closed form by sparse Cholesky decompo-
sition.

3.2. Experimental Method

We have used two methods to judge the discrimina-
tion ability of our surface shape histograms.

3.2.1. Full Evaluation

First, we look at all combinations (Si ,Sj | i 
= j ) of
scan pairs from each data set, counting the number of
true positives and false positives with regard to the
ground truth. In related work (Bosse & Zlot, 2008b;
Granström, Callmer, Ramos, & Nieto, 2009), the per-
formance is reported as the recall rate with a man-
ually chosen threshold that gives a 1% false-positive
rate. For these tests, we have taken the same approach
to evaluate the result.

However, it is not trivial to determine the ground
truth: what should be considered a true or a false pos-
itive. In this work we have chosen to use the matrix
of the distances between all scan pairs as the ground
truth, after applying a distance threshold tr (in metric
space), so that all pairs of scans that are within, for
example, 3 m are considered to be truly overlapping.
It is not always easy to select a distance threshold
value that captures the relationships between scans
in a satisfactory manner. If the threshold tr is large,
some scans with very different appearances (for ex-
ample, scans taken at different sides of the corner of a
building or before and after passing through a door)
might still be considered to overlap and will there-
fore be regarded as false negatives when their ap-
pearances do not match. Another problem is that se-
quential scans are often acquired in close proximity
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(a) Location F (b) Location H

Figure 5. An example of perceptual aliasing in the Kvarntorp data set. The images show two different places (locations F
and H in Figure 4). It is difficult to tell the two places apart, from both the camera images and the scanned point clouds.
The point clouds are viewed from above.

to one another. Therefore, when revisiting a location,
there will be several overlapping scans within the dis-
tance threshold, according to the “ground truth.” But
with a discriminative difference threshold td (in ap-
pearance space), only one or a few of them may be
detected as positives. Even when the closest scan pair
is correctly matched, the rest would then be regarded
as false negatives, which may not be the desired re-
sult. If, on the other hand, the distance threshold tr
is too small, the ground truth matrix will miss some
loop closures where the robot is not revisiting the ex-
act same position.

Another possibility would be to manually label
all scan pairs. However, when evaluating multiple
data sets containing several hundreds of scans, it is
not practical to do so; and even then, some arbitrary
decision would have to be made as to whether some
scan pairs overlap.

We will discuss how our experimental method
compares to the evaluations of other authors in Sec-
tion 4. The validity of our design decisions and the
results may be judged by inspecting the trajectories
and ground truth matrices in Figures 6–11.

3.2.2. SLAM Scenario

As a second type of evaluation, we also consider how
the method would fare in a SLAM application. In this
case, for each scan S we consider only the most sim-
ilar corresponding scan S̄ instead of all other scans.
The ground truth in this case is a manual labeling
of scans as either “overlapping” (meaning that they
were acquired at a place that was visited more than
once and therefore should be similar to at least one
other scan) or “nonoverlapping” (which is to say that
they were seen only once). Because the ground truth
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Figure 6. SLAM result for the Hannover2 data set. The robot traveled along the sequence A-B-C-D-A-B-E-F-A-D-G-H-I-J-
H-K-F-E-L-I-K-A. Note that there are no false positives and that all true positives are matched to nearby scans.

Figure 7. Comparing the ground truth matrix and the output similarity matrix for Hannover2. Scan numbers are on the
left-hand and bottom axes; place labels are on the top and right-hand axes. (Because of the large matrix and the small print
size, the right-hand image has been morphologically dilated by a 3 × 3 element in order to better show the values.)

Journal of Field Robotics DOI 10.1002/rob



Magnusson et al.: Automatic Appearance-Based Loop Detection from 3D Laser Data Using NDT • 903

False negatives
True negatives
True positives

Figure 8. Result for the AASS-loop data set. The robot moved along the path A-B-C-D-E-F-G-C-B-A.

labeling is done to the set of individual scans instead
of all combinations of scan pairs, it is feasible to per-
form manually.

This second type of evaluation is more simi-
lar to how the FAB-MAP method of Cummins and
Newman (2007, 2008a, 2008b, 2009) has been evalu-
ated. If S has been labeled as overlapping, the most

similar scan S̄ is within 10 m of S and the differ-
ence measure of the two scans is below the thresh-
old [τ (S, S̄) < td ], then S is considered a true posi-
tive. The 10-m distance threshold is the same as that
used by Valgren and Lilienthal (2007) for establish-
ing successful localization. Cummins and Newman
(2009) use a 40-m threshold, but that was deemed too
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Figure 9. Comparing the ground truth matrix and output similarity matrix for AASS-loop.
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False negatives
True negatives
True positives

Figure 10. Result Kvarntorp. The robot traveled along the
sequence A-B-C-D-E-A-B-F-G-A-B-C-H-F-H.

Figure 11. Comparing the distance matrix and the output similarity matrix for Kvarntorp.

large for the data sets used here. Most of the detected
scan pairs are comfortably below the 10-m threshold.
For the AASS-loop and Kvarntorp data sets, the max-
imum interscan distance at detected loop closure is
2.6 m. For Hannover2, 98% of the detected scans are
within 5 m of each other, and 83% are within 3 m.

For these experiments, we report the result as
precision-recall rates. Precision is the ratio of true pos-
itive loop detections to the sum of all loop detec-
tions. Recall is the ratio of true positives to the num-
ber of ground truth loop closures. A nonoverlapping
scan cannot contribute to the true positive rate, but
it can generate a false positive, thus affecting preci-
sion. Likewise true loop closures that are incorrectly
regarded as negative decrease the recall rate but do
not impact the precision rate. It is important to real-
ize that a 1% false-positive rate is not the same as 99%
precision. If the number of nonoverlapping scans is
much larger than the number of overlapping ones, as
is the case for our data sets, falsely detecting 1% of
the nonoverlapping ones as positive will decrease the
precision rate with much more than 1%.

In a SLAM application, even a single false pos-
itive can make the map unusable if no further
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measures are taken to recover from false scan corre-
spondences. Therefore the best difference threshold
in this case is the largest possible value with 100%
precision.

In this second type of evaluation, we also em-
ployed a minimum loop size. Even though we do not
use pose estimates from odometry, we assume that
the scans are presented as an ordered sequence, suc-
cessively acquired by the robot as it moves along its
trajectory. When finding the most similar correspon-
dence of S, it is compared only to scans that are more
than 30 steps away in the sequence. The motivation
for this limit is that in the context of a SLAM appli-
cation it is not interesting to find small “loops” with
only consecutive scans. We want to detect loop clo-
sure only when the robot has left a place and returned
to it later. A side effect of the minimum loop size limit
is that some similar scans that are from the same area
but more than 10 m apart and therefore otherwise
would decrease the precision are removed. However,
in a SLAM scenario it makes sense to add such a limit
if it is known that the robot cannot possibly close a
“real” loop in only a few steps.

Table I. Summary of loop detection results for all scan
pairs.

Set tr (m) ol nol td Recall (%)

Hannover2 3 9,984 839,178 0.1494 80.6
AASS-loop 1 32 3,508 0.0990 62.5
Kvarntorp 3 138 16,632 0.1125 27.5

This table shows the maximum achievable recall rate with less than
1% false positives and the difference threshold (td ) at which this is
attained. The distance threshold applied to the ground truth ma-
trix is denoted tr , and the ground truth numbers of overlapping
(ol) and nonoverlapping (nol) scan pairs after applying tr are also
shown.

Table II. Summary of SLAM scenario loop detection results.

Manual threshold Automatic threshold

Set ol nol td Recall (%) Prec. (%) P (fp) (%) td Recall (%) Prec. (%) P (fp) (%)

Hannover2 428 494 0.0737 47.0 100 0.08 0.0843 55.6 94.8 0.5
AASS-loop 23 37 0.0990 69.6 100 1.17 0.0906 60.9 100 0.5
Kvarntorp 35 95 0.0870 28.6 100 0.65 0.0851 22.9 100 0.5

Precision and recall rates are shown both for manually selected td and for thresholds selected using a gamma mixture model, as described
in Section 3.4. The probability of false positives P (fp) according to the mixture model is shown for both thresholds. The numbers of (ground
truth) overlapping and nonoverlapping scans for each set are denoted ol and nol.

In our previous work on loop detection (Magnus-
son, Andreasson, et al., 2009) we used this SLAM-
type evaluation but obtained the ground truth label-
ing of overlapping and nonoverlapping scans using
a distance threshold. The manual labeling employed
here is a better criterion for judging which scans are
overlapping and not. Again, refer to the figures visu-
alizing the results (Figures 6, 8, and 10) to judge the
validity of the evaluations.

3.3. Results

This section details the results of applying our loop
detection method to the data sets described above.
The results are summarized in Tables I and II, where
the recall rates are shown in boldfaced type.

3.3.1. Hannover2

The Hannover2 data set is the one that is most simi-
lar to the kind of outdoor semistructured data investi-
gated in many other papers on robotic loop detection
(Bosse & Zlot, 2008b; Cummins & Newman, 2008b;
Granström et al., 2009; Valgren & Lilienthal, 2007).

When evaluating the full similarity matrix, the
maximum attainable recall rate with at most 1%
false positives is 80.6%, using td = 0.1494. Figure 7(a)
shows the ground truth distance matrix of the
Hannover2 scans, and Figure 7(b) shows the simi-
larity matrix obtained with the proposed appearance
descriptor and difference measure. Note that the two
matrices are strikingly similar. Most of the overlap-
ping (dark) parts in the ground truth matrix are cap-
tured correctly in the similarity matrix. The distance
threshold tr was set to 3 m.

For the SLAM-style experiment, the maximum
recall rate at 100% precision is 47.0%, using td =
0.0737. The result is visualized in Figure 6, showing
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all detected true positives and the scans that they are
matched to, as well as true and false negatives.

If no minimum loop size is used in the SLAM
evaluation (thus requiring that the robot should be
able to relocalize itself from the previous scan at all
times), the maximum recall rate at 100% precision is
24.6% at td = 0.0579. If the same difference threshold
as above is used (td = 0.0737), the recall rate for this
case is 45.7% and the precision rate is 98.6%, with six
false correspondences (0.65% of the 922 scans). Of the
six errors, four scans (two pairs) are from the parking
lot between locations H and J, which is a place with
repetitive geometric structure. The other two are from
two corners of the same building: locations A and B.

At this point it should be noted that even a re-
call rate of around 30% often is sufficient to close all
loops in a SLAM scenario, as long as the detected
loop closures are uniformly distributed over the tra-
jectory, because several scans are usually taken from
each location. Even if one overlapping scan pair is
not detected (because of noisy scans, discretization
artifacts in the surface shape histograms, or dynamic
changes), one of the next few scans is likely to be
detected instead. [This fact has also been noted by
Cummins and Newman (2008b) and Bosse and Zlot
(2008b).]

As a side note, we would also like to mention
that using scan registration alone to detect loop clo-
sure is not sufficient for this data set, as was described
by Wulf et al. (2007). Because they depend on an ac-
curate initial pose estimate (which is necessary even
for reliable and fast scan registration algorithms), it
is necessary to use the robot’s current pose estimate
and consider only the closest few scans to detect loop
closure. Therefore the method of Wulf et al. (2007),
and indeed all methods using local pairwise registra-
tion methods such as ICP or 3D-NDT, cannot detect
loops when the accumulated pose error is too large.
In contrast, the method proposed in this text requires
no pose information.

3.3.2. AASS-Loop

When evaluating the full similarity matrix for the
AASS-loop data set, we used a distance threshold tr
of 1 m instead of 3 m on the ground truth distance
matrix. The reason for the tighter distance thresh-
old in this case is the many passages and tight cor-
ners of this data set. The appearance of scans often
changes drastically from one scan to the next when
rounding a corner into another corridor or passing

through a door, and an appearance-based loop detec-
tion method cannot be expected to handle such scene
changes. The 1-m threshold filters out all such scan
pairs while keeping the truly overlapping scan pairs
that occur after the robot has returned to location C,
as can be seen in Figure 9(a).

For this data set, the maximum recall rate (for the
complete similarity matrix) with less than 1% false
positives is 62.5% (td = 0.0990). In the SLAM sce-
nario, the recall rate for this data set was 69.6% at
100% precision, using td = 0.099.

The part of this data set that contains a loop
closure (between locations A and C) is traversed in
the opposite direction when the robot returns. The
high recall rate illustrates that the surface shape his-
tograms are robust to changes in rotation.

The trajectory of the AASS-loop data set is shown
in Figure 8. The ground truth and similarity matrices
are shown in Figure 9.

3.3.3. Kvarntorp

The Kvarntorp data set had to be evaluated slightly
differently, because an omnidirectional scanner was
not used to record this data set. An appearance-based
loop detection algorithm cannot be rotation invari-
ant if the input scans are not omnidirectional. When
looking in opposite directions from the same place,
the view is generally very different. Therefore only
scans taken in similar directions (within 20 deg) were
counted as overlapping when evaluating the algo-
rithm for Kvarntorp. The scans that were taken at
overlapping positions but with different orientations
were all (correctly) marked as nonoverlapping by the
algorithm. With the exception of the way of deter-
mining which scans are from overlapping sections,
the same evaluation and algorithm parameters were
used for this data set as for Hannover2.

Evaluating the full similarity matrix, the recall
rate at 1% false positives is 27.5% (td = 0.1134). For
the SLAM experiment, td = 0.0870 gives the highest
recall rate at full precision: 28.6%.

The challenging properties of the underground
mine environment are shown in the substantially
lower recall rates for this data set compared to
Hannover2. Still, a reasonable distribution of the
overlapping scans in the central tunnel is detected in
the SLAM scenario (shown in Figure 10), and there
are no false positives. The ground truth distance ma-
trix is shown in Figure 11(a), and the similarity matrix
is shown in Figure 11(b). Comparing the two figures,
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it can be seen that some scans are recognized from all
overlapping segments: For all off-diagonal stripes in
Figure 11(a), there is at least one corresponding scan
pair below the difference threshold in Figure 11(b).

3.4. Automatic Threshold Selection

It is important to find a good value for the differ-
ence threshold td . Using a too-small value results in
a small number of true positives (correctly detected
overlapping scans). Using a too-large value results
in false positives (scan pairs considered overlapping
even though they are not). Figures 12 and 13 illus-
trate the discriminative ability of the surface shape
histograms for the two different modes of evalua-
tion, showing how the numbers of true positives and
errors change with increasing values of the differ-
ence threshold, as well as the ROC (receiver operat-
ing characteristics) curve.

The results reported thus far used manually cho-
sen difference thresholds, selected with the help of
the available ground truth data. To determine td when
ground truth data are unavailable, it is desirable to es-
timate the distributions of difference values [Eq. (13)]
for overlapping scans versus the values for nonover-
lapping scans. Given the set of numbers containing
all scans’ smallest difference values, it can be as-
sumed that the values are drawn from two distribu-
tions—one for the overlapping scans and one for the
nonoverlapping ones. If it is possible to fit a proba-
bilistic mixture model of the two components to the

set of values, a good value for the difference thresh-
old should be such that the estimated probability of
false positives P (fp) is small but the estimated prob-
ability of true positives is as large as possible. Fig-
ure 14 shows a histogram of the difference values for
the scans in the Hannover2 data set. The histogram
was created using the difference value of most simi-
lar scan for each scan in the data set. (In other words,
this is the outcome of the algorithm in the SLAM
scenario.) The figure also shows histograms for the
overlapping and nonoverlapping subsets of the data
(which are not known in advance).

A common way to estimate mixture model pa-
rameters is to fit a Gaussian mixture model to the data
with the expectation maximization (EM) algorithm.
However, inspecting the histograms of difference val-
ues (as in Figure 14), it seems that the underlying
distributions are not normally distributed but have
a significant skew, with the right tail being longer
than the left. As a matter of fact, trying to fit a two-
component Gaussian mixture model with EM usu-
ally results in distribution estimates with too-large
means. It is sometimes feasible to use three Gaussian
components instead, where one component is used
to model the long tail of the skew data (Magnusson,
Andreasson, et al., 2009). However, only a binary
classification is desired, so there is no theoretical
ground for such a model.

Gamma distributed components fit the differ-
ence value distributions better than Gaussians. Fig-
ure 15(a) shows two gamma distributions fitted in
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Figure 13. Plots of the appearance descriptor’s discriminative ability for the SLAM scenario. In (a), the best threshold
(giving the maximum number of true positives at 100% precision) is marked with a bar.
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Figure 14. Histograms of the smallest difference values for
overlapping and nonoverlapping scans of the Hannover2
data set. (In general, only the histogram for all scans is
known.)

isolation to each of the two underlying distributions.
Because the goal is to choose td such that the ex-
pected number of false positives is small, a reasonable
criterion is that the cumulative distribution function
of the mixture model component that corresponds
to nonoverlapping scans should be small. This is
equivalent to saying that P (fp) should be small. Fig-

ure 15(b) shows the cumulative distribution functions
of the mixture model components in Figure 15(a).

For the Kvarntorp data set, EM finds a rather
well-fitting mixture model. With P (fp) = 0.005 the
threshold value is 0.0851, resulting in a 22.9% recall
rate with no false positives. This is a slightly conser-
vative threshold, but it has 100% precision.

The AASS-loop data set is more challenging for
EM. It contains only 60 scans, which makes it diffi-
cult to fit a reliable probability distribution model to
the difference values. Instead, the following approach
was used for evaluating the automatic threshold se-
lection. Two maximum likelihood gamma distribu-
tions were fitted to the overlapping and nonover-
lapping scans separately. Using these distributions
and the relative numbers of overlapping and non-
overlapping scans of AASS-loop, 600 gamma dis-
tributed random numbers were generated, and EM
was applied to find a maximum likelihood model of
the simulated combined data. The simulated values
represent the expected output of collecting scans at
a much denser rate in the same environment. Using
the resulting mixture model and P (fp) = 0.005 gave
td = 0.091 and a recall rate of 60.9% using the AASS-
loop scans.

Because EM is a local optimization algorithm, it
can be sensitive to the initial estimates given. When
applied to the output of the Hannover2 data set, it
tends to converge to one of two solutions, shown in
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(a) Two maximum likelihood gamma distributions fitted to the

overlapping and nonoverlapping scans in isolation
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Figure 15. Determining td for the Hannover2 data set using a gamma mixture model.

Figure 16. From visual inspection, the solution of Fig-
ure 16(b) looks better than that of Figure 16(a), but
the likelihood function of the solution in Figure 16(a)
is higher. Solution 16(a) uses a wider than necessary
model of the nonoverlapping scans, resulting in a
conservative threshold value. With P (fp) = 0.005, so-
lution 16(a) gives td = 0.0500 and only a 20.8% re-
call rate, although at 100% precision. The numbers

for solution 16(b) are td = 0.0843, 55.6% recall, and
94.8% precision. Table II includes the results of solu-
tion 16(b).

This approach for determining td involves no
training and is a completely unsupervised learning
process. However, the difference threshold can only
be estimated offline: not because of the computa-
tional burden (which is very modest) but because a

(a) One solution (b) Another solution
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Figure 16. Histograms of the difference values τ (considering each scan’s most similar correspondence) for overlapping
and nonoverlapping scans of the Hannover2 data set. The components of a gamma mixture model fitted with EM for two
different initial parameter estimates are also shown. The log-likelihood ratio of 16(a)/16(b) is 1.01.
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sufficiently large sample of scans must have been en-
countered before EM can be used to estimate a reli-
able threshold. As long as there are enough samples,
the method described in this section gives a useful
estimate for td . However, because it is not possible to
guarantee that the output threshold value produces
no false positives, a reliable SLAM implementation
should still have some way of handling spurious false
positives.

3.5. Execution Time

The experiments were run using a C++ implemen-
tation on a laptop computer with a 1,600-MHz Intel
Celeron CPU and 2 GB of RAM.

For the AASS-loop data set, average times (mea-
sured with the gprof profiling utility) for computing
the surface shape histograms were 0.5 s per call to the
histogram computation function and in total 2.2 s per
scan to generate histograms (including transforming
the point cloud, generating f ′ and the histograms
that make up F). The average number of histograms
required for rotation invariance (that is, the size of F)
is 2.4. In total, 0.14 s was spent computing similarity
measures for scan pairs. There are 60 scans in the data
set, 144 histograms were created, and 1442 = 20,736
similarity measures were computed, so the average
time per similarity comparison [Eq. (11)] was around
7 μs, and it took less than 0.5 ms to compare two
scans [Eq. (13)]. (Naturally, we could also have com-
puted only one-half of the similarity matrix, because
the matrix is symmetric.) In other words, once the
histograms have been created, if each scan requires
the generation of 2.4 histograms on average, a new
scan can be compared to roughly 25,000 other scans
in 1 s when testing for loop closure, using exhaustive
search. The corresponding numbers for all of the data
sets are shown in Table III.

The time for creating the histograms and the
number of histograms required for rotation invari-

ance depend on the data, but the time required
for similarity comparisons is independent of the
data.

The time spent on histogram creation can be sig-
nificantly reduced if transformations are applied to
the first computed histogram when creating F , in-
stead of computing new histograms from scratch af-
ter transforming the original point cloud. With this
optimization, the total time spent while generating
the appearance descriptor is 1.0 s per scan instead of
2.2 s per scan for the AASS-loop data set. However,
the resulting histograms are not identical to the ones
that are achieved by recomputing histograms from
the transformed point clouds. They are only approxi-
mations. For all three data sets, the recognition results
were marginally worse when using this optimization.

4. RELATED WORK

4.1. Other Loop Detection Approaches

A large part of the related loop detection literature is
focused on data from camera images and 2D range
data.

Ramos, Nieto, and Durrant-Whyte (2007) used a
combination of visual cues and laser readings to as-
sociate features based on both position and appear-
ance. They demonstrated that their method works
well in outdoor environments with isolated features.
The experiments used for validation were performed
on data collected in Victoria Park, Sydney, where the
available features are sparsely planted trees. A limita-
tion of the method of Ramos et al. is that the laser fea-
tures are found by clustering isolated point segments,
which are stored as curve segments. In many other
settings (such as indoor or urban environments), the
appearance of scans is quite different from the ones
in Victoria Park in that features are not generally
surrounded by empty space. Compared to the laser
features used by Ramos et al., the proposed surface

Table III. Summary of resource requirements.

Data set Scans Points/scan Avg. histogram creation time (s) Avg. histograms/scan

Hannover2 922 15,000 0.18 3.2
Kvarntorp 130 70,000 0.27 2.8
AASS-loop 60 112,000 0.50 2.4

In addition to the number of scans in each data set and the average point count per scan, the table shows the average time to create a single
histogram (on a 1.6-GHz CPU) and the average number of histograms per scan.
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shape histograms have the advantage that they re-
quire no clustering of the input data and therefore it
is likely that they are more context independent. It is
currently not clear how the method of Ramos et al.
would perform in a more cluttered environment.

Cummins and Newman (2007, 2008a, 2008b,
2009) have published several articles on visual loop
detection using their FAB-MAP method. They use
a bag-of-words approach in which scenes are rep-
resented as a collection of “visual words” (local vi-
sual features) drawn from a “dictionary” of avail-
able features. Their appearance descriptor is a bi-
nary vector indicating the presence or absence of all
words in the dictionary. The appearance descriptor is
used within a probabilistic framework together with
a generative model that describes how informative
each visual word is by the common co-occurrences of
words. In addition to simple matching of appearance
descriptors, as has been done in the present work,
they also use pairwise feature statistics and sequences
of views to address the perceptual aliasing prob-
lem. Cummins and Newman (2008) have reported re-
call rates of 37%–48% at 100% precision, using cam-
era images from urban outdoor data sets. Recently
Cummins and Newman (2009) reported on the expe-
riences of applying FAB-MAP on a very large scale,
showing that the computation time scales well to tra-
jectories as long as 1,000 km. The precision, however,
is much lower on the large data set, as is to be ex-
pected.

A method that is more similar to the approach
presented here is the 2D histogram matching of Bosse
and Roberts (2007) and Bosse and Zlot (2008a, 2008b).
Although our loop detection method may also be re-
ferred to as histogram matching, there are several dif-
ferences. For example, Bosse et al. use the normals of
oriented points instead of the orientation/shape fea-
tures of NDT. Another difference lies in the amount
of discretization. Bosse et al. create 2D histograms
with one dimension for the spatial distance to the
scan points and one dimension for scan orientations.
The angular histogram bins cover all possible rota-
tions of a scan in order to achieve rotation invariance.
Using 3-deg angular resolution and 1-m range resolu-
tion, as in the published papers, results in 120 × 200 =
240,000 histogram bins for the 2D case. For uncon-
strained 3D motion with angular bins for the x, y,
and z axes, a similar discretization would lead to
many millions of bins. In contrast, the 3D histograms
presented here require only a few dozen bins. At a
false-positive rate of 1%, Bosse and Zlot (2008b) have

achieved a recall rate of 51% for large urban data sets,
using a manually chosen threshold.

Very recent work by Granström et al. (2009)
showed good performance of another 2D loop de-
tection algorithm. Their method uses AdaBoost
(Freund & Schapire, 1997) to create a strong classi-
fier composed from 20 weak classifiers, each of which
describes a global feature of a 2D laser scan. The
two most important weak classifiers are reported to
be the area enclosed by the complete 2D scan and
the area where the scan points with maximum range
have been removed. With 800 scan pairs manually se-
lected from larger urban data sets (400 overlapping
pairs and 400 nonoverlapping ones), Granström et al.
report an 85% recall rate with 1% false positives. It
would be interesting to see how their method could
be extended to the 3D case and how it would perform
in other environments.

Perhaps the most relevant related method for
loop detection from 3D range data is the work by
Johnson (1997) and Huber (2002). Johnson’s “spin im-
ages” are local 3D feature descriptors that give de-
tailed descriptions of the local surface shape around
an oriented point. Huber (2002) has described a
method based on spin images for matching multiple
3D scans without initial pose estimates. Such global
registration is closely related to the loop detection
problem. The initial step of Huber’s multiview sur-
face matching method is to compute a model graph
by using pairwise global registration with spin im-
ages for all scan pairs. The model graph contains po-
tential matches between pairs of scans, some of which
may be incorrect. Surface consistency constraints on
sequences of matches are used to reliably distin-
guish correct matches from incorrect ones because it
is not possible to distinguish the correct and incor-
rect matches at the pairwise level. Huber has used
this method to automatically build models of vari-
ous types of scenes. However, we are not aware of a
performance measurement that is comparable to the
work covered in this paper. Our algorithm can be
seen as another way of generating the initial model
graph and evaluating a local quality measure. An im-
portant difference between spin images and the sur-
face shape histograms proposed here is that spin im-
ages are local feature descriptors, more akin to vi-
sual words, describing the surface shape around one
point. In contrast, the surface shape histograms are
global appearance descriptors, describing the appear-
ance of a whole 3D point cloud. Comparing spin im-
ages to the local Gaussian features used in this work,
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spin images are more descriptive and invariant to ro-
tation when reliable point normals are available. Nor-
mal distributions are unimodal functions, whereas
spin images can capture arbitrary surface shapes if
the resolution is high enough. However, the process-
ing requirements are quite different for the two meth-
ods. Using data sets containing 32 scans with 1,000
mesh faces each, as done by Huber (2002), the time
to compute the initial model graph using spin-image
matching can be estimated to 1.5 × 322 = 1, 536 s.
(The complete time is not explicitly stated, but pair-
wise spin-image matching is reported to require 1.5 s
on average.) With a data set of that size, a rough esti-
mate of the execution time of the algorithm proposed
in this paper is 32 × 0.8 + (32 × 3)2 × 7 × 10−6 = 26 s
on similar hardware, based on the execution times in
Table III. On a data set of a more realistic size, the dif-
ference would be even greater.

4.2. Comparing Results

As discussed in Section 3.2., it is not always obvious
how to determine ground truth in the context of loop
detection. Granström et al.(2009) solved this problem
by evaluating their algorithm on a selection of 400
scan pairs that were manually determined to be over-
lapping and 400 nonoverlapping ones. However, we
would like to evaluate the performance on the com-
plete data sets. Bosse and Roberts (2007) and Bosse
and Zlot (2008a, 2008b) use the connectivity graph
between submaps created by the Atlas SLAM frame-
work (Bosse, Newman, Leonard, & Teller, 2004) as the
ground truth. In this case, each scan has a single cor-
respondence in each local subsequence of scans (al-
though there may be other correspondences at sub-
sequent revisits to the same location). In our evalua-
tions of the full similarity matrix for each data set no
such preprocessing was performed. Instead, we ap-
plied a narrow distance threshold tr to the scan-to-
scan distance matrix in order to generate a ground
truth labeling of true and false positives. The fact that
the approaches used to determine the ground truth
vary so much between different authors makes it dif-
ficult to compare the results.

Furthermore, because all of the methods dis-
cussed above were evaluated on different data sets,
it is not possible to make any conclusive statements
about how the quality of the results compare to
one another, both because the appearances of scans
may vary greatly between different data sets and
also because the relative numbers of overlapping and

nonoverlapping scans differ. A false-positive rate of
1% (of all nonoverlapping scans) for a data set that
has a large ratio of nonoverlapping scans is not di-
rectly comparable to the same result for a set with
more loop closures.

Having said that, we will still compare our results
to those reported in the related literature in order to
give some indication of the relative performance of
our approach. On the Hannover2 data set, which is
the only one with characteristics comparable to those
used in the related work, we obtained a recall rate of
80.5% at 1% false positives when evaluating all scan
pairs. This result compares well to the 51% recall rate
of Bosse and Zlot (2008b) and the 85% recall rate of
Granström et al.(2009).

The SLAM-style experiment on the same data
set is more similar to those of Cummins and
Newman (2007, 2008a, 2008b). With no false pos-
itives, we achieved a 47.0% recall rate for the
Hannover2 data set, which is comparable to their re-
call rates of 37%–48%.

5. SUMMARY AND CONCLUSIONS

We have described a new approach to appearance-
based loop detection from 3D range data by compar-
ing surface shape histograms. Compared to 2D laser-
based approaches, using 3D data makes it possible to
avoid dependence on a flat ground surface. However,
3D scans bring new problems in the form of a massive
increase in the amount of data and more complicated
rotations, which means a much larger pose space in
which to compare appearances. We have shown that
the proposed surface shape histograms overcome
these problems by allowing for drastic compression
of the input 3D point clouds while being invariant
to rotation. We propose to use EM to fit a gamma
mixture model to the output similarity measures in
order to automatically determine the threshold that
separates scans at loop closures from nonoverlapping
ones, and we have shown that doing so gives thresh-
old values that are in the vicinity of the manually se-
lected ones that give the best results for all our data
sets. With experimental evidence we have shown that
the presented approach can achieve high recall rates
at low false-positive rates in different and challeng-
ing environments. Another contribution of this work
is that we have focused on the problem of provid-
ing quantifiable performance evaluations in the con-
text of loop detection. We have discussed the dif-
ficulties of determining unambiguous ground truth
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correspondences that can be compared for different
loop detection approaches.

We can conclude that NDT is a suitable rep-
resentation for 3D range scans. It allows for very
good scan registration (Magnusson et al., 2007;
Magnusson, Nüchter, et al., 2009) and can be used as
an intermediate representation for the proposed sur-
face shape histograms. We also conclude that the pro-
posed NDT-based surface shape histograms perform
well in comparison with related loop detection meth-
ods based on 2D and 3D range data as well as current
methods using visual data. The highly compact his-
togram representation (which uses 50–200 values on
average to represent a 3D point cloud with several
tens of thousands of points) makes it possible to com-
pare scans very quickly. We can compare a 3D scan
to around 25,000 others in 1 s, as compared to 1.5 s
per comparison using 3D spin-image descriptors. The
high speed makes it possible to detect loop closures
even in large maps by exhaustive search, which is an
important contribution of our work. Even though the
input data are highly compressed, the recall rate is
still 80.5% at a 1% false-positive rate for our outdoor
campus data set.

6. FUTURE WORK

It would be very interesting in future work to com-
pare our approach to different methods using the
same data set. The Kvarntorp data set includes 2D
scans and camera images in addition to the 3D scans
used here, so that data set would lend itself especially
well to comparing different approaches.

It would be equally important to improve cur-
rent experimental methodology to include a unified
method for selecting true and false positives in the
context of loop detection. A formal definition of what
constitutes “a place” in this context would be very
welcome, for the same purpose.

To further improve the performance of our ap-
proach, future work could include learning a genera-
tive model in order to learn how to disregard com-
mon nondiscriminative features (such as floor and
ceiling orientations), based on the general appear-
ance of the current surroundings, as done previously
in the visual domain (Cummins & Newman, 2008b).
The disjoint range intervals that we have used in the
present work may be a source of error, although the
use of overlapping NDT cells should alleviate also
these discretization artifacts to some degree. We will

consider overlapping range intervals in future work.
It would also be interesting to do a more elaborate
analysis of the similarity matrix than applying a sim-
ple threshold, in order to better discriminate between
overlapping and nonoverlapping scans and to eval-
uate the effects of difference measures other than the
one used here. Another potential direction is to re-
search whether it is possible to learn more of the pa-
rameters from the data. Further future work should
include investigating how the proposed loop detec-
tion method is affected by dynamic changes, such as
moving vehicles or people.
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thal, A. J. (2009, May). Appearance-based loop de-
tection from 3D laser data using the normal distri-
butions transform. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation
(ICRA), Kobe, Japan (pp. 23–28).

Magnusson, M., Lilienthal, A. J., & Duckett, T. (2007). Scan
registration for autonomous mining vehicles using 3D-
NDT. Journal of Field Robotics, 24(10), 803–827.
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