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a b s t r a c t

We extend the concept of intrinsic localization from a theoretical one-dimensional (1D) solution onto a
2D manifold that is embedded in a 3D space, and then recover the full six degrees of freedom for a mobile
laser scanner with a simultaneous localization and mapping algorithm (SLAM). By intrinsic localization,
we mean that no reference coordinate system, such as global navigation satellite system (GNSS), nor iner-
tial measurement unit (IMU) are used. Experiments are conducted with a 2D laser scanner mounted on a
rolling prototype platform, VILMA. The concept offers potential in being extendable to other wheeled
platforms.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Localization of a mobile laser scanner (MLS) without using a
global reference coordinate system, e.g., satellites, is one of the
grand problems in laser scanning research (Lehtola et al., 2015,
2016; Bosse et al., 2012; Bosse and Zlot, 2009; Lauterbach et al.,
2015; Liu et al., 2010; Vosselman, 2014; Kaul et al., 2016). Besides
its theoretical importance, prominent solutions enable applica-
tions in indoor environments, construction and forest settings,
and other areas that lack satellite coverage, e.g., planetary sites.
If, in addition, the localization is done without any external sen-
sors, such as an inertial measurement unit (IMU), we call it intrinsic
localization.

The problem is formidable because of its inverse nature. The
time-of-flight data of a laser scanner typically results to point
clouds of dozens or hundreds of millions of points. Recovering
the scanner trajectory by processing this data requires a sophisti-
cated way to reduce its size by identifying invariants, or features,
that describe the environment in a sufficient manner. Then the
problem is preferably divided into steps, so that one and only
one unknown variable is solved in each step, thus keeping the solu-
tion space computationally tracktable. Previously, we have tried to
apply a 6 DoF semi-rigid SLAM method directly on a 1D trajectory

solution in order to correct it into its original physical form
(Lehtola et al., 2016), but this approach cannot deal with steep
curves because it is based on the iterative closest point (ICP) algo-
rithm. Specifically, when a local minimum in the n-scan matching
is reached, the iteration gets stuck, and further computation does
not help in recovering the actual trajectory.

In this paper, we set out to fix this, and to extend the concept of
intrinsic localization from the one-degree-of-freedom solution
(Lehtola et al., 2015) back to the six degrees of freedom. This is
done in three steps in Section 2. First, local corrections on a hori-
zontal 2D plane are introduced to the 1D trajectory. This is done
not by optimizing over the whole 3D point cloud, but rather by
dividing the one big problem into smaller ones by considering
the trajectory in separate segments. Second, similar local correc-
tions are introduced on a vertical 2D plane. Third, a new local
filtering paradigm is introduced to compute features from the
time-of-flight measurements to make the previous two steps com-
putationally tracktable. The previously used 6 DoF semi-rigid SLAM
implementation is used to bring the trajectory estimates close to
the actual trajectory. Results are presented in Section 3, with data
gathered using our existing platform, VILMA, and a survey-grade
terrestial laser scanner1 (TLS) is used to provide reference results.
Discussion is in Section 4, and Section 5 concludes the paper.
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1.1. Related work

Mobile mapping systems deliver 3D data while moving profilers
along a trajectory. The trajectory can be recovered by measuring
the system motion, combined with extrinsic calibration, i.e., the
process of estimating the position and orientation parameters of
a sensor system. Recent approaches to calibration of laser scanners,
which is also called boresight calibration (Skaloud and Lichti, 2006;
Rieger et al., 2010) include statistical methods using sophisticated
error functions (Underwood et al., 2009; Sheehan et al., 2011).
However, VILMA does not need extrinsic calibration.

The other way to recover the trajectory is intrinsic. Then the
focus is on the manipulation of the computational trajectory, com-
monly known as simultaneous localization and mapping (SLAM).
SLAM has long roots in the history of robotics. Approaches include
EKF-SLAM (Dissanayake et al., 2000), FastSLAM (Montemerlo et al.,
2002), FastSLAM 2.0 (Montemerlo and Thrun, 2007), and Graph-
SLAM (Thrun and Montemerlo, 2006), including early approaches
to 3D mapping (Thrun et al., 2000). Of these, GraphSLAM uses
sparse matrices to represent a graph of observation interdepen-
dencies, i.e., as extended incidence matrix, and in this sense, its rel-
ative in computer vision can be thought to be the bundle
adjustment, and its variations, referred broadly to as structure
from motion techniques (see e.g. Triggs et al. (2000), and refs
there-in). Acquisition of different 3D point clouds from the latter
established the need for the well-known iterative closest point
(ICP) algorithm that was developed by Besl and McKay (1992),
Chen and Medioni (1992), and Zhang (1994). Meanwhile in the
robotics community, Lu and Milios (1994) came up with its 2D
variant. The input was scan data acquired by a robot with a hori-
zontally mounted profiler, i.e., a 2D safety scanner. Based on this
2D ICP, Lu and Milios (1997) presented an ICP-like GraphSLAM
solution, and its extension to 3D scans and poses with six degree
of freedom was performed by Borrmann et al. (2008) and
Nüchter et al. (2010).

Recent development that begun with approaches that cut the
trajectory into segments and performed some globally consistent
scan matching on the segments (Stoyanov and Lilienthal, 2009;
Bosse and Zlot, 2009), has led towards continuous-time SLAM
(Anderson and Barfoot, 2013; Anderson et al., 2014). However,
the realization of these often focuses on cameras with rolling shut-
ters instead of event-based vision sensors (Mueggler et al., 2011).
Furthermore, the methods of Alismail et al. (2014) and Anderson
et al. (2015) are designed for scanners that differ from the ones
intended for VILMA, both in terms of the data rate and the modal-
ity of the data. To our best knowledge no other intrinsic localiza-
tion solutions exist. Otherwise, the work closest to ours may be
the one of Zhang and Singh (2014) on Lidar Odometry and Mapping
(LOAM) that employs external angular measures to perform
localization.

1.2. Initial straight trajectory estimate (1 DoF)

The localization of the laser data requires a successful recon-
struction of the sensor trajectory. The trajectory jðtÞ is time-
dependent with six degrees of freedom, namely, three from loca-
tion and three from orientation. We write out

jðtÞ ¼ hðtÞ;wðtÞ;/ðtÞ; xðtÞ; yðtÞ; zðtÞ½ �T ð1Þ

where h is the pitch, w is the roll, and / is the yaw angle. Time is
denoted by t. Without any reference coordinate system, the suc-
cessful reconstruction of the trajectory requires that these degrees
of freedom are eliminated. Previously, this was done for a holo-
nomic system in one dimension (1D) (Lehtola et al., 2015). We
briefly outline this solution here.

To capture a 3D environment with a 2D laser scanner, the scan-
ner has to be rotated about at least one axis. The 2D scanner is
mechanically attached onto a round platform, see Fig. 1, so that
it can only rotate about one axis of rotation, namely h. Therefore
rotational degrees of freedom are reduced by two, i.e., u and w
are constant. The platform does not slip against the floor, and so
x; y, and z all become direct functions of h. This assumption gets
relaxed during the SLAM step of Section 2.3.

The main angle of rotation hðtÞ is the path parameter that
describes the scanner trajectory, and obtaining it, as follows, solves
localization in 1D. The scanner sits on the hypotenuse at a distance
of R0 � R1 from VILMA’s central axis, where R1 ¼ 0:13 m, and
R0 ¼ 0:25 m is the radius of the metal disk. Assuming that the floor
is flat, simple trigonometry is employed to write

h ¼ arccosðR0=dÞ ð2Þ
where d ¼ dm þ ðR0 � R1Þ, and dm is the minimum measured dis-
tance to the floor over one full 2D circle observation, a so-called
slice. Considering the minimum distance to the floor, the scanner’s
position on disk radius varies between two values, depending on
whether the scanner is upside down, Eq. (2), or upside up, in which
case h ¼ p� arccosðR0=dÞ, with d ¼ R0 þ cos 27:5degðdm � R2Þ, and
R2 ¼ 0:42 m. Here, the 27.5deg is half of the dead angle of the scan-
ner. The angle h is incremented by 2p for each cycle that the plat-
form rolls. Each time the 2D scanner is perpendicular towards the
floor (PTF), hðtÞ ¼ pþ 2pn; n ¼ 0;1;2; . . ., the scanning distance
reduces to the minimum R1. We call this a PTF-observation, and
keep track of these occurrences in the laser data series obtaining
a time series. The PTF observation is robust to error, since data
points from a large field of view can be used to interpolate the floor
point precisely below the sensor. Also, stochastic errors in PTF
observations do not cumulate with time as long as the no-slip con-
dition with the floor applies. Once hðtÞ is obtained, the coordinate
transform for the 2D sensor data ðX; ZÞ is obtained considering the
trajectory of a contracted cycloid,

x ¼ X

y ¼ R0hþ ðR0 � R1Þ sin hþ sinðhÞZ
z ¼ R0 þ ðR0 � R1Þ cos hþ cosðhÞZ

8><
>: ; ð3Þ

where ðx; y; zÞ are the coordinates of the resulting 3D point cloud,
and the platform trajectory is

j
!

1DðtÞ ¼
0

R0hðtÞ
0

0
B@

1
CA: ð4Þ

2. Back to the six degrees of freedom

In 1D, the localization is done knowing only the initial and the
current state of the system, as is obvious from Eq. (4). In two or
more dimensions, however, the trajectory reconstruction by path
integration requires accurate measuring of the position all along
the path. Therefore, we use 6 DoF SLAM. Still, this requires a rela-
tively good initial trajectory estimate, and next we concentrate on
how to obtain that. The overall algorithm, and the contribution of
this paper, are illustrated in Fig. 2.

Each time-of-flight measurement, or point, is connected to the
trajectory, at a position sðtÞ from where the measure was made
at time t. These positions are discretized with respect to time into
N slices, where each slice contains one 2D profile, i.e., points from
the full rotation of the mirror of the scanner. From the 1D solution
of Eq. (4), we have the trajectory divided into parts of length

ln ¼ hn � hn�1ð ÞR0; ð5Þ
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where the value for hn is obtained from Eq. (2) for each slice n, and
n ¼ 1;2; . . . ;N. Hence, we have expressed the knowledge on how far
the scanner has traveled in terms of slice-to-slice distances.

What remains to be solved is how to rotate the distances flng of
Eq. (5) to approximate the underlying physical trajectory, see
Fig. 3. Specifically, the horizontal /, and the vertical w angles are
unknown. For the trajectory, we have

j
!ðtNÞ ¼

XN
n¼1

�Rn l
!

n; ð6Þ

where l
!

n ¼ ð0 ln 0ÞT , and the rotation matrices are written as

�Rn ¼
Yn
i¼1

R/;iRw;i; ð7Þ

where

R/;i ¼
cos/i � sin/i 0
sin/i cos/i 0
0 0 1

0
B@

1
CA; Rw;i ¼

1 0 0
0 coswi � sinwi

0 sinwi coswi

0
B@

1
CA:

This formulation allows the separate solving of each of the /i,
while wi are kept fixed, and vice versa. We shall return to this later.
Note that the angles are solved in a chronological order, and that
�Rn is a rotation matrix that keeps track of the global orientation
of the trajectory.

The straightforward approach of computing a pair-wise correla-
tion for slices n and n� 1 in order to acquire the rotations /i, and wi

is not possible, since these slices have different pitch angles
hn – hn�1, see Eq. (5). In other words, the scanner looks at different
places. Hence, a larger portion of the trajectory must be examined
for rotation computation. We define a local correlation length n
along the trajectory that determines what time-of-flight measure-
ments correlate between each other. In other words, it is our con-
trol parameter. For VILMA, n is discretized in terms of cycles, with 1
cycle ¼ 2pR0 ’ 1:57 m. Each cycle equals to two full views of the
3D environment, with the exception that in the direction of the
dead angle the environment is captured only once. The PTF mea-
sures are employed to count the cycles as they are the most accu-
rate ones of those that describe the scanner movement. Formally,
the local correlation length

nðMÞ ¼ M 2pR0ð Þ; M ¼ 1;2;3 . . . ;

Fig. 1. (a) Technical scheme displaying the constants and the pitch angle h. (b) Angles describing VILMA’s motion on the trajectory, w and /. (c) VILMA consists of a FARO
Focus3D mounted between two circular plates. Acceleration and steering is done by with the ropes shown in the image.

2D time−of−flight data

Longer local correction estimates

Local correction estimates
for the trajectory

Solution: Final trajectory and
3D point cloud

Direct approach with ICP SLAM fails for steep curves [2]

Features

]2[gniretliF]1[yrotcejartD1laciteroehT

ICP SLAM, 6 DoF [3]

Fig. 2. The algorithm pipeline. The previous work [1] and [3] is introduced in Sections 1.2 and 2.3, respectively. In addition, [2] refers to Section 2.4 and Lehtola et al. (2016).
The contribution of this paper is surrounded with the dotted line.
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i.e., a multiple of subsequent cycles. In Section 3, we examine how
changing n as a function of M affects the accuracy of the local curve
approximation. Note that the amount of slices, i.e., the amount of
data, for a given local correction is a self-adapting quantity, because
the platform velocity is not constant. For VILMA, the amount of
slices per cycle varies from about 180 to 600.

2.1. Horizontal corrections (2 DoF)

After obtaining the straight trajectory estimate, horizontal cor-
rections are computed locally for each separate cycle rolled by
VILMA, i.e., the local correlation length n ¼ nðM ¼ 1Þ. These local
corrections are defined by the yaw angles /i, which in turn are
incrementally cumulated to create the global trajectory of Eq. (6).

In discretizing the turns, the choice for the rotation kernel, or
trial function, is of major importance. Theoretically, all variations
for the kernel can be covered with, for example, an infinite Fourier
series. In practice, however, we want to limit the use of CPU time
by selecting only a few simple kernels. First, the length of the ker-
nel is chosen for convenience to be equal to the local correlation
length n, if not otherwise mentioned. Second, the shape of the ker-
nel is chosen to be a simple curve,

x2 þ y2 ¼ Rtrialð/trialÞ½ �2; ð8Þ
where with a little abuse of notation, y is the initial local advance-
ment direction of the platform, as in Eq. (4), and the trial turn radius
Rtrial is a control parameter obtained from

Rtrial ¼ 2pRo=/trial: ð9Þ
See Fig. 3 for an illustration of the local correction trial curves of
Eq. (8). For VILMA, we define a radius for the maximum turn
Rtmax ¼ 2:0 m. Defining such a radius is important, because not lim-
iting the turn angle easily leads into trivial numerical solutions,
where the scanner rotates about its starting location.

To determine the best approximation for the local curvature, we
want to minimize an energy E that represents the coherence of the
local environment as a function of /, namely

arg min
/

Eð/; rif gÞ;

where

E ¼
X
i

X
j2NðiÞ

ri � rj
�� �� ð10Þ

is a sum of (k-d tree) nearest neighbor distances, where
self-correlation is excluded. We discretize the range
/trial 2 �/max;/max½ � into 11 different values, computing an energy
for each, choosing the value that yields the lowest energy, minðEÞ.
Note that here care is taken to preserve the unimetricity of the local
comparison between the trial solutions. In other words, all trials for
a segment are computed using the same subset of the point cloud so
that the energy of Eq. (10) remains a valid metric. Also, note that Eq.
(10) employs the L1-norm that is known to be robust with respect
to outliers.

A greedy binary search is used, after the above procedure and in
near vicinity of the best /trial, to obtain a more accurate final value.
Here, the computation continues until a minimum angle step of
0.02deg is reached. Finally, the best kernels, i.e. the best /i, are
selected to form an overall trajectory estimate illustrated in
Fig. 3. We call this the curve-piece estimate.

2.2. Height corrections (3 DoF)

Height corrections differ from horizontal corrections in two
fundamental ways. First, in contrast to the horizontal corrections,
which may lead into a looped trajectory, the height corrections
are globally constrained, w 2 ½�p=2;p=2�. In other words, gravity
keeps us from rolling on vertical surfaces. Second, detecting verti-
cal changes is more difficult than detecting horizontal changes. A
slope in a 5deg angle is significantly steep, while a typical horizon-
tal turn may be 90deg. Moreover, the data of the environment is
typically more spread out in the two horizontal directions than
the vertical one, making the slope detection even harder, see
Fig. 5. In order to detect a vertical change, one must therefore sig-
nificantly increase the local correlation length n.

Real trajectory

Estimated trajectory

Accepted correction

Rejected corrections

Fig. 3. Illustration of horizontal corrections being introduced to produce a curve-piece estimate of the real trajectory. The estimate (in magenta) is constructed from the
accepted (green) corrections. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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For purposes of discussion, consider two length scale regimes:
one for small height corrections such as minor pits or slopes on
the floor, and another for large height corrections, such as major
slopes or ramps, see Fig. 4. This helps us to consider the parameter
selection associated to the problem of inverse trajectory recovery.
In the regime for small corrections, consider a pit of diameter d.
The kernel length Lk must be of a comparable size, Lk � d, to suc-
cessfully produce a correction estimate. There is, however, a risk
of numerical inaccuracy that leads to cumulative vertical drifting,
which may also break the global constraint w 2 ½�p=2;p=2�, if the
horizontal short curve kernel shown in Fig. 3 is used. Moreover,
to counter the lack of data, the local correlation length n has to
be large (or larger than in the case of horizontal corrections),
meaning that Lk and n would have to be decoupled. As w, and
how it should be discretized, is unknown – in addition to Lk and
n – this results into a rather hard inverse problem with three
unknown parameters. Fortunately, it is not necessary to venture
into this abyss, since the recovery of small slopes and pits can be
achieved by the fine optimization of the trajectory, as in Lehtola
et al. (2016), with the 6 DoF semi-rigid SLAM briefed in Section 2.3.

What remains to be dealt with are the large height alterations.
Consider now a large slope of a characteristic length D in the
regime of large corrections. As, simultaneously, the local correla-
tion length n is increased, another problem is introduced. The ver-
tical turn inside the correlated piece of the trajectory needs to be
more localized. With a large n, we cannot anymore assume that
the slope changes uniformly, which questions our previous choice
for the kernel. Therefore, we employ the simplest possible kernel,
which is an angle located at a pivot point, p 2 R. The 2D kernel
for ðy; zÞ is written

z ¼ 0; for y < jpj
z ¼ y tana; for y P jpj;

�
ð11Þ

where a is the trial vertical angle. For the detection of large slopes,
we choose to use only the values a ¼ 0;�6deg, or þ6deg. For
numerical reasons p is kept inside the middle half of the segment,
1=4 < jpj=n < 3=4.

Now we can ask that if n ¼ 1 (cycle) would be on the large cor-
rection regime for horizontal corrections, how far would the
regime lie for vertical corrections. For vertical corrections, difficul-
ties are caused by four reasons.

1. The characteristic turn angle is about 6deg, being 15� smaller
than the horizontal one of 90deg.

2. The time-of-flight data is dispersed 10� more in the horizontal
direction, where the range of view is about 35 m, than in the
vertical direction, where it is about 3.5 m.

3. Less feature data is present on the ramp than elsewhere (1.5�),
see Table 1.

4. There is a limited line of sight over negative angles, see Fig. 4.

In order to provide a very rough intuitive measure for the reader
on how much more difficult the vertical corrections are to com-
pute, we multiply the previous factors together to obtain a total
factor of about 225. To counter this challenge of decrease in corre-
lation, we propose two measures. The correlation length n is
increased from 1 cycle to �20 cycles. Then, the amount of nearest
neighbors N to be included in distance metric calculation of Eq.
(10) is also increased, from 1 to 10. Multiplying these factors yields
200, which matches the previous very rough measure.

2.3. 6 DoF semi-rigid SLAM

We need a semi-rigid SLAM solution to finalize the recovery of
6deg of freedom for the trajectory, i.e., a SLAM solution that

Fig. 5. Images of the indoor environment. Left: On each floor, the visibility is dozens of meters in multiple directions. Right: The ramp is sloped vertically by 5:7deg, and has a
more limited visibility. Tripods for the reference TLS scans are shown.

local correlation length

correction
height

Fig. 4. Schematic for the two vertical correction length scale regimes. Small slopes (on the left) were studied in Lehtola et al. (2016). Here, the scanner is mounting a large
slope, which – we propose – can be detected with Eq. (11) using a long local correlation length, n � 1. Note the limited line of sight over the negative angle that is visualized
by the red dotted line. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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transforms the complete trajectory. First, we summarize its basis, a
6 DoF SLAM, which registers 3D point clouds in a globally consis-
tent fashion.

The SLAM is based on the well-known iterative closest points
(ICP) algorithm, which minimizes the following error function

EðR; tÞ ¼ 1
N

XN
i¼1

mi � ðRdi þ tÞj jj j2 ð12Þ

iteratively to solve an optimal rotation T ¼ ðR; tÞ, where the tuples
ðmi;diÞ of corresponding model M and data points D are given by
minimal distance, i.e., mi is the closest point to di within a close
limit (Besl and McKay, 1992). Instead of the two-scan-Eq. (12), we
look at the n-scan case:

E ¼
X
j!k

X
i

Rjmi þ tj � ðRkdi þ tkÞ
�� ��2; ð13Þ

where j and k refer to scans of the SLAM graph, i.e., to the graph
modeling the pose constraints in SLAM or bundle adjustment. If
they overlap, i.e., closest points are available, then the point pairs
for the link are included in the minimization. We solve all poses
at the same time and iterate as in the original ICP by repeatedly
computing closest points and solve the minimization. The deriva-
tion of a GraphSLAM method using a Mahalanobis distance that
describes the global error of all of the poses:

W ¼
X
j!k

�Ej;k � E0
j;k

� �T
C�1 �E0

j;k � E0
j;k

� �

¼
X
j!k

�Ej;k � X0
j � X0

k

� �� �
C�1
j;k

�E0
j;k � X0

j � X0
k

� �� �
: ð14Þ

where E0
j;k is the linearized error metric and the Gaussian distribu-

tion is �Ej;k;Cj;k

� �
with computed covariances from scan matching,

as given in Borrmann et al. (2008), does not lead to different results
(Nüchter et al., 2010). Please note, while there are four closed-form
solutions for the original ICP Eq. (12), linearization of the rotation in
Eq. (13) or (14) is always required.

Unlike other state-of-the-art algorithms (Stoyanov and
Lilienthal, 2009; Bosse and Zlot, 2009), the SLAM is not restricted
to purely local improvements. We make no rigidity assumptions,
except for the computation of the point correspondences. For pro-
cessing, we require no explicit model of motion for a vehicle, as it is
given initially in the form of the curve-piece trajectory estimate.
The semi-rigid SLAM for trajectory optimization works in six
DoF, which implies that the trajectory generated by VILMA is also
turned into poses with six DoF. The algorithm requires no high-
level feature computation, i.e., we require only the points them-
selves. In this paper, we run SLAM on full time-of-flight data that
is outlier-filtered as explained in Section 2.4.

For VILMA, we do not have separate terrestrial 3D scans. In the
current state of the art developed by Bosse and Zlot (2009) for
improving the overall map quality of mobile mappers in the
robotics community, the time is coarsely discretized. This results

in a partition of the trajectory into sub-scans that are treated
rigidly. Then, rigid registration algorithms, like the ICP and other
solutions to the SLAM problem, are employed. Obviously, trajec-
tory errors within a sub-scan cannot be improved in this fashion.
Applying rigid pose estimation to this non-rigid problem directly
is also problematic since rigid transformations can only approxi-
mate the underlying ground truth. When a finer discretization is
used, single 2D scan slices or single points result that do not con-
strain a six DoF pose sufficiently for rigid algorithms.

The mathematical details of our algorithm are given in Elseberg
et al. (2013). Essentially, we first split the trajectory into sections
and match these sections using the automatic high-precise regis-
tration of terrestrial 3D scans, i.e., globally-consistent n-scan
matching (Borrmann et al., 2008). Here, the graph is estimated
using a heuristics that measures the overlap of sections using the
number of closest point pairs. After applying globally-consistent
scan matching on the sections, the actual semi-rigid matching as
described in Elseberg et al. (2013) is applied, using the results of
the rigid optimization as starting guess to compute the numerical
minimum of the underlying least squares problem. To speed up the
calculations, we make use of the sparse Cholesky decomposition by
Davis (2005).

For VILMA, the amount of data gathered per distance traveled
along the trajectory varies, because the platform velocity is not
constant. The Faro Focus 3D operates at 95 Hz, capturing this many
slices and a total of �1 million points per second. Each cycle con-
tains about from 180 to 600 slices. Hence, as input parameters,
we choose to conduct a 6 DoF semi-rigid SLAM match between
every 300 slices, and use 600 slices to perform each of these.

Similarly to the work of Zhang and Singh (2014), the basics, i.e.,
6 DoF SLAM is available as open source in 3DTK – The 3D Toolkit.2

The derived semi-rigid part is currently commercialized for indus-
trial applications.

2.4. Filtering

Since the platform movement is not always smooth, the data
needs to be filtered for outliers. In Lehtola et al. (2015), filtering
was done to improve the visual properties of the final 3D point
cloud. Here, in contrast, it is necessary to filter the data before
the trajectory computation, which in turn must be done before
obtaining the final point cloud. Hence, instead of employing global
point cloud properties, the filter needs to rely on the local proper-
ties of the measured data.

The local filtering method that some of us introduced in Lehtola
et al. (2016) manages to eliminate almost all of the outliers with a
total point reduction of mere �5%. We use it here as well, and
explain it briefly. It is based on the concept of support, meaning
that among themselves, the time-of-flight measurements must
be coherent. Specifically, for each time-of-flight measurement k

Table 1
Properties of the data. Discontinuity features are used for the curve-piece trajectory estimate. The k-d tree downsampling is made for all SLAM input data using a 10 cm cell size.
Ratios for both are displayed to show how much of the original point cloud is conserved.

Data Loop 1 Loop 2 Loop 3 Ramp 1 Ramp 2

# Cycles 69 64 58 76 70
# Points 146.0 M 161.5 M 120.0 M 150.0 M 106.4 M

# Features 182,400 200,600 144,900 123,500 84,500
Ratio 0.12% 0.12% 0.13% 0.08% 0.08%

#pts, k-d tree 6.5 M 7.0 M 5.0 M 5.4 M 3.7 M
Ratio 4.4% 4.3% 4.2% 3.6% 3.4%

2 http://slam6d.sourceforge.net/.
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in slice i, the change in range is checked against the previous mea-
surement k in slice i� 1 and the next k in slice iþ 1. Here,
k 2 ½1;M�, where M is the amount of points in one slice, equaling
to 8534 for the used Faro 3D scanner. This is called the inter-
slice support ĉj. It is cumulated by one for each supporting point.
If for both range differences jDrj > 5:0 m, i.e., ĉj ¼ 0, then the cur-
rent point is rejected as an outlier. Next, an intra-slice support cj
check is made by considering 8 nearest neighbors for each point
on a slice. Accepted points must have support from at least three
neighbors, namely cj P 3. The support cj is incremented by one
for each pair-wise difference in range measurement jDrj < 0:15
m between the point and its neighbor.

2.5. Discontinuity features

We modify the concept of support presented in Section 2.4 to
mark significant range discontinuities, or discontinuity features, in
the environment. Specifically, only those time-of-flight measure-
ments that gain intra-slice support only from either side of their
neighborhood are preserved for the curve-piece method. Formally,
we first divide the neighborhood Nj of point j so that
Njþ ¼ fjþ 4; jþ 3; jþ 2; jþ 1g and Nj� ¼ fj� 4; j� 3; j� 2; j� 1g.
Then we write the discontinuity support condition sd for point j
from Nj�,

sdðj�Þ ¼

0 if ĉj ¼ 0
0 if cjþ P 1
0 if cj� < 3
1 otherwise

8>>><
>>>:

; ð15Þ

where ĉj is as in Section 2.4, and

cj� ¼
X
k2Nj�

Hjk;

where in turn the Heaviside function Hjk ¼ 1, if jDrjkj < 0:15 m, and
0 otherwise. The difference of range measures Drjk ¼ rj � rk. Note
that cj P cjþ þ cj� (cf. Section 2.4).

If sdðj�Þ ¼ 1 or sdðjþÞ ¼ 1 from Eq. (15), then point j is a discon-
tinuity feature, and it is preserved for the curve-piece method.
Otherwise, it is discarded. Intuitively, this leaves us only with
points of potential topological interest, for example, those from
where a pillar begins to obstruct the view. Then these points can
be used to verify whether a trial trajectory improves the result or
not. In the case of the pillar, a successfully recovered trajectory
should yield a correct representation for that pillar. We shall return
to this in Section 3.

We emphasize that the use of features is necessary to make the
proposed curve-piece method computationally efficient. Other-
wise, the computational load would substantially increase as the
amount of points would be 103 times higher, see Table 1. Even with
k-d tree downsampling, the amount of points would be still about
15� larger, and with a more homogeneous density. We come back
to the computational efficiency in Section 3. Finally, note that Eq.
(15) relies solely on local data, requiring a cache of three 2D slices
to function, or a cache of just one slice if the inter-slice filtering
condition is omitted. Therefore, as the size of laser scanners is
diminishing (Kostamovaara et al., 2015), this is likely to open
new possibilities in on-chip integration of point cloud processing
algorithms.

3. Results

To evaluate the proposed method, we gather data by perform-
ing three similar but different circular loops with VILMA in an
indoor environment that has a sloped floor, see Fig. 5. The start

and end positions of the trajectory are intentionally not at the
same location, although a closed loop is formed in terms of the 6
DoF semi-rigid SLAM. For vertical correction evaluations, VILMA
is steered up a ramp that connects two subsequent floors of the
car park. This is done two times to obtain similar, but different, sets
of data. In contrast to Lehtola et al. (2015), where the platform was
pushed forward, here we steer and pull it by using strings. This
allows the level of control required to perform circular movement,
but also to climb up the ramp. Conjunctionally, the resulting point
cloud is cluttered with data from the two operators performing the
steering. As this dynamic clutter is present in all our results, it may
be regarded as further evidence towards the robustness of the pro-
posed method. The velocity at which VILMA moves varies a lot, but
is typically between 0.3 and 1.0 m/s. For comparison, LOAM scan-
ner is used with a speed of 0.5 m/s (Zhang and Singh, 2014).

3.1. Loops

The three trajectory manipulation phases employed here are
visualized in Fig. 6. First, the 1D theoretical trajectory is obtained.
Second, the proposed curve-piece estimate is computed using the
discontinuity features of Section 2.5. Third, 6 DoF semi-rigid SLAM
optimization for the trajectory is conducted employing the full
point cloud, filtered as in Section 2.4. Accordingly filtered full point
clouds are used also in Fig. 6, with an additional fourth image that
shows the reference terrestial laser scanner (TLS) point cloud.

The effect of altering the local correlation length n is shown in
Fig. 7. The curves on the trajectory are represented with one mode
n ¼ 1 (cycle), and two-mode approximations n ¼ 1, and then = 5.
The notion of approximation follows from the fact that theoreti-
cally an infinite sum of modes may be present. In the two-mode
approximation, the result trajectory from n ¼ 1 (cycle) computa-
tion is used as input, when the longer n ¼ 5 (cycles) is used. From
Fig. 7 (a), we can see that all of the larger modes improve the result,
but are expectedly different from each other. The practical mini-
mum for n is about 1 cycle, so that the environment is captured
(almost) twice, as discussed in Section 2. In order take longer cor-
relations into account, the algorithm is re-run with n ¼ 4;5;6, and
7 (cycles), and by increasing the number of nearest neighbors from
1 to 10. We found out that if the local correction length n is 9 or
larger, it is too long for horizontal corrections. In Fig. 7(b)–(d),
and for the rest of the paper, we have chosen to use n ¼ 5 (cycles)
for these. The prototype platform is somewhat cumbersome to
operate, and to eliminate artifacts originating from setting it in
motion, and stopping it, a constant amount of data is cut-off from
both ends of the trajectory.

Now, the curve-piece estimate – by definition – has a limited
modality and a reduced dimension. Therefore, it cannot by itself
recover the underlying physical trajectory, and the use of SLAM
is justified. The curve-piece estimate is given to 6 DoF semi-rigid
SLAM as input. After convergence, the resulting SLAM trajectories
are obtained, see Fig. 7. The convergence is considered in a twofold
manner. First, we observe the distance between the two end points
of the trajectory Ree as a function of SLAM iterations in Fig. 8. We
iterate the trajectory until the end-to-end distance of the trajectory
converges, which is enough for a proof-of-concept demonstration.
Second, the SLAM processed point clouds are evaluated against TLS
reference scans. This is shown for Loop 2 data in Fig. 9. Notably, the
accuracy ratio at a 25 m distance is about 1:100 with respect to Ree.
The improvement in terms of accuracy with respect to our previous
work (Lehtola et al., 2015) is significant, as the method now man-
ages to reproduce pillars as they should be – straight, see Fig. 10.
From the figure, however, it is clear that the precision of the result
points representing the surfaces is still far from the reference
result. We select the largest surface, i.e. the floor, to conduct a
rough precision evaluation of the result point cloud against a trian-
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gulated mesh obtained from the reference point cloud. The
selected floor area is the one shown in Fig. 9. The obtained average
point to mesh distance is 0.04 m, which is similar precision to the
one reported in Lehtola et al., 2016, see Fig. 9. Nevertheless, the
measuring geometry, and the algorithmic pipeline can likely be
improved for better accuracy and precision after a more practical

measurement unit is designed. This is what we plan to do in the
future.

Snapshot from with-in the point cloud of Loop 1 is illustrated in
Fig. 11. The shape of the environment in Fig. 11(a) seems visually
preserved in (c) showing the point cloud after the feature filtering
of Section 2.5. This reduced point cloud is used for the fast

Fig. 7. Approximations of physical trajectories based on curve-piece fitting computations. (a) Obtained trajectories for Loop 1 for different local correlation lengths. First,
n ¼ 1 (red). Then this trajectory is reprocessed with n ¼ 4, 5 (solid black), 6, and 7. The n ¼ 1 (red) and n ¼ 5 data is reproduced in (b), and (c) where also the final (reference)
trajectory obtained from 6 DoF semi-rigid SLAM is shown (cyan line). (d,e) Same as (c) but with Loop 2 and Loop 3 data, respectively. See text for details. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Full point clouds and red trajectories viewed from the top illustrate the algorithm pipeline as follows. (a) The theoretical 1D solution of Section 1.2. (b) The curve-piece
estimate of Section 2.1 after the first phase with n ¼ 1 cycles. (c) After the second curve-piece estimate phase with n ¼ 5 cycles, and 6 DoF SLAM of Section 2.3, the result very
much resembles (d) the reference TLS scan. In (d), the area surrounded by the green box is enlarged in Fig. 9, and the point cloud profile at the location of the purple line is
shown in Fig. 10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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computation of the curve-piece estimate. We discuss its efficiency
in Section 3.3.

3.2. The ramp

The ramp is sloped vertically in a 5:7deg angle. We pretend that
this is unknown to us, and say that we want to divide slopes by

computation into three categories: �6deg, 0deg, þ6deg. This
should yield a close enough initial approximation for 6 DoF semi-
rigid SLAM to recover the original physical trajectory, while still
being robust enough against false positives. The results are shown
in Fig. 12. The first upward angle is very robustly discovered, being
almost indifferent to the parameter selection. However, the next

Fig. 10. Profile comparison between the reference TLS point cloud (orange), and the result point cloud (gray). Floor, ceiling, and pillars are visually fairly well matched.
Although most part of the point cloud is correctly aligned, there are some artifacts, such as the round circles visible near the third pillar from the left and a sloped ghost floor
nearby, which both are most probably a consequence from our prototype having been originally designed for straight, but not circular, movement.

Fig. 11. Snapshots from Loop 1 point clouds after 6 DoF semi-rigid SLAM. (a) Full
point cloud. (b) A downsampled representation using k-d tree with 10 cm cell. (c)
Point cloud of discontinuity features shows the boundaries of the objects, and is
colored for visualization purposes. Note how the point cloud changes for the rear
wheel of a car marked with a red dot, for the pillar marked with a green dot, and for
the walking authors operating the platform marked with a magenta dot. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 9. Top view comparison between the reference TLS point cloud (left), and the
result point cloud (right). The overall consistency of the latter is evaluated through
distance measures A and B each taken between the middle points of two pillars.
Distance A is 24.93 m (TLS) and 25.24 m (result), and distance B is 24.94 m (TLS)
and 24.88 m (result). The accuracy ratio is about 1:100. The data were taken on
different days, so the cars have moved. This has no significance, since we do the
comparison using only the static part of the environment.

Fig. 8. The end-to-end distance of the trajectory Ree as a function of SLAM
iterations. Suitable convergence is reached once the flat line begins. Loop 1 (red), 2
(blue), and 3 (green) data are represented by same colors than in Fig. 7. Dashed cyan
line displays Ramp 1 data. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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three angles are entwined into one long correlated segment, result-
ing into one or zero kernel responses, i.e. angles; refer to Eq. (11).
Whether one or zero responses occur depends on the choice of
parameters and the data itself. In Fig. 12(a), the triple-angle results
into a single negative angle turn for n in between 16 and 24 cycles.
The neighborhood for the energy metric of Eq. (10) is augmented
from 1 to 10 neighbors for increased robustness, as discussed in
Section 2.2. In (b), the triple-angle results into a single positive
angle turn for n ¼ 16 cycles. The length of the correlated segment
is visualized with the magenta plot. The difficulty here is para-
doxal. On one hand, to make vertical angle recovery even possible
n needs to be large. On the other hand, then it is easily so large that
it makes subsequent angle detection impossible, if these angles are
close to each other. Nevertheless, the accuracy of the trajectory
estimate with n ¼ 16 and = 24 for Ramp 1 data suffices for the 6
DoF semi-rigid SLAM, which then succeeds in discovering the
underlying vertical floor profile, see the cyan dotted line in
Fig. 12(a). The resulting 3D point cloud is shown in Fig. 13.

We have managed to intrinsically localize a 2D laser scanner on
a 2D plane embedded in a 3D space – with one exception, see
Fig. 13. The SLAM processed ramp reconstruction contains an arti-
fact, namely a horizontal notch in the middle of the slope. This is
formed due to concurrent weaknesses in the processing pipeline.
First, during the data capture VILMA was unintentionally rotated
on-spot and thus slipped against the ground. The curve-piece esti-
mate cannot recover this, since the computational radius for max-
imum turn Rtmax is limited. Finally, the SLAM algorithm that would
likely fix this problem is stuck, because the trajectory segments

from different floors incorrectly interact with each other, and pre-
vent the correction. The segment interaction happens in the semi-
global matching phase through the SLAM graph, shown in Fig. 14.
Currently, the algorithm treats segments with at least 250 point-
to-point matches as connected, with each trajectory segment being
600 slices long. Hence, a part of the future work is to develop a way
to dissect the points recorded in different floors, or to separate
spaces in general, according to their surface normals, for example.
Then the semi-global matching, i.e., loop closure, would be exe-
cuted correctly. Here, the thickness of the ceiling between the
two floors is approximately 40 cm, estimated from the reference
TLS point cloud. Summing up, the curve-piece method performs
rather well, but improvements in SLAM loop closure regarding sep-
arate spaces and a new platform design are called for.

3.3. Computational efficiency

For the largest data set of Loop 2, consisting originally of
161 million points, the proposed curve-piece method produces a
trajectory estimate in 311� 18 s, see Table 2. The two steps to pro-
duce the horizontal estimate take �185 s, regardless of the choice
of n 2 ½2;9� for the second estimation round. For vertical correction,
n ¼ 6 is twice as fast as n ¼ 16 that produces the best results,
showing the effect of the search for the angle pivot point. The
increase in the size of the neighborhood in Eq. (10) results into a
negligible change in the run time, whether it is 1 or 10. These
run times are produced assuming that features from Eq. (15) are

Fig. 12. Vertical component zðsÞ of the trajectory as a function of the traveled distance s (units in meters), for (a) Ramp 1 and (b) Ramp 2 data. The local correlation length
n ¼ 16 (red), ¼ 24 (green), and ¼ 32 (blue dotted line). Green dotted line is with only one nearest neighbor, while otherwise N ¼ 10. Reference trajectory shown with a black
solid line is determined from the middle of the ramp using TLS data. The approximation succeeds partly, leaving some vertical angles unrecovered. This is due to long
correlation length, visualized by the magenta plot for n ¼ 16 cycles. Final result from 6 DoF semi-rigid SLAM is shown with a dashed cyan line. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. (a) Ramp 1 point cloud captured with VILMA. An on-spot rotation around z-axis of about 20deg, marked with a red angle, has been corrected manually after obtaining
the results of Fig. 12, i.e., after automatic data processing. (b) Reference point cloud from TLS. The trajectory is reproduced for visualization purposes. Roof points have been
manually removed from both point clouds. Note that the trajectory ends one floor above its beginning. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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readily available, as it is likely that these can be pre-processed on-
the-fly with on-chip integration.

The run time to compute the curve-piece estimate, �5 CPUmin-
utes, is readily comparable to the time taken to capture the data,
which was around 3–4 min. In other words, it performs close to
real-time. On the other hand, the 6 DoF semi-rigid SLAM takes
about 20–30 CPU minutes per one iteration. Considering the
amount of iterations required for convergence shown in Fig. 8, this
still poses a big challenge, even though the SLAM is sped up by
using multiple processors. Hence, using more than three angular
categories for vertical estimates, �6deg, 0deg, +6deg, may be
tempting in an attempt reduce the total run time with SLAM, but
this is prone to cause problems with robustness, as false positives,
i.e., incorrect kernel responses, may appear. In the future, we
attempt to open the bottlenecks to achieve real-time trajectory
estimation.

4. Discussion

Our starting point was the caveat that the ICP-based SLAM fails
to recover steep curves (Lehtola et al., 2016). To obtain the global
minimum for an energy metric, given a trajectory j, the solution
space must be scoured with trajectory trials. The trial set should
be chosen so that it is not too sparse, in which case the global
minimum may not be found, nor too thick, in which case the
computational cost raises unnecessarily. For this purpose, we have
proposed the curve-piece method.

We compute the favorability of all trajectory trials with-in cer-
tain discretization conditions. This simultaneously means effi-
ciency in computation, since the problem is separated into
smaller subproblems. Appropriate care is taken in separation,
because the subsample of the point cloud in where the trajectory
trials are evaluated must not change, i.e., the comparison must
be unimetric.

As all time-of-flight measurements are connected to their
respective location on the trajectory, the most convenient way to
form the subsamples is to divide the trajectory into segments.
Observed points are employed in k-d tree nearest neighbor match-
ing to compute a sum of distances that is the proposed trial energy
of Eq. (10). It is noteworthy that Eq. (10) does not use any geomet-

ric a-priors, such as that the points reside on planes, and that the
energy metric employs an outlier resistant L1 norm. Trial with low-
est energy is accepted as the best trajectory estimate. One local
solution is computed for each cycle, while keeping track how the
pose develops in global system coordinates.

The curve-piece method employs two control parameters for
horizontal corrections, the (minimum) local correlation length n
and the radius for maximum turn Rtmax, and two control parame-
ters for vertical corrections, the local correlation length n and the
slope angle. The first are closely related to the properties of the
platform, while the latter are, interestingly, related to the environ-
ment. However, the determination of the latter n might be auto-
mated by setting a lower bound to the amount of terms that
must exist in Eq. (10). Also, arguably, the slope angle may be trea-
ted as a constant, if the SLAM iteration can recover the physical
slope profile. Then the method would consist of only two
platform-dependent control parameters. Our approach in intrinsic
localization is applicable to any wheeled platform, where the roll-
ing phase of a (no-slip) tire can be mechanically, or through the
time-of-flight measurements, connected to the scanner.

Finally, to achieve a computationally effective form for the
curve-piece estimate, we have proposed the pre-processing of
the data with the local support filter of Eq. (15). Notably, the filter
conserves only the range measurements, namely discontinuity fea-
tures, that are likely the most relevant for localization. However,
points that lie on, e.g., a smooth back wall are taken as features,
if they are seen around a pillar that blocks the line of sight. If nec-
essary, this can be dealt with another simple range-based condi-
tion. The discontinuity feature filter employs two control
parameters, one to mark range discontinuities between different
scans, and another one for neighboring points inside the same
scan. For on-chip integration purposes, these two control parame-
ters should be kept adjustable. The proposed approach is likely to
be feasible for a two-orders-of-magnitude higher data capture rate
than what is used for real-time computation in Zhang and Singh
(2014). Our work includes loop closure with in SLAM, while the
one of Zhang and Singh (2014) does not. Future studies should con-
sider the applicability of these discontinuity features as SLAM
input to bring this part of the algorithm also to real-time
performance.

5. Conclusion

Intrinsic localization allows the pose recovery of a mobile laser
scanner without any external sensors such as global navigation
satellite systems (GNSS) or an inertial measurement unit (IMU).
We have extended the concept of intrinsic localization from the
previous theoretical one-dimensional solution onto a 2D manifold
that is embedded in a 3D space. Notably, this is a highly non-trivial
inverse problem, and therefore we untie the knot in a step-by-step
fashion, solving one unknown at a time. First, the position of the
scanner is determined with respect to the trajectory length (1D)
as in Lehtola et al. (2015). This allows the use of an essential
boundary condition – that the trajectory length is fixed – when
horizontal turns (2D) and vertical turns (3D) are included with
the proposed curve-piece method. Finally, the trajectory is opti-
mized with SLAM (Borrmann et al., 2008) to recover the full six
degree of freedom. Pose convergence is examined by point cloud
comparisons and observing the end-to-end distance for the trajec-
tory, Ree. The accuracy ratio at a 25 m distance is about 1:100 with
respect to it.

We also introduce a new local support filter that conserves only
the most meaningful �0.1% of the time-of-flight measurements.
These points reside near range discontinuities by definition, and
therefore may be regarded as the most informative points about

Table 2
Measured CPU run times in seconds (3.3 GHz Intel Xeon) for the proposed curve-piece
method on the largest Loop 2 data, consisting originally 161 M points that are
reduced into 200 k discontinuity features. H stands for horizontal, and V for vertical
corrections.

H, n ¼ 1 H, n ¼ 5 V, n ¼ 16 Total

Run time (s) 98� 5 87� 4 126� 12 311� 18

Fig. 14. The connection graph of 6 DoF semi-rigid SLAM for Ramp 1 data at the end
of iteration. Black dots represent the 65 locations of trajectory segments, consisting
of 600 slices each. Blue lines display the 3920 graph connections. Connections are
formed (incorrectly) through the concrete ceiling that is about 40 cm thick. The
solid red line is shown to guide the eye.
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the environment. This new filter uses a limited cache that allows it
to be operated before point cloud registration, also meaning that it
can be integrated on chip. Overall, smart filtering reduces data
transmission, storage, processing, and work memory requirements,
which is especially important in mapping of environments of a
large scale. It paves the road for real-time solutions in intrinsic
localization.

For future work, we propose an elaborate study of the smart fil-
ter properties, specifically for the purposes of fast-processing, com-
pleteness, and saliency, but also the on-chip integration of the
smart filter. The concept of intrinsic localization is likely to be
applicable for various wheeled platforms, and these are to be
designed.
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