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Abstract In recent years 3D models of buildings are used in maintenance and
inspection, preservation, and other building related applications. However, the us-
age of these models is limited because most models are pure representations with
no or little associated semantics. In this paper we present a pipeline of techniques
used for interior interpretation, object detection, and adding energy related se-
mantics to windows of a 3D thermal model. A sequence of algorithms is presented
for building the fundamental semantics of a 3D model. Among other things, these
algorithms enable the system to differentiate between objects in a room and ob-
jects that are part of the room, e.g. floor, windows. Subsequently, the thermal
information is used to construct a stochastic mathematical model– namely Markov

Random Field– of the temperature distribution of the detected windows. As a re-
sult, the MAP(Maximum a posteriori) framework is used to further label the win-
dows as either open, closed or damaged based upon their temperature distribution.
The experimental results showed the robustness of the techniques. Furthermore,
a strategy to optimize the free parameters is described, in cases where there is a
sample training dataset.

1 Introduction

Efficiency in energy usage is a fundamental step in adopting green energy and
conservation of natural resources: the European commission estimates the largest
energy saving potential lies in residential (≈ 27%) and commercial (≈ 30%) build-
ings [Borrmann et al(2012)]. Among other factors uncontrolled air leakage, known
as air infiltration, plays a significant role in energy consumption during heating
seasons but also in geographical locations where air conditioning is a necessity.
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Fig. 1: Overview of window Detection and labelling pipeline.

High rate of air infiltration is caused mostly by opened windows or doors which
can easily be resolved by human intervention. However, other parts of a building
that are poorly insulated are not easily detectable as open window or door. As
a result, infrared thermometers are mainly used to detect faulty insulations in a
labor intensive and time taking manner [Ham and Golparvar-Fard(2013a),Peder-
sen and Hellevang(2008)]. Alternatively, automating the process of air infiltration
detection has a significant impact on efficiency, cost and effectiveness of the leak-
age detection and proofing process. Consequently, there is an ongoing research in
automated 3D model creation for energy efficiency [Laguela et al(2014),Ham and
Golparvar-Fard(2013b)].
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Motivated by the economic and environmental impact we contribute to the
efforts of fully automating the energy leakage detection process. Building on results
obtained in [Borrmann et al(2012)], where a method for acquiring a 3D thermal
model of a building is presented, we present a sequential pipeline of algorithms for
3D scene understanding and temperature distribution modelling as given in Fig. 1.
Particularly, the temperature distribution is used to model the state of a window
as either opened, closed, or damaged, i.e., not properly insulated. After reviewing
related work we describe our mobile robot and the thermal camera vs. 3D laser
scanner calibration to make the paper self-contained. Then we define and formalize
the problem mathematically in Section 4. Our solution pipeline uses probabilistic
model and pre-processing of a 3D point cloud and is presented in Section 5 and 6.
Finally, experimental results are presented in Section 7. Section 8 concludes the
paper.

Throughout the paper we use a data set acquired at Jacobs University Bremen,
Germany. The buildings feature a uniform type of windows as given in figure 2.
Thermography however is preferred to be performed in interiors. To detect energy
related flaws a difference of 15 Kelvin is necessary between indoor and outdoor
temperature to come to significant conclusions. It is desired that the weather
conditions remain stable over a longer period of time, making the morning hours
in the winter months ideal. Keeping stable conditions is easier to achieve for indoor
thermography. The analysis of back-ventilated walls and roofs is only possible from
indoors. Thermal bridges at exterior walls and interior walls connecting heated
and unheated rooms, pillars that interrupt the thermal insulation of a building,
air leaks at windows and doors and the moisture penetration at basement walls are
the common applications for indoor thermography, that focus on energy efficiency
in existing buildings [Fouad and Richter(2012)].

2 Related work

According to Xiong and Huber, creating a 3D model of an indoor environment
has notable advantages in maintenance, management, and architectural renova-
tion of buildings [Xiong and Huber(2010)]. The traditional approach to create a
3D model is based on CAD (Computer-aided design) tools and manual measure-
ments, despite the consequential high cost and lengthy time consumption. How-
ever, recent technological advances in laser scanning technology prompted the full
automation of 3D model creation [Adan and Huber(2011), Surmann et al(2003)].
3D model creation is still a fairly complex task with challenges at different lev-
els. These challenges can be categorized in two; lower level problems and higher

level problems. Lower level problems are successfully explored in the computer
vision community. They include the mere acquisition of data as well as basic post-
processing steps. In 3D point cloud processing the acquisition of accurate data is
solved by technological means. Computer vision methods are widely used to solve
fundamental problems such as registration [Besl and McKay(1992)], i.e., solving si-
multaneous localization and mapping [Borrmann et al(2008)], and representation,
i.e., octrees [Hornung et al(2013)] and range images. The addition of semantics
belongs to the second group of problems. Semantics range from primitive shape
detection to higher level knowledge inference. Several shape detection methods
have been proposed in the computer vision community that can cope with un-
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Fig. 2: Above: The campus center of the Jacobs University as a 3D point cloud
with thermal information and filtered vegetation [Elseberg et al(2011)]. Below:
Photo of eight windows (left) and the corresponding infrared image (right). In
the thermal image heat losses are clearly detectable. In the top row the windows
show different temperature distributions. The first window on the left belongs to
an empty office which is not heated. The top part if the second window is open.
The third window is closed and has proper insulation. The fourth window shows
unusually high temperatures. This was caused by a partially detached rubber
insulation strip that allowed the air to flow through.

certainties and clutter in the data sets [Holz et al(2011), Schnabel et al(2008)].
Additionally, the current trend in 3D point cloud interpretation is to infer higher
level knowledge [Pangercic et al(2012)].

Building thermal 3D models of environments received some attention recently.
Ham and Golparvar-Fard model and evaluate thermal models of building exteriors
and the energy performance of buildings [Ham and Golparvar-Fard(2013a)]. How-
ever, to the best of our knowledge, there has not been any work done in automatic
temperature analysis for the understanding of an object state.
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Fig. 3: The robot Irma3D, with a 3D laser scanner, a thermal camera and a
webcam.

3 Automatic Acquisition of Thermal 3D Models

Thermal imaging is state of the art in recording energy related issues [FLIR Sys-
tems AB(2011),Ham and Golparvar-Fard(2013b),Laguela et al(2014)], while ter-
restrial laser scanning has been used for years to create 3D models [Adan and
Huber(2011),Xiong and Huber(2010),Vosselman and (Eds.)(2010)]. The combina-
tion of these two yields a 3D model that contains precise temperature information
including the dimensions of heat and air leaks. To achieve valid results some gen-
eral rules, mostly concerning the weather conditions, have to be taken into account
when performing thermography. We pay attention to these rules in all our experi-
ments. Most importantly, to measure a valid, noise-reduced thermogram there has
to be a temperature difference between indoor and outdoor of at least 15◦. Other
error sources such as sun light, wind and rain, clear sky were minimized as well.

Experimental Setup and Data Acquisition. The setup for simultaneous acquisition of
3D laser scan data and thermal images is the robot Irma3D (see Fig. 3). Irma3D
is built of a Volksbot R© RT-3 chassis. Its main sensor is a Riegl R© VZ R©-400 laser
scanner from terrestrial laser scanning. A thermal camera is mounted on top of the
scanner. The optris R© PI160 thermal camera has an image resolution of 160× 120
pixels and a thermal resolution of 0.1◦C. It acquires images at a frame rate of 120
Hz and with an accuracy of 2◦C with a field of view of approximately 40◦ × 64◦.
The laser scanner acquires data with a field of view of 360◦× 100◦. To achieve the
full horizontal field of view the scanner head rotates around the vertical scanner
axis when acquiring the data. We take advantage of this feature when acquiring
image data. Since the cameras are mounted on top of the scanner, they are also
rotated. We acquire 10 images per camera during one scanning process to cover
the full 360◦.

After acquiring the 3D data it has to be merged with the image information.
This processing consists of five steps that will be explained in this section.

Intrinsic Calibration of Thermal and Optical Camera. Each sensor perceives the
world in its own local coordinate system. To join the perceived information we
need the specific parameters of these coordinate systems. Each camera has unique
parameters that define how a point (X,Y, Z) in world coordinates is projected
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onto the image plane. These parameters are calculated through a process known
as geometric camera calibration. Given the focal length (fx, fy) of the camera and
the camera center (cx, cy) image coordinates (x, y) are calculated as:
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To determine the parameters of optical cameras, chessboard patterns are com-
monly used because the corners are reliably detectable in the images. A number of
images showing a chessboard pattern with known number and size of squares are
recorded. In each image the internal corners of the pattern are detected and the
known distance between those in world coordinates allows to formulate equations
(1) and (2) as a non-linear least squares problem and solve for the calibration
parameters [Bradski and Kaehler(2008)].

For low resolution thermal cameras a chessboard pattern is error-prone even af-
ter heating it with an infrared lamp. For pixels that cover the edge of the squares
the temperature is averaged over the black and white parts thus blurring the
edges. [Luhmann et al(2010)] have explored the calibration procedure using differ-
ent types of thermal cameras. Generally an object with a unique pattern having
distinct targets is used which eases labeling and increases accuracy of the calibra-
tion process. The points are actively or passively heated. In case of passive heating
different material causes the pattern to show up. [Luhmann et al(2010)] developed
a pattern consisting of targets of self-adhesive foil on an aluminum plate. While
the targets emit radiation related to their own temperature the reflective metal
surface reflects the cold temperature of space thus leading to an enormous contrast
in temperature. Unfortunately this concept is not applicable for the co-calibration
of the thermal camera and a laser scanner as it is very difficult to position the
board in a way that the sky is reflected without occlusions and the board is com-
pletely visible in the laser scan. Instead we suggest a pattern with clearly defined
heat sources such as small light bulbs as it shows up nicely in thermal images.

Fig. 3 shows our pattern in the background. It is composed of 30 tiny 12 Volt
lamps, each with a glass-bulb diameter of 4mm. The overall size of the board is
500mm (width) × 570mm (height). Identifying the heat sources in the image en-
ables us to perform intrinsic calibration in the same way as for optical cameras. To
detect the light bulbs in the thermal image a thresholding procedure is applied to
create a binary image showing regions of high temperature. A further thresholding
step discards effectively all regions that are too big or too small. If the remaining
number of regions is equal to the number of light bulbs in the pattern the regions
are sorted according to the pattern to allow for easy determination of correspon-
dences. To calculate the exact center of the features, the mean is calculated by
weighing all the pixels in the region by its temperature value.
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Extrinsic Calibration – Cameras and Laser Scanner. After calculating the internal
parameters of the cameras we need to align the camera images with the scanner
coordinate system, i.e., extrinsic calibration. The three rotation and three trans-
lation parameters are known as the extrinsic camera parameters and define the
geometric relation between camera and laser scanner. Once all the points are in
the camera coordinate system, the projection to the image can be defined up to
an factor s using equation (3) [Bradski and Kaehler(2008)]:
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Suppose there are n images of the calibration pattern and m planar points on
the pattern considering the distortions as independent and identically distributed
noise then the maximum likelihood estimate of the transformation between the
scanner and camera coordinate system is obtained by minimizing

n
∑

i=1

m
∑

j=1

||pij − p̂(A,D,Ri, ti,Pj)||2 (4)

where A is the intrinsic matrix, Ri the rotation matrix, ti the translation vector,
and D the distortion parameters. p̂(A,D,Ri, ti,Pj) defines the projection of point
Pj in image i, according to equations (3) and (2). This approach assumes that we
have a number of points that are identifiable in both the laser scan and the image.
For this purpose we attach the calibration pattern onto a board. For the optical
camera this is a printed chessboard pattern and for the thermal camera light bulbs
arranged in a regular grid pattern. The calibration patterns are depicted in the
background of Fig. 3 The position of the points of these patterns are known.
Algorithm 1 detects the points in a laser scan.

Algorithm 1: Calibration pattern detection in a laser scan.

Require: point cloud, specification of calibration pattern
1: discard points outside the area of the expected board
2: find the most prominent plane using RANSAC (RANdom SAmple Consensus) [Fischler

and Bolles(1981)]
3: project a generated plane model into the center of the detected plane
4: use ICP (Iterative Closest Point) algorithm [Besl and McKay(1992)] to fit the plane

model to the data points
5: if each point from the plane model has a corresponding point in the point cloud then

6: return position of the light bulbs according to ICP result
7: end if

3D to 2D Projection and Color Mapping. During the data acquisition phase laser
scans and images are acquired simultaneously. After determining the relations
between scanner and cameras in the calibration step this relation is used directly
to assign temperature and color values to the point cloud.
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Projection/Occlusion/Resolution Errors. Due to the different fields of view the sen-
sors see different parts of the world. An area that is visible for one sensor might
be occluded for the other sensor. When mapping the thermal information to the
point cloud this causes wrong correspondences and therefore faulty assigned val-
ues. This impact is amplifed by the low resolution of the thermal camera. With
only 120 by 160 pixels per image each pixel corresponds to many 3D points seen
by the laser scanner leading to errors at edges. Consequently small calibration
inaccuracies have a large impact on the results. To solve this problem we perform
a ray tracing procedure that checks whether a point in the point cloud can be seen
by the camera. We connect the point P and the camera position C with a straight
line PC and select all points with a distance less than a threshold t to PC, i.e., all
points Oi for which

|P−Oi|2 − |(P−Oi) · (P−C)|2
|P−C|2 < t2 (5)

holds true. If any point Oi lies between P and C, P is not visible from the camera
and therefore is discarded. The threshold t accounts for small inaccuracies in the
calibration and the low resolution of the camera simultaneously. To speed up the
checking procedure the points are organized in a kd-tree data structure. With a
quick check all voxels that are not traversed by the ray are immediately discarded
and therefore all the points within are ignored.

4 Problem Definition

Inferring higher level knowledge about the property of an object can be seen as
two problems that are highly related. First, the detection of objects that belong
to a certain class. This is a problem where the emphasis is on understanding and
modelling of time-invariant properties of a certain class of objects, e.g. all windows
are made of glass, so that the properties are used to recognize an object of that
class. Second, the inference about the object, rather than the class, using specific
knowledge. In the second case, the problem is recognizing properties of an object
that are observed in a certain time frame under a certain condition; which, of
course, gives information about the objects state rather than the class it belongs
to. Consequently, each of the above problems is usually solved separately and
sequentially. In fact, the solution space of the first problem is the domain/problem
space of the second problem. In this paper we will be dealing with window detection
and labelling, i.e, assessing windows either as open (O), closed (C) or damaged
(D), i.e., a window without the proper insulation. Window detection belongs to
the first group of problems and will be performed first followed by window labelling
that belongs to the second group of problems.

Although window detection from a point cloud representation of a room full
of objects is a challenging task we have designed a sequential pre-processing mod-
ules which essentially reduce window detection to the estimation of a mapping
function f(·). Assuming we have successfully identified 3D points that represent
a window, the 3D points are considered as random variables taking a tempera-
ture value from R. Thus, the labelling of windows as closed, opened or damaged
is formulated as a probability distribution modelling problem. In general, prob-
abilistic models for object recognition are categorized either as generative models
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or discriminative models. The former one attempts to model the joint probability
distribution P (X,Y ) between the data denoted by X and the label denoted by Y .
Alternatively, the discriminative model approach is to model the posterior prob-
ability P (Y |X) directly from the data. A discriminative model is widely believed
to be the better modelling technique with better predictive ability [Jordan(2002)].
Consequently, we have chosen the discriminative modelling approach, and thus the
posterior probability of a label y ∈ {C,O,D}, is modelled as:

ts = f(x), (6)

P (y|ts) = p(ts|y)P (y)
p(ts)

, (7)

where x is the fully registered thermal 3D point cloud model of the room, f(·)
is a function that takes this model as an input and outputs the temperature
distribution of the detected window, ts ∈ R

n, where n is the number of 3D points
representing the window. Since p(ts) is exactly the same for all the labels it has
no effect on the label specific posterior, and thus is ignored. Additionally, the
probability of a window being closed is assumed to be exactly the same as being
open or being damaged. In fact, this might not be true but we have no prior
information to assume otherwise. Therefore, the modelling task is:

P (y|ts) ≈ p(ts|y) (8)

In summary, labelling a window as open, closed or damaged is formulated as
estimating the conditional probability distribution of every label, followed by a
decision rule, where the decision will be based on MAP (Maximum a posteriori)
to minimize the expected error [Bishop(2006)]. MAP is summarized as:

ŷ = arg maxyi∈Y P (y = yi|ts) (9)

where ŷ is the final label assigned to the temperature distribution of a window
t ∈ R

n, and Y = {C,O,D}. In the following sections a solution to the problem
formulation given in Eq. (7) is presented, respectively.

5 Window Detection

Window detection is a difficult task with many associated problems. In this pa-
per a simple but effective detection technique, exploiting the thermal camera, is
presented. Intuitively, the core idea is the difference in material property, i.e., all
windows are made of glass and walls are made of some other material. This means,
given a thermal 3D point cloud of a room that contains only windows and walls,
there is a thermal conductivity difference between the wall material and the win-
dow material. And thus, there will always be a temperature difference which can be
used to recognize one from the other. However, a 3D point cloud representation of
a room contains other objects and clutter. As a result, a mandatory preprocessing
has to be done to detect and remove these other objects from the scene.
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Fig. 4: Blue color represents the walls, and the red is for floor and ceiling; constraint
is set to ≥ 800

5.1 Pre-processing

Filtering objects that are inside a room and points that are scanned through
windows (see Fig. 5) is a challenging task that is simplified with practical and
realistic assumptions. The assumptions taken are:

– A room has a rectangular shape.
– The scanner is located inside the room.
– The walls and windows are not completely occluded, i.e., some part of the wall

is always visible.
– The thermal 3D point clouds are registered to a single co-ordinate system.

Assuming the above conditions are true, a sequential procedure is proposed for
filtering out objects from the scene, such that the point cloud consists only of
walls and windows.

5.1.1 From 3D to 2D

Assuming that windows are located on the walls and not on the ceiling, neither
the height of the room nor points representing the floor and ceiling are important
for window detection. Hence, points representing the floor and ceiling need to be
filtered out from the scan. Floors and the ceilings are, again, almost always parallel
to each other and perpendicular to the walls. Thus, the normal vector of a 3D point
representing the ceiling is parallel to a wall. Given the above we conclude that a
3D point is representing the floor or ceiling if its normal vector is perpendicular
to the x − y-plane, or parallel to the x− z-plane, where z is the vertical axis. Let
a = (1,0, 0) be a vector on the x-axis, and ni be the normal vector of the ith point,
then for all points on the floor or on the ceiling 80◦ ≤ θ ≤ 100◦ holds true in:

a · ni = ‖a‖‖ni‖ cos θ (10)

We set the threshold to 10◦, due to noise and inaccuracy in calculating normals.

Inspired by the work of Xiong and Huber [Xiong and Huber(2010)] our software
further simplifies the 3D representation of the room to a 2D representation, since
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the height of the room is not really needed in wall detection. Thus, the 3D points
are transformed to a 2D plane as follows:

(

p′

0

)

= p− (p · n)n (11)

where n is the normal vector of the projection plane, p′ ∈ R2 is the projected
point, and p ∈ R3, is the point to be projected. Now that the room is projected
onto a 2D plane walls are represented with lines instead of planes (cf. Fig. 5).

5.1.2 Wall Detection

The projection of the room to a 2D space enables us to work with lines as walls
instead of planes. We have assumed that the room has a rectangular shape, that
the origin of the scan is inside the room, and that the walls are not completely
occluded. Hence, we can conclude that the x−y-axis of the 2D plane, which has its
origin at the scanner location, intersects with each wall line after θ rotation, where
0◦ ≤ θ < 360◦. The intersection is independent of the orientation and position
of the scanner as long as it is in the room. The only exception is when the axes
intersect with the corners.

As a line equation is defined by two points that lie on the line we need to
detect two points on each wall (line) to detect all the walls of the room. The first

four points– since there are four walls– are determined by selecting the farthest
point on the ± x-axis and ± y-axis. To determine the second set of points the
registered scans are rotated by a given angle θ2. Again the farthest point on each
± x − y-axes are selected. Rotating the selected points back by −θ2 yields the
second set of points needed for defining the four line equations. Although θ2 can
be selected arbitrarily its size has a significant impact on the convergence speed
of the algorithm. For larger θ2 it is very likely that the rotation passes the corner
causing the pairs to be on different walls. For small θ2 the distance between the
two points of a pair is small influencing the impact of noise in the data.

The algorithm fails in cases where the farthest point on one of the axes is not a
wall point, e.g. due to occlusions, or due to the presence of noise, i.e., points outside
of the room that are scanned through windows and doors. Further problems occur
when one of the intersecting points lies in a corner of the room. To ensure an
accurate and robust wall detection the following conditions are introduced:

– Each detected line has to be perpendicular to two lines, the ones it is inter-
secting with, and parallel to the other, the one it is not intersecting with. This
is a hard constraint that has to be fulfilled in order to detect the walls with a
reasonable accuracy; in other words, the slopes S1 and S2 of two intersecting
lines should satisfy S1 = −1/S2.

– To avoid the detection of outliers as walls there should be a considerable num-
ber of points at all four intersection points of the four detected lines. This
is more of a soft constraint, especially, in a heavily occluded scan. Conse-
quently, this constraint is mainly used to measure the confidence level, i.e.,
error = 1− confidence.

The confidence level is quantified by counting the intersection points of the
detected four lines that have a considerable number of points on and around them,
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(a) (b) (c)

Fig. 5: (a) A 3D thermal model of the Automation Lab at Jacobs University
Bremen. (b) 2D projection of the room with the x-y axis colored in red. (c) The
detected outer rectangular shape, or walls of the room.

e.g., if of the four intersection points three have a significant number of points on
and around them then the confidence is 3/4 or 75%. The threshold for determining
the significance of the number of points depends on the density of the scan. If the
above two constraints are not satisfied the whole scan is rotated by a certain angle
θ1 and the line detection process starts all over again– the iteration continues until
lines are detected that satisfy the constraints reasonably. The procedure is outlined
in Algorithm 2. After a successful detection of the lines representing the walls, all
points that are not near the walls, with in a certain threshold, are removed. An
example is given in Fig. 5.

Algorithm 2: Wall Detecting Algorithm

Data: Registered and pre-processed scan
Result: Equation of four lines
initialization:
search = true
// εp threshold for perpendicularity

// θ1, θ2 step angle for line detection

while search do
calculate the first axis-line intersections
rotate scan by θ2
calculate the second axis-line intersections
rotate scan by −θ2
calculate the lines equation
if |S1 + 1

S2
| < εp and |S3 + 1

S4
| < εp then

count = # of corner points where significant # of points are found
confidence = count/4
search = false

else
rotate scan by θ1
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Fig. 6: Typical temperature distribution of a 3D scan with walls and windows only.

5.2 Window Detection

The result of the pre-processing step is a 3D model of the walls of the room. Now
the remaining point cloud is dominated by points from the wall which means most
points have an almost similar temperature value. However, 3D points of a window
and points around it show a considerable temperature difference from the wall
points (cf. Fig. 6). Thus, the window detection technique aims to exploit these
temperature differences as a main feature.

Since there are significantly more 3D points that represent the walls than those
that represent the window area a typical temperature distribution in a room takes
a bell curved shape (cf. Fig. 6). The rare ends of this temperature distribution
correspond to temperature peaks. On the lower end these are objects that are
cooler than the room temperature, i.e., mostly windows. The upper end represents
hotter objects that are close to the wall, e.g., computers or heaters. Thus, filtering
points with a constant threshold that is dependent on the standard deviation and
mean of the temperature distribution enables us to detect points with uncommon
temperature values, regardless of the the temperature distribution’s peakedness
or flatness. Although it must be noted that for sensitive thresholding one has to
consider the possible asymmetry of the distribution, e.g., heaters might be turned
off. Furthermore, in the warm season, when air conditioning is used, windows will
contribute to the upper end of the temperature scale. The thresholding constant
that divides the points into warm and cold points depending on the distribution
is given as follows:

tempdiv =
1

N

N
∑

j=1

tj ±

√

√

√

√

1

N

N
∑

j=1

(tj − µ)2 (12)

where tj represent the temperature values of the room with walls, windows and
other nearby objects, and µ is the mean temperature value.

Using the temperature dividing threshold tempdiv we detect points with lower
temperature values and conclude that these points represent windows. In the next
step the potential window points are clustered according to their spatial distance
from each other. The clustering is done based on a simplified version of k-means
clustering, i.e., the clusters emphasize compactness and connectedness. See Algo-
rithm 3 for summary. A final filtering procedure removes clusters with a small
number of points.
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Algorithm 3: Clustering Algorithm

Data: Potential 3D window points P

Result: Set of clusters S

S = empty
set distance threshold εd
for ∀pi ∈ P do

pointadded = false
for ∀Sa ∈ S do

for ∀pj ∈ Sa do
dist = ‖pi − pj‖
if dist ≤ εd then

add pi to cluster Sa

pointadded = true
break;

if pointadded then

break;

pointadded = false

if !pointadded then
create new cluster Snew

add pi to Snew

add Snew to the cluster set S

remove pi from P

Each of the remaining clusters is processed individually in case there is more
than one window in the room. We approximately determine the width and height
of each window from the cluster. This has the major advantage that we can control
the number of points on the window. The boundaries of the window are approx-
imated by first determining the plane that the window lies on by removing the
axis with the smallest variance. Second, we select the extreme ± of each axis, i.e.,
the distance from the respective component of the mean vector of the clusters.
Finally, the extreme points are used to determine the boundary points. To achieve
an identical number of points on each detected window we use an octree based
sub-sampling (see [Elseberg et al(2012)]). The procedure takes into account the
size of the window by creating an octree with a variable minimum voxel size and
taking only one point from each voxel.

6 Modelling state of a window

In this paper a window is considered to be in three distinctive states (labels),
henceforth will be used alternatingly. The states are: closed(C), opened(O), or
damaged(D) – a damaged window refers to a window without the proper heat
insulation. In this section, MRF (Markov random field) is presented as a mathe-
matical tool to model the probability distribution of each window’s states, given
the 3D thermal point cloud of the window.

6.1 Markov random field

First introduced by [Besag and Moran(1975)] the Markov Random Field (MRF)
is mainly used to express the statistical dependencies between several random
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variables arranged in some form of spatial configuration or graph. MRF simpli-
fies the joint distribution modelling by exploiting the Markovian property of the
graph [Clifford(1990)].

Meanwhile, the Hammersley-Clifford theorem [Besag and Moran(1975)] showed
that a joint probability distribution of several random variables {z1, · · · , zn} that
can be factorized as P (z1, · · · , zn) =

∏n
j=1 φj(ψj), where φj is any real valued

function defined for each clique set, is equivalent with MRF [Clifford(1990)]. Fur-
thermore, since MRF assumes that every joint realization of the random variables
has a strictly positive probability value– this is called the positivity condition– the
factorized distribution can be expressed using exponential form, called Boltzmann
(Gibbs) distribution. Boltzmann distribution is defined as:

p(t; θ) =
1

Z(θ)
exp(

−E(t, θ)
T

) (13)

where Z is the normalization constant, T is a controlling constant, t is a certain
realization of the random variables, and E(·) is a system, i.e. the system being
modelled, specific function called energy function. And finally, θ is a set of free
constant parameters that will be discussed later.

6.1.1 Boltzmann distribution

The Boltzmann distribution is at the heart of MRF modelling; hence, in this
subsection, a brief discussion about the mathematical properties of the Boltzmann
distribution is presented. There are two independent variables E(·) and T and a
single dependent variable p(·) in Eq. (13). Consequently, understanding the exact
relationship between each independent variable and the probability distribution is
crucial.

The first and perhaps the most important property is the relationship between
the energy function and the distribution. Since the exponential function is taking
the negative of the energy function as an input, and given the nature of exponential
functions, it is straight forward to see the inverse variation of the energy function
and the distribution. And thus, assuming E(·) > 0, the relationship can be ex-
pressed as p(·) ∝ 1

E(·) . Intuitively, this means the Boltzmann distribution favours

states with small energy value– in terms of modelling, it means all instances of a
class should always minimize the energy function of the class’s Boltzmann distri-
bution, more accurately, should minimize the energy function better than other
class’s instance. The second property on the other hand, is between the control-
ling constant T and the distribution; as T gets small the standard deviation of the

distribution gets small as well. In essence, T ∝ σ, where σ is the standard deviation.
In the next subsection, a discussion is presented about the formulation of energy

functions that favour a distinctive feature of window’s states.

6.2 Energy functions

Apparently, the temperature distribution of a closed window–a window that is
neither damaged nor opened–exhibits a very small variance regardless of the peak
temperature. On the contrary, the temperature distribution of opened window
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Fig. 7: (a) Open window colored according to the thermal distribution. (b) Closed
window colored according to the thermal distribution. (c)+(d): the temperature
distribution of each window, respectively.

has a much higher variance than closed window. This has shown to be a very
robust feature, i.e., invariant to peak temperature value, to distinguish one from
the other. Damaged windows, however, are particularly detectable because of their
non-smooth temperature distribution. Intuitively, the non-smoothness in temper-
ature value is the main feature of a leaky window. Therefore, non-smoothness in
temperature distribution is the emphasized feature in the energy function of a
damaged window. However, it must be noted that the temperature distribution
of both opened and closed windows are smooth, i.e., small temperature difference
between neighbouring points, as opposed to the distribution of damaged windows.
These characteristics of the different window states were derived from thermal
images of windows. Examples of different windows are shown in Fig. 2.

On the other hand, energy functions are ought to be designed such that the
function is close to the minimum for strong cases of the designated feature and
reaches its minimum for extreme cases, respectively. Additionally, since the fea-
tures of each state should be distinctive they must be different from each other
and the design of the energy function is state specific. The following equations,
thus, are designed as an energy function for each state.
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EC(ts, θc) = α1c

N
∑

j=1

(tj − µ)2

N
+ α2c

N
∑

j=1

d(xj ,K)

N
(14a)

EO(ts, θo) = α1o
N

∑N
j=1(tj − µ)2

+ α2o

N
∑

j=1

d(xj ,K)

N
(14b)

ED(ts, θd) = α
N

∑N
j=1 d(xj ,K)

(14c)

where θc = (α1c, α2c), θo = (α1o, α2o), θd = (α) are weighting constants for each
term of the energy functions. N is the number of random variables (3D points)
representing the window. d is a function that calculates the average temperature
difference in a K neighbouring points, with respect to xj ’s spatial location. And

finally, tj is the temperature value of the jth point xj of the window and µ the
mean temperature value. The first term encourages small variance in case of a
closed window’s energy function Eq. (14a), and a high variance in case of open
window’s energy function Eq. (14b). The second term in both cases, open and
closed window, emphasizes smoothness. However, the damaged window’s energy
function Eq. (14c) encourages non-smooth temperature distribution (cf. Fig 8).

The energy functions, however, are defined on a very high dimensional space
and computing the normalization constant analytically is mathematically complex
and therefore not done in practice. Hence, it has to be approximated with an
appropriate numerical method, Monte Carlo integration.

6.3 Monte Carlo integration

Monte Carlo integration attempts to approximate a result from an experiment.
Monte Carlo methods are usually better for the approximation of higher dimen-
sional integrals than numerical methods [Madras(2002)].

The normalization constant of a Boltzmann distribution for n continuous ran-
dom variables defined on the same probability space is calculated as:

Z =

∫

Rn

exp(
−E(t)
T

) dt (15)

However, Eq. (15) can without loss of generality also be expressed as follows:

Et[
exp(−E(t)

T )

p(t)
] = Z =

∫

Rn

exp(−E(t)
T )

p(t)
p(t) dt, (16)

where E(t) is an energy function, p(t) can be any probability distribution; t ∈ R
n,

where n is the number of random variables or 3D points and t is the realization
of the random variables. Et[·] is used to represent the expectation value of the
function over the random variables.

The Law of large numbers assures the approximation of expected value with a
large number of samples and thus Eq. (16) is further reduced to:

Et[
exp(−E(t)

T )

p(t)
] =

1

M

M
∑

j=1

exp(
−E(tj)

T )

p(tj)
(17)
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Fig. 8: The energy functions defined on variance and/or smoothness where all the
weighting constants are assigned to 1. Top Left: closed window’s energy function,
Top Right: open window’s energy function, Bottom: damaged window’s energy
function.

Again, tj ∈ R
n is sampled according to p(t) for M number of times, the larger M

is the better the approximation will be.
The major practical difficulty in using the Monte Carlo integration is the design

of p(t) especially for a function defined in a large space. For example, if we assume

p(t) to be uniformly distributed the fraction
exp(

−E(tj )

T
)

p(tj)
becomes almost infinity

since p(t) will be extremely small due to the high dimensionality of the space. The-
oretically, this can be solved if we take an infinite amount of samples from p(t).
Hence, for practical reasons the issue can only be dealt with a hand designed prob-
ability distribution p(t) that tracks the energy function very well– which means, if

exp(
−E(tj)

T ) is small then p(tj) is small and vice-versa. Consequently, the fraction

exp(
−E(tj )

T
)

p(tj)
will be a more pragmatic number that contributes for the estimation

significantly. Moreover, we can estimate a more accurate expectation and in effect
a better estimate with small number of samples, comparatively, if a well-tracking
probability distribution is designed, cf. Fig. 10.

6.4 Designing a probability distribution

The energy function of each label is inherently different, and thus, the design of the
probability distribution is also label specific. The goal is to design a probability dis-
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tribution that tracks the energy function well, which means K · p(t) ∝ exp(−E(t)
T ).

Therefore, there are two conditions, introduced for convenience, to be satisfied by
a probability distribution to be considered as a well designed probability distri-
bution. The first and the foremost is good tracking capability. And secondly, p(x)
should NOT be negligibly small regardless of its tracking capability, which is the
case for most probability distributions defined in a vast space. An attempt is made
to meet the first condition by designing a Markov chain as follows:

Xi+1 = Xi +W · N (0, σ2) (18)

X0 = N (k, σ2),

where i counts the steps starting from 0 to the number of random variables, and
X is a random variable taking a temperature value from R, X0 is the initial state
of the process, W is a weight which can be used to control the rate of variation
that will be discussed later, and k is a constant that can be tuned accordingly;
σ is the standard deviation of the Gaussian distribution. The described discrete
time stochastic process Eq. (18) is then ran n times to propose a temperature
distribution of a window with n random variables or 3D points. Furthermore, the
probability of a temperature distribution instant t = {xn · · · , x0} can be calculated
as shown in Eq. (19) and Eq. (20). Note that the Markov property is being used
to simplify the computation of the joint distribution.

p(xn, · · · , x0) = p(xn, · · · , x1|x0)p(x0) (19)

= p(xn, · · · , x2|x1, x0)p(x1|x0)p(x0)
...

= p(xn|xn−1) · · · p(x2|x1)p(x1|x0)p(x0)

And from Eq. (18):

p(xi|xi−1) =
1

σ
√
2π
er

2/2σ2

(20)

where r is a number sampled from N (0, σ2) at the ith step. Thus, Eq. (18) can be
used to create a probability distribution that generates sample t = {xn, · · · , x0}
tracking each label’s energy function. However, the free parameters have to be
tuned according to the specific energy function; the significant free parameters
are W and σ. The second condition for the probability distribution is NOT to be
negligibly small. The approach taken towards this problem is clustering of points

according to their spatial location, and treat each cluster as a random variable,
i.e., every point in the cluster will have the same temperature value. This, in effect,
will reduce the domain space to the number of clusters from the number of points
which means the joint distribution is highly scaled.

The free parameters of Eq. (18) are assigned as W = 1 and σ2 = 0.3 for closed

window. Consequently, Eq. (20) and (19) are high valued when there is less vari-
ance between consecutive points, i.e., xi−1 and xi+1 and small when there is high
variance and, of course, this by itself encourages smoothness. On the contrary,
the variance of open window’s temperature distribution is much higher than the
variance of closed window, but the smoothness should be exactly the same. Hence,
setting W = 20.0 in open window case aims to cause a higher variance between
clusters, NOT between points. As a result Eq. (20) and (19) will be high valued
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Table 1: Summary of the approximated normalization value and error range.

Label Number of samples Normalization constant Error range

Closed 1000 5.79517 0.0333378
Open 1000 5.26492 0.0231288

Damaged 1000 4.64347 0.0379469

for states with high variance yet smooth temperature distribution. Note that in-
creasing W achieves the proposal of states with higher variance without causing

the probability distribution to shrink which would happen if we simply increase the
variance. Thus, the variance is left as σ2 = 0.3.

However, as discussed above, the most distinctive feature of damaged window
is the non-smoothness of the temperature distribution, unlike closed or opened
window. The design of the probability distribution for the damaged window’s
energy function is also based on Eq. (18) with minor but basic modifications on
the handling of points inside a cluster. In cases of open and closed windows each
point in a cluster is assigned exactly the same temperature. But in case of damaged
windows the assignment is done as follows:

pj = Xi−1 +W2 · U(0, 1) · r, (21)

where pj is a point in a cluster Xi, Xi−1 is the value of the previous cluster, r is a

sample generated fromN (0, σ2) at the ith step, and U(0, 1) is a uniform distribution
that is sampled iteratively ∀pj ∈ Xi. Finally, W2 is a weighting constant that is
used to amplify non-smoothness. As can be seen, each point in a cluster will have
different value, unlike the points in a closed or open window. But most importantly,
the point’s probability is exactly the same as the cluster’s, since every value is
sampled from U(0, 1) with a probability equal to 1. And this property enables
the proposed distribution to represent a very non-smooth temperature, which is
expected, without flattening the probability distribution.

Although the hand designed probability distributions are made to track the
energy functions well, there is yet another practical issue that is specific to the
window labelling problem; the number of 3D points representing a window vary from

window to window. To address this problem 3D points of the detected window are
reduced using an octree sub-sampling. As a result, the number of 3D points on
a typical window is assumed to be constant and thus the normalization constant
is approximated off-line, which otherwise would have to be computed for each
labelling task. Alternatively, for applications where speed is not an issue the nor-
malization constant can be calculated on-line. However, no significant difference
has been observed on the final performance except the apparent overhead in the
latter case.

7 Experimental results

The test data set is acquired with a highly precise laser scanner, the Riegl VZ-400,
and an Optris PI160 thermal camera. The pre-processing, e.g., registration, visu-
alization and mapping of the thermal image is done with 3DTK – The 3D Toolkit

(http://threedtk.de/). The window detection is tested on acquired data sets and
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(d) (e) (f)

Fig. 9: (a)-(c): Three original thermal 3D point clouds with temperature values.
(d)-(f): The detected windows under different circumstances, i.e., (d) closed, (e)
semi-open, and (f) fully open are shown in green.

has been proven to be adequate, see Fig. 9. Six registered scans of a laboratory
were chosen for initial tests. The room has one window of the type typically ex-
istent at Jacobs University (cf. Fig. 2). The data was collected in winter. This
season is chosen to reduce the interference of sun on the thermal camera, and to
get a clear and distinctive temperature difference between room and outside tem-
perature. Open, semi-open or closed windows are correctly detected. There are,
however, free parameters that dictate the shape of the posterior probability distri-
bution; the energy function’s are parametrized to decrease or increase sensitivity
to the features that characterize the specific state. The values of these parameters
are hand tuned, for this experiment. However, optimizing these free parameters
ensures optimal performance from the specific energy functions. Although, deter-
mining the MLE(Maximum likelihood estimator) from the likelihood function– if
there is a sufficient training dataset– or using EM(Expectation maximization)– if
there are missing variables from the dataset– would suffice for an ideal optimiza-
tion scenario the difficulty of the normalization constant for analytical treatment
has made this road a dead end– keep in mind that the normalization constant
is a function of the free parameters. There are, however, other alternatives like
pseudo-likelihood, where the joint likelihood is approximated by disintegrating it
into many spatially independent distributions [Besag(1975)], given there is a huge
training dataset to learn from.

The normalization constant for each label is approximated with 1000 samples
randomly taken according to the designed probability distribution, see Subsec-
tion 6.3. Since the approximation of the mean gets closer to the true mean as
N → ∞, where N is the number of samples, the error is estimated with the vari-
ance of the following sequence Mh, that gets smaller and smaller as N → ∞,
cf. Fig. 10:

Mh =
h
∑

i=1

fi
h
, (22)
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Fig. 10: The convergence of the mean sequence; the approximation of the normal-
ization constant of a closed window with 1000 samples.

Table 2: The value of free parameters for each labels energy function.

Label α1 α2 α3 T

Closed 0.05 1 N/A 1
Open 2 1 N/A 1

Damaged N/A N/A 0.1 1

where h goes from 1 to N and fi =
exp(−E(ti)/T )

p(ti)
. As shown in Table 1 the error

range of the normalization constants Z for each label is very low. Despite the
hand tuning of the free parameters the algorithm performed as expected. The
experimentally determined parameters α1, α2, α3, and T are given in Table 2.
Exemplary results achieved with these parameters are detailed in Table 3. All
examples are correctly labelled by the algorithm. The probabilities for each label
and also the probability to choose a wrong label are given. Closed windows are
reliably detected. The probability to mislabel an open window is much higher. This
is due to the fact that in these cases the non-smoothness increases the probability
that the window is damaged. This suggests that the smoothness function is not
optimal for window labelling. Nevertheless, also in these cases the correct label
was chosen.

8 Conclusions

In this paper, we presented a thermal information analysis for object detection
and labelling. The effectiveness of the approach in general for window detection
was shown in a small test data set. The method is divided in two parts. First,
windows are detected from 3D thermal data. Second, windows are classified into
categories based on energy functions of the thermal data. In effect, we presented
a reasonable approach for understanding the structure of a room, and we have
sequentially shown usage of temperature as a main feature for object detection
and furthermore modelling of temperature distribution to infer object related se-
mantics. Although the main aim of this work is to contribute to the efforts of
automating energy leak detection and prevention, the approaches can be adopted
for object detection and modelling tasks in general, especially in cases where there
is a small data set to learn from. One could think of using energy functions to dis-
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Table 3: A summary of experimental windows labelling and probability of making
an error

Probability of

segmented closed opened damaged making Final

window error Label

0.642699 0.303224 0.054077 0.357301 Closed

0.731546 0.1543682 0.0247715 0.15684535 Closed

0.308042 0.423237 0.1568721 0.576763 Opened

0.271198 0.477311 0.251491 0.522689 Opened

0.347431 0.466858 0.185712 0.533143 Opened

tinguish different surface properties based on smoothness or the reflectance value
assigned to each point by the laser scanner. In future work we plan to further as-
sess and try to improve the methods presented here. First, an extensive evaluation
is necessary using a much larger data set containing windows of different types.
Second, this includes a thorough evaluation of the performance under changing
temperature distributions. Especially transferring the approach to examine rooms
with air condition rather than heating systems is a goal. Second, different energy
functions should be evaluated in order to improve the reliability of the labelling.
Third, we would like to extend the processing pipeline to label other heat sources
and to detect poor insulation in buildings.
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