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Abstract This publication describes a 2D Simultane-
ous Localization and Mapping approach applicable to
multiple mobile robots. The presented strategy uses
data of 2D LIDAR sensors to build a dynamic repre-
sentation based on Signed Distance Functions. Nov-
elties of the approach are a joint map built in parallel
instead of occasional merging of smaller maps and the
limited drift localization which requires no loop clo-
sure detection. A multi-threaded software architecture
performs registration and data integration in parallel
allowing for drift-reduced pose estimation of multiple
robots. Experiments are provided demonstrating the
application with single and multiple robot mapping
using simulated data, public accessible recorded data,
two actual robots operating in a comparably large area
as well as a deployment of these units at the Robocup
rescue league.
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1 Introduction

Rescue forces risk their own health and life in service
for people in serious trouble. In collapsed or burning
buildings the search for victims is dangerous and time
critical.

In general, such disaster sites can be assumed as
unknown areas wherefore the search for injured or
trapped persons is an exploration task in the first place.
Included autonomous robots face the well-known
Simultaneous Localization and Mapping (SLAM)
problem.

The chance to save lives reduces gradually in time,
wherefore multiple rescue forces searching in paral-
lel increase the efficiency. In order to support human
teams in dangerous tasks with multiple robots, coordi-
nation and data fusion is mandatory to defragment col-
lected sensor data of several robots. Piecing together
these fragments is required for getting a general idea
about the whole situation. Rescue forces are instructed
more efficiently having the global overview.

The invention of robots capable of deployment in
rescue scenarios is a complicated and therefore expen-
sive task. Inspired by catastrophes resulting in huge
amounts of injured or buried people, the Robocup
rescue league was founded.

This organisation aims at turning rescue robotics
into a world wide open source project. In general,
teams of students working at universities or insti-
tutes of technology create robots which participate at
national and international competitions. After these
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events, the teams publish their results and allow public
access to their software, mechanical design and other
technical details.

This leads to a world wide open source commu-
nity as all teams can base further research on these
results. Examples for robots competing in this league
are illustrated in Fig. 1.

In order to simulate a disaster scenario at the
Robocup rescue competition, a maze is used consist-
ing of standardized components such as ramps, stairs
or random step fields. In the future, 3D perception will
be necessary in order to create a system capable of
prevailing in a real scenario but currently 2D localiza-
tion and mapping is sufficient for the Robocup rescue
league.

In this paper, we propose a 2D multi-SLAM frame-
work allowing a robot team to cooperate together for
drift-reduced pose estimation and shared mapping in
the Robocup rescue competition. A main novelty com-
pared to other approaches is the joint map built in
parallel by the cooperating robots.

A multi-threaded software architecture allows par-
allel pose estimation of multiple 2D LIDAR inputs.
Either a shared map or individual maps can be used
for all robot instances.

One could mention that a 2D algorithm is not suf-
ficient regarding the comparably structured area of
a search and rescue site. Nevertheless the proposed
approach aims at deployment in the Robocup rescue
league for which 2D perception is currently sufficient.

The content of this paper is structured as fol-
lows: Section 2 reviews related work in multi-robot
SLAM. Section 3 outlines the proposed framework
and develops the concrete model for including 2D
laser scanners. Section 4 extends the framework for

Fig. 1 Cooperating Robots
at the Robocup German
Open 2014
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application to multi-robot SLAM. In Section 5 single-
robot and multi-robot SLAM experiments are per-
formed, either in simulation and in a real world sce-
nario. In Section 6, the application of the approach at
the Robocup German Open 2015 is described. Finally,
Section 7 concludes with an outlook on future work.

This paper is an extension of already published
work [11]. The extensions consist of a ground truth
analysis concerning public available reference data,
as well as simulated data. The multi-SLAM has been
deployed at the Robocup German Open, wherefore
the paper contains data of the competition as well as
lessons learned. The framework has been compared
to the current state of the art 2D-SLAM approach at
the Robocup, using similar parameters and the same
input data. Additionally, the multi-SLAM experiment
deplyoing a team of two robots has been enhanced
with a timing analysis of the framework.

2 Related Work

In an early approach, Burgard et al. considered mul-
tiple robots as independent systems to be coordinated
for a faster coverage of the exploration area [3]. The
global map is a result of integrating several local maps.
If their relative poses are known, map integration is
straightforward. While focusing on the collaboration
aspect, an extended approach still makes need of close
initial robot poses [4].

Several probabilistic models were proposed to
solve the problem of unknown starting poses of multi-
ple robots in a joined exploration task. Konolige et al.
used local probabilistic constraints among robot poses
[13]. Each pair of the robot team exchanges local
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maps for merging both to obtain a globally consistent
map with loop-closure techniques. Howard proposed
Rao-Blackwellized particle filters for the localization
problem [8]. Local maps are merged in case robots
come close to each other during mission.

Fox et al. demonstrated the efficient exploration of
unknown environments by a team of mobile robots
[6]. Also this approach does not rely on initial pose
information about the robot team members. Having
the ability to explore independently, the robots can
build clusters in order to share a map as soon as they
come close enough for establishing stable communi-
cation links. The robots need to determine their pose
relative to the coordinate system of the shared map.
Particle filters are employed for this task on each
robot. The proposed approach works efficiently for
up to six robots. Global consistency is ensured by the
application of loop-closure techniques.

The approach of Kim et al. relies on multiple rela-
tive pose graphs for the cooperative mapping task with
a team of mobile robots [10]. Real-time applicability
was achieved as well as fast convergence to a global
solution. The approach also employs loop-closure
detection. Kim et al. illustrated the performance in
larger environments, of which several thousand laser
scans were provided. Different kinematic concepts
were included, e.g., the cooperative mapping using a
quadrotor and a ground robot.

Granstrom et al. proposed the detection of loop clo-
sures with a machine learning approach [7]. The group
used AdaBoost for building rotation invariant features
detected in laser scans.

In 2D SLAM approaches loop-closure detection
plays an important role. Interestingly, the 3D SLAM
approach KinectFusion has no need to rely on this
step. Izadi et al. demonstrated that the representation
of a Signed Distance Function (SDF) [16] applied
to the SLAM problem, achieves accurate tracking
results with limited drift [9]. The group achieved
real-time capability by the use of massive paral-
lelism on GPU. A hand-held Kinect was localized
by Iterative Closest Point (ICP) registration while
tracking against the growing full surface model. The
convergence of the system without explicit global
optimization was demonstrated in several closed-
loop scenarios. This approach aims at the assimi-
lation of as many surface measurements as possi-
ble in time and features a limited drift and high
accuracy.

In a previous publication, we generalized the
KinectFusion approach in order to make it applicable
to different types of sensors, e.g., 2D and 3D laser
scanners, Time-of-Flight and stereo cameras or struc-
tured light sensors [15]. In this publication we extend
this framework for the SLAM problem performed by
multiple robots. The approach can either be applied
to several robots independently or to a team of robots
sharing and updating a joined map.

3 Algorithm

For the reader’s convenience, this section contains
application of the generic framework to 2D laser scan-
ners [15]. The multi-robot extension and closed-loop
experiments follow subsequently.

An iteration of our SLAM approach is triggered by
new sensor frames and consists of three steps. In the
first step, the physical parameters of the input device
are used to reconstruct a model M = {m; | i =
1..n,,} containing coordinates m; = (x;, yi)T, which
is a virtual sensor frame generated through raycasting
from the last known pose.

Step two uses this data as model for scan match-
ing with the actual laser measurements, the scene
D = {d; | i = 1..n4} containing coordinates d; =
(x;, yi)T. We use the well known Iterative Clos-
est Points (ICP) algorithm introduced by Zhang and
Zhengyou [17] and Chen and Medioni [5]. The sen-
sor’s pose is denoted as 3 x 3 transformation matrix T;,
consisting of a translational vector t = (7, ty)T and a
rotational matrix R (). T; is updated with incremental
pose change T* from time stepi — 1 to i:
cos(a) sin(a) ty
—sin(a) cos(a) ty

0 0 1

The third step uses the current pose and sensor
data to update the representation. The grid contains
Truncated Signed Distances (TSD) as used in the well
known KinectFusion approach [9]. We call this rep-
resentation TSD grid in the remainder. Algorithm 1
illustrates coarsely the whole approach.

Pose estimation of multiple robots has to be exe-
cuted in parallel. Since the sensor data is matched
against the global map, parallel access is inevitable.
Nevertheless, raycasting reconstruction applies only
reading access wherefore synchronization using
mutexes is unnecessary.

T, =TT, T =
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Algorithm 1 Main SLAM Strategy

D < acquire sensor data

M <« reconstruct: raycast at pose T;_1
T* <« scan registration between D and M
T; < T*T;_

Integrate data D at pose T;

The SLAM strategy of a single robot can be par-
allelized itself, because map updating is executed
only in small incremental steps. The possible error
induced by a conflicting read and write access can be
neglected, as we assimilate as many surface measure-
ments as possible in time, cf. KinectFusion approach

[9].
3.1 Reconstruction

A representation based on SDF has the characteristic
that raycasting can be employed to reconstruct scans
from arbitrary point of views. Data integrated from
multiple views are weighted with a decreasing weight.
Thus, the reconstruction from the TSD grid at a cer-
tain point of view entails information of all integrated
scans so far and features reduced noise. The sensor
model for the raycaster defines a set of vectors, i.e.,
the line of sight of each laser beam, cf. Figure 2a.

In case of a 2D LIDAR, all raycaster peak points
P = {p; | i = l..np} are located on the unit circle
wherefore their calculation is straight forward using
trigonometric functions. In essence, the polar data of
the laser scanner is converted into Cartesian vectors.

p— 0 y

The directional vector v; = p; — t; and the origin,
the current translation t;, are registered into the world
coordinate system applying the current transformation
T;. The raycaster is sent in steps through the represen-
tation, the step width is achieved by normalizing v; to
the desired length and adding this value to the starting
pose in every iteration.

This method iterates until the raycaster either
reaches a border layer of the representation or detects
a certain sign change in the SDE. The described
approach uses positive signs in front of an object and
negative sings behind it. Therefore, only a sign change
from positive to negative refers to an object. An irregu-
lar sign change (from negative to positive) is regarded
as an artefact in the representation and the return value
of the raycaster is neglected in this iteration.

As objects are represented by two layers of cells
with different signs, it is not likely that the raycaster
skips the object. This is a major upside of an SDF
based representation compared to a Cartesian cell
based approach. The computed coordinates contain a
systematic error as the sign change can be detected
several cell layers behind the actual object, where-
fore an interpolation is applied considering the SDF in
the neighbouring cells. Algorithm 2 summarizes the
described process.

3.2 Data Integration
The SDF is calculated using Eq. 1 which is illustrated
in Fig. 2b as well. The distance between the centroid

of the current cell v; and the referring distance mea-
surement D (i;) is signed positive in front of an object

V

0

(a) 2D LIDAR raycast-
ing model

(b) SDF generation

0
X X

(c) TSDF generation

Fig. 2 Reconstruction and Mapping. a Illustrates the raycasting model for a 2D LIDAR. b Depicts the generation of the SDE. The
current translation of the sensor is marked by t;. ¢ Shows the truncation to TSDF

@ Springer



J Intell Robot Syst

Algorithm 2 Raycasting based reconstruction

Calculate peak points p;
Calculate v;
Normalize v; to step length
t;k =T;t;
while (raycaster within bounds) do
if (sdfi—1 > 0 & sdf; < 0) then
Interpolate coordinates
Return
end if
end while

or negative, behind it. This computation is depicted in
Fig. 2b.

sdfi = |lti —vill = D(;) ey

In order to determine the referring laser beam, the
cell centroids V = {v; | i = l..n,} are back pro-
jected with a specific sensor model. This computation
calculates the laser beam closest to the current cell
centroid v;, it is depicted in Eq. 3.

As these coordinates are in the world coordinate
system, they need to be registered to the sensor coor-
dinate system as follows:

Vi =T;'V )

*

The centroids v;' = (v},

beams as follows:

vl.*y) are assigned to laser

*

o = arctan(%), 3)
ix
i == )
r

where «; is the beam’s polar angle, i; the assigned
beam index and r the sensor’s angular resolution.

In order to determine whether the back projected
cell centroid is visible by the sensor from the current
pose, the computed beam index is compared to the
sensor bounds. These bounds refer to the maximal and
minimal beam indices and are defined by the physical
parameters of the sensor model. If this index com-
plies the comparison, the current SDF is computed,
otherwise the algorithm continues with the next cell
centroid.

In order to prevent occlusions of objects, the SDF is
truncated to a certain cell layer thickness, the so called
truncation radius. This process is illustrated in Fig. 2c.

The output is stored in the cell using a weighted
average. Algorithm 3 illustrates the approach.

Algorithm 3 Map update

VE=T;'V
Back project V*
for (all v;'V*) do
Calculate beam index i;
if (i; within bounds) then
sdf; = ||t = v¥| — DG
Calculate weighted average
Store average and new weight
end if
end for

4 Multi-Robot Framework

As the multi-SLAM framework uses a TSD based rep-
resentation, it will be referred to as TSD SLAM in
the following. As described in the previous section, an
iteration of the TSD SLAM approach consists mainly
of three steps: reconstruction, localization and data
integration. Considering the usage of a Robot Oper-
ating System (ROS)-based architecture, a fourth step
is necessary extracting a compatible representation
out of the TSD grid. Many ROS nodes require an
occupancy grid as input.

Considering simultaneous multi-SLAM capabili-
ties, these tasks have to be performed for every robot.
However, as the current pose needs to be supplied with
a fast and constant update rate in order to use it for
pose and motion controllers, the localization should be
decoupled from other tasks. Modern CPUs consist in
general of multiple cores allowing parallel processing
of data with a multi-threaded architecture.

To supply a fast pose update rate, a high priority
localization thread is started for each robot, which is
triggered by new input data. Map building (data inte-
gration) is executed asynchronously because it only
needs to be performed if the pose changes signif-
icantly. The described strategy does not merge the
generated maps of the cooperating robots, it uses the
ability of the framework, to update the map from a cer-
tain pose. Therefore, every cooperating robot is able
to add new sensor data to the global shared map.

@ Springer
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Most navigation tools in ROS do not require a high
update rate for the map wherefore the occupancy grid
generation is triggered by a timer at a comparably low
rate, for instance 0.5 Hz.

The framework provides three thread classes: a
localization thread (ThreadLocalize) is instanti-
ated for every robot. Grid extraction (ThreadGrid)
and data integration (ThreadMapping) is per-
formed each by a single thread as well. The data
integration module provides a queue to relax heavy
work load, when multiple robots desire to integrate
their data to the shared map. Figure 3 depicts the
coarse framework.

4.1 Localization Thread

The model data set for ICP matching is reconstructed
from the TSD grid, which is used simultaneously by
all robots. As only reading access is performed, no
racing conditions can appear, even if multiple accesses
to the same cell are performed at the same time.
Therefore, the multi-robot-SLAM approach uses one
separate localization thread for each robot.

Theoretically, robots are able to start from every
pose within the bounds of the map, as long as this ini-
tial pose is known. Therefore, robots could enter the
area from different edges of the map and explore with-
out ever getting close to each other. However, as the
proposed approach aims at deployment at the Robocup
rescue, cooperating robots enter the area at similar
positions.

The initial laser scan of the first starting robot is
used to initialize the map from the initial pose of the
robot. The data of any other starting mobile unit needs

Fig. 3 UML diagram of the

to be localized in the map, using its set initial pose as
a pre-transformation for the scan matching.

4.2 Mapping Thread

All localization threads access the same instance of
the representation wherefore these accesses have to
be synchronized. Our framework uses an additional
thread for this task, which updates the representation
with a given data set.

As the localization cycle time is most crucial, these
threads must not wait for the map update. Therefore,
our approach uses a First in First Out (FIFO) buffer
to which access is controlled by a mutex. Multiple
localization threads add data to the queue wherefore
waiting is restricted to the copying of the data. Typical
2D laser frames contain approximately 1000 points,
wherefore the time for copying is negligible.

A concrete instance of our sensor interface is
used to handle the information. The mapping thread
remains inactive until data is added to the queue.
Its event loop updates the map with the sensor data
until the queue is empty. The mapping thread uses the
sensor data and the current localization of each coop-
erating robot to update the map sequentially from the
given pose.

However, as multiple robots add data to the map, it
has to be ensured that an active robot is not mapped as
an obstacle by another robot. However, such a mov-
ing obstacle is hard to distinguish from static objects
but as long as both robots operate on the same multi-
SLAM server, their poses are known. Therefore, the
most external points of their frames, in the follow-
ing described as corners, are used by a filter to mask

. 1 MultiSlamNode
threaded architecture <
1 19
1.* 1 1
ThreadLocalize ThreadGrid ThreadMapping

- Queue<Sensor*> queue

L= 1 + pushQueue(Sensor*®) : void
+ getInstance(void) : static ThreadMapping

1
1] 1
TsdGrid !
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the laser beams clipping the area restricted by these
corners. This module takes the positions and footprints
of all robots into account, it applies two steps:

First, the corners of their footprints are back pro-
jected to assign laser beams of the sensor’s model
(2—4). Gained indices are verified whether they are in
the sensor’s field of view, otherwise the referring robot
is not visible and not to be considered any further in
this iteration.

Second, the distance of the footprint corners to the
referring measurements are compared. This is neces-
sary in order to detect occlusion by another object. If
the footprint corners are visible, the associated depth
data is not taken into account in the map building
process. This approach is illustrated in Algorithm 4.

Algorithm 4 Robot pose filter

for all known robot positions with robot radius r; do
for all robot footprint corners C = {¢; |
i=1.n.}do
¢’ <~ T;lci
. arctan(?—'v)
1, < T”‘
if (i; within sensor bounds) then
if (D(@;) > lle; — ti]|) then
exclude D(i;)
end if
end if
end for
end for

4.3 Occupancy Grid Thread

In order to supply map data represented as occupancy
grid, the TSD grid content has to be translated into
occupancy likelihoods, wherefore an additional thread
is integrated performing this task.

The SLAM approach knows three possible cell
states: unknown, empty or occupied, i.e., containing
an object. The ROS definition of an occupancy grid
sets unknown areas to —1 and empty areas to 0. A cell
containing an object with 100 % likelihood is marked
with the value 100.

As surfaces are determined by sign changes in the
SDF, a raycasting approach is used to reconstruct the
map content. On the contrary to the already described
local raycasting in chapter 3.1, a global strategy is
required.

Our approach applies axis-aligned rays traversing
from two adjacent sides of the grid to their opposite
side. Rays are started in the origin of every cell of
the restricting layers, running parallel to the x- or y-
axis but do not terminate after detecting an object.
Each sign change is used to interpolate a point in the
map coordinate system, resulting in a 2D point cloud
representing the complete map content.

This data is used to fill in 100 % likelihoods into the
occupancy grid by discretizing the coordinates with
the occupancy grid resolution. However, this strat-
egy lacks the definition of empty or unknown areas,
wherefore the axis parallel running raycaster has to
add additional information.

As these rays already have to examine the SDF
value in all cells of the representation, this infor-
mation can be used to add the necessary data. Our
representation consists of partitions which are only
initialized when data is added, wherefore every unini-
tialized partition leads to an unknown area in the
occupancy grid. During the initialization of a partition,
every yet unknown cell contains a Not a Number
(NaN) value, which is read by the raycaster and is
also translated into an unknown cell in the occupancy
grid.

All cells which contain a valid SDF value are
marked as empty. As sign changes in this values
mark objects, this assumption is not completely accu-
rate. Nevertheless, these cells are overwritten with the
points generated by the raycasters, which corrects this
error.

4.4 Communication

The communication between all robots connected to
the multi-SLAM system is provided by the ROS
framework. The multi-SLAM framework is contained
in a ROS node which subscribes to the laser data
of the referring robots or sensors. A major diffi-
culty in all rescue scenarios is limited communication,
which aggravates the deployment of the multi-SLAM
framework.

A reduced bandwidth leads to a reduced update
rate of the robot pose which impedes the function
of the motion controllers. However, as the amount
of data exchanged contains only the laser and pose
message, the traffic between the robots is comparably
low.

@ Springer
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5 Experiments

The experiments described in the following are hardly
sufficient tests regarding a real rescue scenario. Nev-
ertheless, the described approach aims at deployment
at the Robocup rescue league which arena consists
mainly of plain walls, such as the scenarios which
where chosen for the described experiments.

All experiments described in the following were
performed on the same type of CPU, an Intel Core 17
quad core. As operating system, Ubuntu 14.04 LTS
with ROS Indigo was chosen.

5.1 Single Robot Loop Closure Experiment

In this experiment our rescue robot “Simon”
(Fig. 13a), equipped with a Hokuyo UTM-30LX
LIDAR, was navigated through the first floor of a
building at our campus. The test was aggravated
through narrow floors consisting of walls with few
distinctive features and a noticeable amount of uncov-
ered glass surfaces. Additionally, start- and end point
are closely located. Loop closures could be detected,
if applied. This is done implicitly as the TSD grid
weights all incoming data appropriately and features
minimal drift. The map has an edge length of 8192

Fig. 4 Loop closing. Three
steps of the final loop
closing, chronological order
from fg to 2. A circle in ¢)
marks a small loop closing
error

cells with a granularity of 0.015 m. This results in total
map edge length of 122.88 m.

Figure 4 shows three steps of the loop closing. A
circle in Fig. 4 illustrates a comparably small error as
the robot arrives at its starting point again. Figure 5
shows the final map with drawn trajectory of this
experiment.

5.2 Single Robot SLAM with Reference Data

A second experiment deploying a single robot has
been performed in order to test the SLAM frame-
work. As input data, reference laser frames from a data
repository at the University of Freiburg, Germany,
were used [2].

In order to validate the output of the software, an
image of the resulting map with printed trajectory is
provided, cf. Figure 6a, as well as the reference map
and trajectory supplied by the University of Freiburg,
cf. Figure 6. Furthermore, the provided ground truth is
compared to the estimated trajectory.

The data source of the University of Freiburg pro-
vides a valid ground truth. With also provided soft-
ware, the generated localization can be compared with
this reference data. The applied validation approach
has been subject of Kuemmerle et al. [14].
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Fig. 5 Complete map of
the single slam loop closure
experiment with drawn
trajectory

The generated error file consists of the angular and
the linear error. Figure 7 depicts the data. The result
shows a mean error in the translation of 0.046 m and
0.001 rad mean angular error.

The generated map and the results of the ground
truth comparison show, that the multi-SLAM frame-
work provides an accurate pose estimation. The mean

Fig. 6 Result of the
reference data experiment.
Figure a represents the
generated map with
estimated trajectory, b
shows a reference image
taken from the data

repository

error of the angle estimation is comparably low but
the used data set contains a sizeable amount of straight
transformations which contain only small angular
errors. However, the maximal angular error of approx-
imately 6 deg shows, that the pose estimation still
needs improvement. The maximal translation error of
roughly 0.2 m emphasizes this conclusion.

(b) source: http://kaspar.informatik.uni-freiburg.de/ slamEvaluation/datasets.php
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Fig. 7 Error Analysis of the reference data experiment. Figure a illustrates the error of the estimated translation, b shows a the error

of the estimated angle

5.3 Single-SLAM with a Simulated Robot

The multi-SLAM framework has been tested with
the ROS Simple Two Dimensional Robot Simulator
(STDR).! The simulator provides artificial laser data
for every robot, as well as an error-free ground truth.
In this section, a single simulated robot was used to
generate a map while a software recorded the ground
truth of the simulator as well as the estimated pose
of the SLAM. The map consists of 2048 cells with a
granularity of 0.015 m.

A simple comparison of the localization and the
ground truth would contain the global, accumulated
error. Therefore, a different approach was used to
validate the quality of the generated localization.

The program uses the ROS TF package to gener-
ate two arrays containing the the transformation of the
ground truth G = {g; | i = 1..ng} and the estimated
pose of the SLAM P = {p; | i = l..np} at equal
timestamps.

To evaluate the generated error, two random indices
i, j are generated. The algorithm determines the trans-
formation T,;; of the ground truth and T);; of the
SLAM between the generated indices. The referring
error is calculated by comparing Tg;; and T ;;.

The plots in Fig. 8 depict the results of this exper-
iment. For better clarity, the single errors in this plot

Uhttp://wiki.ros.org/stdr_simulator, online accessed 14-January-
2015

@ Springer

have been subsampled. The mean error of the transla-
tion is 0.020 m, the mean error of the estimated angle
0.011 rad.

The currently most widespread used 2D-SLAM
approach in rescue robotics is Hector-SLAM ([12]).
It features a high pose update rate and robust pose
estimation. The approach uses few system resources
and as their mapping is computed directly on an occu-
pancy grid no conversion step as in the TSD SLAM
approach is necessary. In order to compare the data of
this section against the state of the art Hector-SLAM
approach, it was deployed using similar parameters
and the same laser input.

The plots depicted in Fig. 9 illustrate the calculated
error of Hector-SLAM. For better clarity, the single
errors in this plot have been subsampled. The mean
error of the estimated translation is 0.015 m, the mean
angular error is 0.005 rad. Figure 10 shows the gen-
erated maps of both slam approaches, as well as the
estimated trajectory and the ground truth.

The data generated by this experiment shows, that
the TSD SLAM approach is able to generate a com-
parably accurate pose estimation. However, as the
comparison with the state of the art Hector-SLAM
shows, the registration requires further improvement.

5.4 Multi-SLAM with Simulated Robots
In this section, the multi-SLAM framework is tested

with the STDR simulator. The number of robots for
this experiment has been set to the number of physical
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Fig. 8 Simulator TSD-SLAM Quality evaluation. Figure a Illustrates the error of the estimated translation, Figure b depicts the
angular error
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Fig.9 Simulator Hector-SLAM Quality evaluation. Figure a illustrates the error of the estimated translation of Hector-SLAM, Figure
b depicts the angular error

Fig. 10 Generated maps of
the simulator. Figure a
illustrates the mapping
output of the TSD-SLAM,
b the data of Hector-SLAM

(a) TSD SLAM (b) Hector-SLAM
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Fig. 11 Phases of the simulated multi-SLAM. Chronological order from £y to #,

processor cores, wherefore hardware resources are
used at high capacity. The map dimensions are the
same as in the first experiment (Section 5.1).

The four simulated units start at the same time and
explore a labyrinth, building a map of the surrounding.
The experiment was documented taking screenshots
of the map containing the ground truth of the simulator
and the estimated trajectory. Figures 11 and 12 show
the process and the results of the simulated experi-
ment. The blue line marks the ground truth, and the
red line the estimated trajectory.

5.5 Multi SLAM of a Building Floor

This experiment addresses the Robocup Rescue sce-
nario, the multi-SLAM is being developed for a team
of two cooperating robots (Fig. 13) exploring an
indoor area. The robot “Simon” explores one part of
the building, and robot “Georg” another. Both are
equipped with the same LIDAR, a Hokuyo UTM30-
LX. In order to validate the limited drifting error of

our framework, both trajectories contain loops. The
mapped building is the same as in Section 5.1.

Figure 14 illustrates both robots closing their loops
simultaneously as they arrive at the same time at their
starting points. These images depict the limited drift of
our framework as only comparably small errors occur.
The final, simultaneously built map is displayed in
Fig. 15.

During the multi-SLAM experiment, the timing of
each thread has been logged in order to analyse this
data. Figure 16 consists of plots depicting the timing.
For better clarity, the single iteration times have been
sub sampled. The localization threads show similar
iteration times both at a mean of approximately 11 hz.

The mapping thread consumes a mean of 0.027 s.
The iteration times of the occupancy grid are increas-
ing as more data is added to the map, the referring
mean is at 0.12 s. This process is obviously the most
time consuming and gets more expensive as the map is
filled. However, since the generation of the occupancy
grid is only required occasional, it can be neglected.

Fig. 12 Multi-SLAM
simulation result.
Comparison of the
reconstructed map (a) and
the original model used by
the simulator (b)
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Fig. 13 Multi-SLAM with
two cooperating robots.
Image showing “Simon” (a)
and “Georg” (b) during the
multi-SLAM experiment

5.6 Compare to State of the Art Approach

As the intended use of the presented approach is a
deployment at the Robocup rescue, the experiments in
this section compare the TSD-SLAM against the most
widespread used strategy, Hector-SLAM.

However, the referring ROS package does not pro-
vide multi-source-SLAM capabilities. Therefore, the
following experiments compare the output of Hector
SLAM to the TSD SLAM under the same conditions,
using data sets of previously described experiments.

As the previous experiments in which this data has
been used did not provide quantitative accuracy mea-
surements due to the lack of a sufficient ground truth,
this experiment does not contain such data as well.
Therefore, the experiment data is supplied through
screen shots of the generated maps. Similar to the

Fig. 14 Multi-SLAM loop
closure. Image illustrating
three steps of the robots
closing their loops
simultaneously from #( to 7>

previously described experiments, the loop closing
error is the evaluation criteria,

Figure 17 shows the generated maps and the loop
closing in detail of this experiment. Figure 17b, d, f
show a loop closing error which shows, compared to
the previous experiments, an advantage of the TSD
SLAM, regarding comparably big maps.

6 Application at the Robocup German Open 2015
6.1 General

This section describes the deployment of the pro-
posed approach at the Robocup rescue German Open

2015 competition. For the readers convenience, it
includes a short summary of the most important rules.

@ Springer



J Intell Robot Syst

Fig. 15 Complete map of
the cooperative mapping.
Red color marks Simon’s
trajectory, green Georg’s
trajectory

Furthermore, special challenges regarding the compe-
tition are described, as well as necessary adaptations
to the multi-SLAM framework, the results and the
lessons learned.

A team of robots has several upsides. At the
Robocup, the number of cooperating robots in a
team is infinite, but only one unit is permitted to be
remote controlled. Our rescue robot team has there-
fore two members. A remote controlled robot with
moderate mobility to explore the orange arena and an
autonomous robot which is allowed to find victims
in the yellow arena. The remote controlled robot also
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features a manipulator which allows better inspection
of regions of interest.

Points are awarded for victim detection during mis-
sion by analyzing the robot’s sensor data. The team
also needs to provide data of the exploration after the
run. This data, for instance the map or a list containing
the victim positions, contains all information a robot
collects.

However, as only a single version of each file or the
map is rated, the data needs to be fused, for instance
by stitching partial maps and applying gained trans-
formations to the poses of the victims or other objects.
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Fig. 16 Multi-SLAM timing analysis. This figure illustrates the timing of each thread. a Depicts the iteration times of the localization,

b the iteration times of the mapping and the occupancy grid thread
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Fig. 17 Hector-SLAM experiment with data of chapters 5.1 and 5.5

If all robots build the same map simultaneously, as
in our multi-SLAM approach, this is unnecessary.
More details about the competition and the referring
rules can be found on the homepage of the Robocup
German Open 2015 rescue league [1].

6.2 Special Challenges

On the contrary to the experiments in Section 5, the
arena at the competition simulates a disaster zone with
different levels of obstacles. 2D SLAM was sufficient
at the Robocup 2015, as the arena consisted mainly
of plain walls. However, robots have to traverse 3D
obstacles, such as ramps or beams. A LIDAR has to

be kept levelled or the resulting map contains objects
in wrong distances. A map could contain circular arte-
facts, for instance, if the laser scanner is pointing to
the floor or the ceiling. At the Robocup rescue most
of the teams use a platform to keep the laser levelled,
and so does our team.

These platforms consist of two motors and an Iner-
tial Measurement Unit (IMU) and have to compensate
the roll- and tilt angle of the robot while being in
motion. A malfunction of such a device aggravates the
registration as the carried LIDAR points in a differ-
ent angle to the wall. The registration of inconsistent
data can lead to wrong localizations or wrongly placed
objects in the map. Figure 18 displays a robot carry-
ing a LIDAR on a levelling platform and the platform
itself with more detail.

Even if the platform works within normal param-
eters some movements of the robots can exceed the
dynamic capabilities of the levelling platform’s soft-
or hardware leading to the already described prob-
lems.

A tipped over robot can exceed the physical restric-
tions of the platforms as both motors have maximum
angles defined by the mechanical design of the plat-
form and the carried sensor. In this case, the sensor
data has to be excluded from the registration.

Figure 19 depicts the described special challenges
at Robocup rescue. Figure 19 illustrates the data of a
wrong pointing LIDAR which results in map objects
which are distant from the robot and should have been
occluded by walls in front of the sensor.

Figure 19b shows the map at the same location
in the arena as Fig. 18a. The crossing of such diffi-
cult obstacles results in fast movements of the robot
which can exceed the dynamic capabilities of the lev-
elling platform. This causes, as already mentioned,
small registration errors which result in the displayed
trajectory.

6.3 Adaptations

In order to react to these special conditions, the imple-
mented software has been adapted. Especially to allow
interaction with the SLAM. This is only necessary
as both robots work on the same map. Taking a sin-
gle SLAM approach into account, it can either be in
working or in error state. In case of an error in a real
scenario the robot would be lost. At Robocup, this is
simulated with a hard reset which allows the team to
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Fig. 18 Laser levelling.
Image a showing one of our
robot traversing a difficult
obstacle in the arena, b
depicts the roll- tilt unit
carrying the LIDAR

(a) Difficult Terrain

restart the robot, in that case already scored points and
collected data are lost.

Using cooperative SLAM, the remaining robots can
carry on the mission, provided the lost robot does not
destroy the map, for instance through a wrong pointing
laser caused by tipping over. Therefore, the software
has been extended with a communication interface
which allows switching off the SLAM for each robot
completely.

6.4 Cooperative Exploration Robocup Rescue

In this section, the deployment of the multi-SLAM
framework at the Robocup Rescue 2015 is depicted.
In order to validate the capabilities of our approach
under the circumstances of a competition, images
of cooperatively acquired maps and trajectories are
provided.

Figure 20 illustrates the cooperative exploration
in the arena. The red trajectory is generated by the
autonomous robot which stays in the yellow arena.

Fig. 19 Special SLAM challenges. Figures illustrating two
possible problems caused by difficult obstacles (marked with
circles). a Wrong pointing LIDAR resulting in objects distant

@ Springer

(b) Roll- Tiltunit

As there are only moderate obstacles in this part, the
map shows few errors. The blue trajectory refers to
the remote controlled robot which explores the orange
part of the arena which contains more complex obsta-
cles such as wooden beams or the already mentioned
crossed ramps.

The final map shows a loop closing error result-
ing from minor to moderate registration errors caused
by the dynamic movement whilst crossing com-
plex obstacles. Bigger registration errors, for instance
caused by a not correctly levelled LIDAR, result in
wrong objects which in some cases should have been
occluded by other mapped objects.

6.5 Lessons Learned

On the one hand, the provided data shows that our
multi-robot-SLAM approach works well under the
conditions of a competition. The advantage over single
robot-SLAM is clear, as we do not need to combine
the data of the cooperating robots after the mission.

(b)

from the robot which should have been occluded. b Difficult to
traverse obstacle resulting in dynamic movements of the robot
leading to small registration errors



J Intell Robot Syst

Fig. 20 Cooperative
SLAM Robocup rescue.
Four steps of the
cooperative SLAM
performed at the Robocup
(from £, to t3). Both robot
start in the same pose, red
trajectory refers to the
autonomous robot, blue to
the remote controlled

On the other hand however, the generated maps
show how complex obstacles and the resulting
dynamic movement of the robot aggravate the regis-
tration. In order to deal with fast pose changes of the
robot, an improved registration algorithm is necessary
which can cope with less overlapping areas in the sen-
sor frames. Moreover, the laser levelling platform has
to be improved in order to deal with these fast pose
changes.

Another issue which is unique to the deployment
of an SDF approach in the Robocup rescue compe-
tition results in disappearing objects, eg. walls. This
problem is depicted in Fig. 21. As an object is rep-

(b) ta - '(c) tz

resented by a sign change in the SDF, it consists of
several cell layers of positive and negative SDF values
(Fig. 2c). The walls at the Robocup arena have a thick-
ness of merely 5 cm and are sometimes visible from
both sides.

Figure 21 illustrates the described problem. A dis-
appearing wall is a severe problem for localization
and robot navigation. As this problem is currently
not sufficiently explainable, it needs to analyzed fur-
ther in future work. In this case, Hector SLAM has
advantages. Figure 21d illustrates the map output of
their approach using the same data under the same
conditions, which does not have the same problem.
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e

(a) to (b) t1

D

(d) Hector SLAM

Fig. 21 Disappearing walls. Image illustrating how a wall seen from both sides disappears from #g to ;. ¢) Hector-SLAM with the

same input data

7 Conclusion and Future Work

In this publication, we presented a multi-SLAM
framework based on SDF. We illustrated how our pre-
vious work [15] is extended to a simultaneous multi
source localization and mapping application. The pro-
vided experiments showed its capabilities and the
deployment at the Robocup rescue competition has
proven its advantages over a single-SLAM system.

The comparison of TSD SLAM against Hector-
SLAM revealed, that the multi-SLAM framework
has advantages on bigger maps. However, as the
ground truth experiments and the Robocup competi-
tion showed, the registration module has weaknesses.
Future work will therefore focus on new registration
techniques.

Moreover, the reason for the disappearing thin
walls, which caused problems in the competition,
needs to be evaluated. Limited or jammed commu-
nication is a problem in real rescue scenarios. The
multi-SLAM uses a comparably low amount of data
traffic but, nevertheless, future work will also consist
of experiments determining the minimal bandwidth
necessary.

The software is open source and available at:
http://www.github.com/autonohm/obviously.git
http://www.github.com/autonohm/ohm_tsd_slam.git.
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