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A B S T R A C T

For the purpose of visualization and further post-processing of 3D point cloud data, it is often desirable to
remove moving objects from a given data set. Common examples for these moving objects are pedestrians,
bicycles and motor vehicles in outdoor scans or manufactured goods and employees in indoor scans of factories.
We present a new change detection method which is able to partition the points of multiple registered 3D scans
into two sets: points belonging to stationary (static) objects and points belonging to moving (dynamic) objects.
Our approach does not require any object detection or tracking the movement of objects over time. Instead, we
traverse a voxel grid to find differences in volumetric occupancy for “explicit” change detection. Our main
contribution is the introduction of the concept of “point shadows” and how to efficiently compute them. Without
them, using voxel grids for explicit change detection is known to suffer from a high number of false positives
when applied to terrestrial scan data. Our solution achieves similar quantitative results in terms of F1-score as
competing methods while at the same time being faster.

1. Introduction

When 3D laser scanners are used to create digital maps and models,
it is hard to imagine scenarios where non static or moving objects are
supposed to be part of the final point cloud. Examples for point cloud
data that is supposed to be free of moving objects are:

• an indoor office for intrusion detection or workspace planning,

• a factory or industrial sites for industry 4.0 applications,

• a mining site to monitor progress and watch for hazards,

• an urban environment for city planning and documentation pur
poses,

• a historical site for archaeology and digital preservation purposes,

• and environments for gaming and virtual reality applications.

In all these examples, it is undesirable to have moving objects be
part of the final point cloud. The easiest approach to achieve a point
cloud free of moving clutter is to scan an environment that is com
pletely static. Unfortunately, in realistically scaled real world scenarios
this is hard or even impossible to achieve. Factories and mining sites
would have to suspend work for the duration of the scan, thereby
causing production losses and making it infeasible to carry out scans
regularly. Closing off large sections of an urban environment and
freeing it of pedestrians, moving and parked cars and bicycles comes

with great bureaucratic challenges and heavily inconveniences the local
residents.

One way to solve this dilemma is to take multiple scans from the
exact same location and then only keep those points in volumes found
to be occupied by most scans. But this solution comes with several
disadvantages. Not only does this method take considerably more time
than just taking a single scan, it is also unclear how many scans one has
to take or how to find a good heuristic to select the right threshold that
classifies a volume as static. If the threshold is too high, then static
points only seen a few times will not be recorded. The lower the
threshold the more dynamic points will wrongly be classified as static.
The method we propose solves all of these issues. We successfully ap
plied our method to various point clouds from our scan repository.1

These scans were not recorded with our algorithm in mind, proving that
our method will probably apply to many existing regular terrestrial
scan dataset.

1.1. Our approach

The input to our algorithm is registered 3D range data, typically
acquired by a 3D laser range finder from multiple vantage points. While
we only test our approach with LIDAR scans, it is in principle also
compatible with scans obtained from RADAR or RGB D systems or point
clouds from stereo vision. Any input which allows associating every
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measured point with the line of sight from which it was measured is
theoretically suitable for our method. In terms of terrestrial laser scan
data, a suitable format are multiple point clouds, each in the scanner’s
own local coordinate system together with registered 6DOF positions of
the laser scanner for each point cloud. It would make the data un
suitable for our approach if all scans were merged into a single point
cloud and transformed into a global coordinate system, thus loosing the
association between measured points and the vantage points from
which they were each measured.

Retaining that information is imperative to our approach because
we identify dynamic points by traversing the lines of sight under which
each point in the dataset was measured through a voxel occupancy grid.
Essentially: all points in voxels that intersect with a line of sight are
then classified as dynamic because if they were static, points behind the
voxel shouldn’t have been visible. This implies, that our approach is
only able to detect change in volumes where two or more scans overlap
and suppresses apparent changes created by occlusion. This makes our
method an “explicit” change detection algorithm.

Our algorithm makes very few requirements on the underlying
geometry of the scanned data, vantage points and the temporal se
paration between individual scans. The vantage points together with
the geometry of the scene must be chosen such that the volumes of
interest are not occluded from the sensor. Instead, the volumes that one
wants to remove moving objects from must have been observed at least
by two different scans. Furthermore, the temporal difference between
these two scans must be large enough such that any object that one
considers “dynamic” in the observed volume was moved to a different
location. But if a given voxel volume was observed more than twice,
then it is sufficient that the voxel was seen as “free” by only a single
scan.

Our method performs best in environments with clear surface nor
mals but in their absence, false positives are easily removed by a fast
clustering algorithm. To avoid artifacts due to the voxel discretization
we also show an algorithm that reliably removes them without reducing
the quality of the remaining point cloud. An example of the output of
our algorithm is shown in Fig. 1 where pedestrians in the foreground
and cars in the background are classified as non static and subsequently
removed.

1.2. Contribution

Our main contributions are:

• an algorithm that is able to identify and remove dynamic points in
3D point clouds

• an improved and extended version of the voxel traversel algorithm
by Amanatides et al. (1987)

• an algorithm to efficiently compute point shadows

• an approach that doesn’t classify whole voxels as dynamic but only
subsets of points in a voxel, achieving sub voxel accuracy

We publish the source code of our approach as part of 3DTK The
3D Toolkit.2 Except for the Wolfsburg dataset, all datasets we present in
this paper are publicly available as well.3 Furthermore, we provide the
shell scripts that allow to precisely reproduce the F1 scores displayed in
the results section.4

1.3. Organization of this paper

This paper is organized as follows. In the next section we discuss
other work related to the topics covered in this paper. Section 3 gives an
overview of our approach. The following five sections then detail our
method. Section 4 describes our improvements to the voxel traversal
algorithm by Amanatides and Woo. In Section 5 we extend our method
that was previously limited to scan slices (Schauer and Nüchter, 2017)
to the more general setup of terrestial scan data by introducing the
concept of “point shadows”. Computing the latter requires frequent
lookup of angular neighbors for which we use a sphere quad tree as
described in Section 6. To remove small instances of voxels wrongly
classified as dynamic we employ a clustering algorithm which we detail
in Section 7. Section 8 then describes a way to also remove false ne
gatives introduced due to the voxel occupancy grid. Finally, we show
qualitative and quantitative results in Section 9, show performance
graphs and compare our method to a competing solution. Section 10
handles the limitations of our method and in Section 11 we describe the
direction of future research in this area before we draw conclusions in
Section 12.

2. Related work

Our solution falls into the realm of change detection (Qin et al.,
2016) but only few publications deal with classifying points as either
dynamic or static. Even fewer approaches compute the free volume
between a measured point and the sensor itself. Most solutions for
change detection compare incoming geometries or point clouds in a
way that results in “change” merely due to occlusion or incomplete
sensor coverage. One example for such an approach is the method by
Vieira et al. which uses spatial density patterns Vieira et al. (2014). Or
the solution shown in Liu et al. (2016) which just computes the dif
ference in voxel occupation between two input scans. But for our pur
pose of “cleaning” scans, it is undesirable to remove these parts from
the dataset. Doing so would mean to remove potentially useful data
from the input. Instead, we designed our algorithm to be conservative.
It only removes volumes which it is able to confidently determine to be
dynamic. Volumes which it cannot make a decision upon, for example
because they were only measured by a single scan, are left untouched.
Meeting this requirement is only possible by computing unoccupied

Fig. 1. After identifying non-static points (in magenta on the left) they are removed without artifacts (right). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

2 http://threedtk.de.
3 http://kos.informatik.uni-osnabrueck.de/3Dscans/.
4 https://robotik.informatik.uni-wuerzburg.de/telematics/download/isprs2018/.
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volumes and detecting change explicitly. The changes we are interested
in can only be detected if a given point falls into the volume that an
other measurement observed as free.

The work most similar to ours is the seminal work by Underwood
et al. (2013). It is able to detect changes between two scans by ray
tracing points in a spherical coordinate system. But since their algo
rithm is limited to comparing no more than two scans at a time it is not
directly applicable to our use case without either additional heuristics
or quadratic runtime with respect to the number of scans. Given N input
scans and without additional processing to find scan pairs with a
“meaningful” overlap in their observed volume, the only way to find all
changed points is to compare all possible pairs of scans. With N scans
this results in a worst case scenario of −N N( 1)

2
comparisons and thus

quadratic runtime. Our approach is of linear complexity relative to the
input size because all comparisons are made against a global occupancy
grid and not directly against point data from other scans. The authors
publicly provide their code and their datasets which we thus use to
benchmark our own method against theirs.

Similar to the approach by Underwood et al., the solution by Gálai
and Benedek (2017) finds changes by comparing range images. One
range image is obtained directly from a live laser scanner while the
other is the projection of a known static point cloud of the environment
into the current position of the laser scanner. Differences in the range
image data is then classified as change and projected back into the 3D
space.

Another approach close to ours is the method by Xiao et al. (2013,
2015). Similar to our method and the method by Underwood et al. their
algorithm also considers the volume by laser rays and fuses multiple
rays into a larger volume using the Dempster Shafer theory for intra
data evidence fusion and inter data consistency assessment. Similar to
our method, they rely on surface normals but unlike ours, the method
detects changes at the point level without voxelization.

Asvadi et al. (2016a,b)also use a voxel data structure to partition the
input point cloud into static and dynamic points but instead of re
cording free voxels, they count how often a voxel is occupied. Due to
varying occlusion they have to make a number of assumptions about
their environment and employ several heuristics that are not necessary
with our algorithm. Furthermore, their approach requires a ground
surface estimation in contrast to our approach which does not require
any such planar features to be present.

The creators of OctoMap (Hornung et al., 2013) also use the same
algorithm as we do by Amanatides et al. (1987) to cast rays. But instead
of voxels they use an oct tree data structure to find free volumes. They
also employ a similar approach to avoid marking volumes as free in
situations where rays meet a surface at a very shallow angle by
grouping multiple scan slices together. We improve on their work by
generalizing their approach for scan slices to terrestrial scans. The
OctoMap approach is also used by other implementations like the one
seen in Ruixu Liu (2017).

Besides voxels and oct trees other data structures to store occupa
tion information in are elevation maps (Herbert et al., 1989; Pfaff et al.,
2007), multi level surface maps (Triebel et al., 2006), and Gaussian
Mixture Model (Andreasson et al., 2007; Núñez et al., 2010; Drews Jr
et al., 2013).

Existing methods that require computation of free volume for ro
botic path planning are known to use a 3D Bresenham ray casting
kernel (Hermann et al., 2014) carrying out the ray casting in many
parallel threads on the GPU. GPU based ray casting techniques were
first shown by Roettger et al. (2003) and Kruger and Westermann
(2003) and are today often implemented using OpenGL and CUDA
(Weinlich et al., 2008).

3. General design

Our initial approaches were inspired by how humans tend to

distinguish between static and dynamic objects: If an object is seen as
immobile for long enough, then we will classify it as static. While this
approach would probably work well for a scanner with a static position
relative to the environment that we consider static, it seems to be an
unfeasible approach in the mobile mapping scenario. Due to the
scanner moving and the resulting variable occlusion of objects, it is
hard to calculate how long an object should be visible and not vanish
because of an occlusion. Furthermore, without prior knowledge about
whether the occluding object is actually static a chicken and egg pro
blem is created. We need to know about which objects are static before
they are considered for occlusion testing. But to reliably test for oc
clusion we need to know which objects are static.

Thus, instead of counting how long or how often an object is seen as
static, our algorithm does the opposite and instead tests whether any
seen object was at any point in time see through. Since we want to avoid
any higher level processing like object recognition, our “objects” here
are the voxels of a regular voxel grid. This spacial approximation of the
sensor data has the advantage, that it is computationally easy to enu
merate all voxels along a ray with the scanner at its origin. The ray is
forming a line of sight. To generate the regular voxel grid from a set of
input points, we define:

Definition 1. The voxel address of a given 3D point is a three tuple
computed from the Cartesian coordinate of the point, each divided by
the voxel size and rounded to the next smallest integer.

Thus, our voxel grid forms a cubic lattice with each point in 3

belonging to exactly one grid cell. Since the Cartesian coordinates may
be negative, negative voxel addresses exist as well. The grid implicitly
forms an occupancy map where voxels with one or more points in them
are occupied and those with zero points in them are unoccupied.

To determine the set of see through voxels, we model the laser beam
as a ray and enumerate all voxels intersecting with that ray. Voxels that
are see through and contain points must be dynamic. An additional
advantage of this approach is, that it will automatically not remove
points that were only measured very seldom or even only once. No
heuristic about object movement is required.

Fig. 2 displays the general idea of our algorithm in a two dimen
sional scenario. The circular object in areas C1 and C2 is dynamic and
only seen by the first scan (Fig. 2a). Since the second scan (Fig. 2b)
measures the red points in A2 and B2 with a line of sight that crosses
area C1, the three points that were measured in C1 in the first scan are
dynamic.

Fig. 2 also shows how the algorithm does not remove points from
areas that were only visible in a single scan. For example the green
points in areas A3 and A4 are only seen from the scanner position in
Fig. 2a. Still, they are not removed because these areas are never
marked as see through by other scans (for example the second scan in
Fig. 2b). The same holds for the red points in area C2. They are only
seen by the second scan in Fig. 2b because the circular moving object in
C1 and C2 occludes the points during the first scan in Fig. 2a. Still, the
points remain classified as static because their containing areas are
never marked as see through.

Our algorithm goes through the following stages:

1. Loading point cloud data from input files in scanner local coordinate
system together with the registered 6DOF scanner position

2. Creation of voxel occupancy grid. Each voxel stores the set of scan
indices that have a point in that voxel

3. Computation of maximum traversal distances through the voxel grid
for each point by using “point shadows”

4. Traversing lines of sight through the voxel grid for each scanner
location to each measured point by that scan, identifying see
through voxels

5. Clustering for false positive noise removal
6. Removal of false negatives through our approach to sub voxel ac

curacy
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7. Writing out results

The main component of our method is a global occupancy grid
which we store as a voxel data structure. Each voxel holds a set of scan
identifiers. A scan identifier is added to a given voxel if any point of that
scan falls into the voxel. Thus, precise point coordinates are not stored
in the grid. Instead, the data structure represents the union of all voxels
that the input scans measured points in. For example in Fig. 2 on the
right, voxel B2 stores the information that it contains points from the
green as well as from the red scan but neither their number nor the
coordinates of these points is stored in the voxel grid. Thus, the global
occupancy grid typically requires several orders of magnitude less
memory than the sum of the input data.

By traversing the occupancy grid from each sensor origin to the
coordinates of each measured point, we find voxels that intersect with
the line of sight of the sensor but contain a non empty set of scan
identifiers. These voxels are then classified as “see through” or “dy
namic”. At the end of the algorithm, this information serves as a binary
classifier determining whether a given input point should be removed
or not. A point is removed if it falls into a voxel that was marked as
“see through”.

The reason why we store a set of scan identifiers in each voxel in
stead of just storing a binary occupied/unoccupied property is to be
able to abort traversal early and avoid self intersections. The point
measured in voxel A4 in Fig. 2 on the left has a line of sight intersecting
with at least three voxels that must not be marked as free: A3, B3, and
B2. To avoid wrongly marking these voxels as free, traversal is aborted
once a voxel is encountered containing the same scan identifier as the
scan the current target point belongs to. This means that the ray toward
voxel A4 aborts before marking voxel B2 as free. Another application
for storing sets of scan identifiers in each voxel is our solution to
achieve sub voxel accuracy as explained in Section 8.

4. Fast voxel traversal

To enumerate all see through voxels from the laser origin until the
measured point, we used an approach based on the algorithm proposed
by Amanatides et al. (1987). We improve the algorithm by making it
adhere to a stricter definition of what it means for a ray to intersect
with a voxel, by eliminating accumulation of floating point errors and
by adding support for rays starting exactly at a voxel boundary. None of
the existing open source implementations (Octomap (Hornung et al.,
2013), MRPT (Blanco Claraco, 2014), PCL (Rusu and Cousins, 2011), yt
(Turk et al., 2011)) supports any of these properties and thus we detail

of our approach here.
Even though our additions to Amanatides and Woo’s original algo

rithm increase the number of possible instructions per loop cycle we
were unable to measure a difference in runtime of the algorithms on an
Intel Core i5 platform. We assume that this is because the bottleneck of
the algorithm is the required non local memory access and not the raw
instructions per traversed voxel.

4.1. Approach by Amanatides and Woo

The original approach by Amanatides and Woo for fast voxel tra
versal is also often called “3D Bresenham algorithm” because it is very
similar in nature. The core of the algorithm in two dimensions is dis
played in Algorithm 1 will traverse a ray →

+
→u tv for ⩾t 0. Extending it

into three dimensions just adds an additional set of Z variables and
finds the minimum of all three tMax values in each loop iteration.

Algorithm 1. Fast Voxel Traversal Algorithm by Amanatides and Woo

1: while true do
2: if <tMaxX tMaxY then
3: ← +tMaxX tMaxX tDeltaX
4: = +X X stepX
5: else
6: ← +tMaxY tMaxY tDeltaY
7: = +Y Y stepY
8: NEXTVOXELX Y,

The variables used in the algorithm are initialized as follows:

• X Y, are the starting voxel coordinates, i.e. the voxel in which the
ray origin →u is found

• stepX stepY, are set to 1 or −1 depending on whether X and Y are
incremented or decremented, respectively, when traversing the grid.
This is the sign of the x and y components of →v .

• tMaxX tMaxY, are set to the value of t in which the ray crosses the
first voxel boundary in x and y direction, respectively.

• tDeltaX tDeltaY, store how far along the ray one must move in units
of t to traverse exactly one voxel in x and y direction, respectively.

Neither the original publication nor any other publication since then
explains in more detail how these variables are set up exactly. We found
though, that many of the current limitations of existing

Fig. 2. The algorithm applied to a 2D
scenario. The gray raster marks the 2D
voxel (pixel) boundaries. Blue lines
mark the scanner lines of sight. Dark
lines are object boundaries. Gray areas
mark solid space while white areas
mark free space. Left: The scene as
scanned from a center position (ray
origin not part of the figure). The
scanner measures the green points.
Right: The scene as scanned from a
position to the right. The circular ob-
ject in areas C1 and C2 moved away
and its former position is marked with
dotted lines. The scanner measures the
red points. (For interpretation of the
references to color in this figure le-
gend, the reader is referred to the web
version of this article.)
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implementations come from unexpected corner cases in how these
variables are set up. Thus, in this section we also describe how to in
itialize the variables in detail.

4.2. Definition of line voxel intersection

The original algorithm is ambiguous in situation where the ray in
tersects with the voxel edges or corners. Existing implementations all
handle this situation in different ways, so to eliminate ambiguity and to
be able to verify the correctness of our approach we define what it
means for a voxel to intersect with a line.

Definition 2. A line intersects with a given voxel if and only if any
point on the line falls into the given voxel according to Definition 1.

By only being able to step into one voxel grid dimension at a time,
existing implementations fail Definition 2 in cases where the traversed
ray enters or exits a voxel through its corners or edges. Two dimen
sional examples of these situations are shown in Figs. 3 5. The original
algorithm by Amanatides and Woo forces the implementation to arbi
trarily pick a dimension to step into first but no matter which dimension
is picked, the result will contain wrong voxels and miss others that
should be included.

4.3. Avoiding accumulation of floating point errors

The original algorithm by Amanatides and Woo increments the
tMax variables by the corresponding tDelta value in each loop
iteration. Since both variables are floating point values, this accumu
lates an error over time, especially once tMax becomes several orders of
magnitude larger than tDelta. Additionally, when the ray is nearly
parallel to the coordinate axis, small floating point errors will lead to

incorrectly traversed voxels when the ray is about to cross the voxel
boundary along the dimension the ray is nearly parallel to. To avoid
these effects, we introduce new counter variables for each dimension.
These variables are of integer type and count how much the loop has so
far stepped into each direction. This allows to compute the new tMax
values in each iteration by adding floating point values of similar
magnitude which reduces errors. Additionally, the integer counter
variables allow a more precise way to abort the algorithm by not having
to rely on the potentially faulty tMax floating point values. In our
adapted solution, the tMax values are only used to decide in which
direction(s) to step next.

4.4. Rays starting exactly at a voxel boundary

The setup phase of the algorithm by Amanatides and Woo is of
particular importance but neither completely explained in the original
paper nor in the papers citing it. An important corner case which is not
handled by the existing implementations is the case when a ray starts
exactly on a voxel boundary and then continues into negative direction.
To illustrate the problem, we use a one dimensional example with a
“voxel” size of 1. Suppose the ray starts at coordinate 1 and goes into
negative direction. The starting voxel is voxel 1. In this situation, we
compute tMax as the value of t needed to go from 1 to 0, thus tMax
equals tDelta. In the loop, we step one voxel into negative direction
and increment tMax by tDelta. As a result we are now in voxel 0. But
that conflicts with the current value of tMax which is now twice the
value of tDelta and thus indicates that we already stepped two voxels
instead the single step that was just carried out. It is also wrong to reset
the value of tMax to zero before starting the loop because in the more
dimensional case that means that the first step in the loop is not made in
the direction of the voxel sharing the voxel boundary the starting point

Fig. 3. Two-dimensional example vi-
sualizing the problem of existing im-
plementations of the voxel traversal
algorithm by Amanatides and Woo
with a voxel size of 1. Traversed
voxels are marked in red. A line seg-
ment from (0.5, 0.5) to (1.5, 1.5) in-
cludes the coordinate (1, 1) which
belongs to voxel (1, 1) and neither
voxel (0, 1) nor voxel (1,0) should be
included in the result. Left: If the
traversal algorithm checks the ver-
tical dimension first, then voxel (0, 1)
is added to the result. Center: If the
traversal algorithm checks the hor-

izontal dimension first, then voxel (1,0) is added to the result. Right: Our algorithm only traverses voxel (0,0) and voxel (1, 1). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. A line is traversed from (1.5, 0.5) to (0.5, 1.5). The arrow indicates the
direction. Left: If the traversal algorithm checks the horizontal dimension first,
then voxel (0, 0) is added to the result even though point (1, 1) on the line
belongs to voxel (1, 1). Right: Our algorithm correctly identifies voxel (1, 1) as
part of the solution.

Fig. 5. A line is traversed from (0.5, 1.5) to (1.5, 0.5). The arrow indicates the
direction. Left: If the traversal algorithm checks the vertical dimension first,
then voxel (0, 0) is added to the result even though point (1, 1) on the line
belongs to voxel (1, 1). Right: Our algorithm correctly identifies voxel (1, 1) as
part of the solution.
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lies on. The correct solution is to add an additional step after the initial
setup but before the loop starts. In this step one additional voxel into
negative direction has to be added. Since existing implementations are
not taking care of this special case, they will skip one voxel at the be
ginning and thus compute a result that will always be off by one.

4.5. Implementation

Since the required additions to the original algorithm by
Amanatides and Woo are complex, we present in this subsection the
complete pseudo code of the fixed voxel traversal algorithm. We split
the function WALKVOXELS into two parts. Algorithm 2 shows the setup
phase while Algorithm 3 the loop walking through the voxel grid. The
algorithm makes use of three additional functions. VOXELOFPOINT returns
the voxel coordinate of a given cartesian coordinate according to
Definition 1. Care has to be taken in a C/C++ implementation because
simple integer division will always round toward zero. A function
showing a possible implementation in C/C++ is shown in Listing 1 in
the appendix.

The VISITOR callback handles the current voxel, for example by
adding it to a list of traversed voxels. But the behaviour of this function
is up to the requirements of the user of WALKVOXELS. Finally the function
MIN returns the smallest value of the arguments it is given. Many vari
ables represent 3 tuples where elements are accessed using the [] op
erator with a zero based index.

Algorithm 2. Extended voxel traversal algorithm (part 1)

1: function WALKVOXELSstartpos endpos voxelsize, ,
2: ←startvoxel VOXELOFPOINTstartpos voxelsize,
3: VISITORstartvoxel
4: ←endvoxel VOXELOFPOINTendpos voxelsize,
5: if =startvoxel endvoxel then
6: return
7: ← −direction endpos startpos
8: if =direction (0, 0, 0) then
9: return
10: ←curvoxel startvoxel
11: for ←i 0, 2 then
12: if =direction i[ ] 0 then
13: ← ∞tMax i[ ]
14: ← ∞maxMult i[ ]
15: else
16: if >direction i[ ] 0 then
17: ←step i[ ] 1
18: else
19: ← −step i[ ] 1

20: ←tDelta i[ ] step i voxelsize
direction i

[ ]·
[ ]

21: ← −( )tMax i tDelta i[ ] [ ] 1 mod1step i startpos i
voxelsize
[ ]· [ ]

22: ← −maxMult i step i endvoxel i startvoxel i[ ] [ ]·( [ ] [ ])
23: if

= − ∨ = ∨ ≠step i tMax i tDelta i startvoxel i endvoxel i[ ] 1 [ ] [ ] [ ] [ ]
then

24: ← −curvoxel i curvoxel i[ ] [ ] 1
25: ← −maxMult i maxMult i[ ] [ ] 1
26: if ≠curvoxel startvoxel then
27: VISITORcurvoxel
28: ←startvoxel curvoxel
29: if =curvoxel endvoxel then
30: return

Algorithm 2 mostly implements the standard setup from the algo
rithm by Amanatides and Woo. Again, if implementing the algorithm in

C/C++, care has to be taken to carry out the modulo operation cor
rectly (line 21), as the native ‘%‘ operator only operates on integers and
the fmod function from math.h only computes the remainder of two
floating point numbers despite its name. An example implementation of
floating point modulo operation in C/C++ is given in Listing 2 in the
appendix.

The additions start in line 22 which sets up the 3 tuple maxMult
containing the voxel difference between the start and end voxel. Line 23
then checks whether the special condition explained in Section 4.4 is
met: if a step has to be done into negative direction and the ray starts at
the voxel boundary along that dimension, then that step is already
carried out before the main loop starts. This results in a second call to
VISITOR if necessary in line 27.

Algorithm 3. Extended voxel traversal algorithm (part 2)

31: ←mult (0, 0, 0)
32: ←tMaxStart tMax
33: loop
34: ←stepped false false false( , , )
35: ←minVal MINtMax
36: for ←i 0, 2 do
37: if =minVal tMax i[ ] then
38: ← +mult i mult i[ ] [ ] 1
39: ← +curvoxel i startvoxel i mult i step i[ ] [ ] [ ]· [ ]
40: ← +tMax i tMaxStart i mult i tDelta i[ ] [ ] [ ]· [ ]
41: ←stepped i true[ ]
42: if ∨stepped stepped(( [0] [1]). then

∧ ∨stepped stepped( [0] [2])
∧ ∨stepped stepped( [1] [2]))
∨ = ∧ = ∧ =step step step( [0] 1 [1] 1 [2] 1)
∨ = − ∧ = − ∧ = −step step step( [0] 1 [1] 1 [2] 1)

43: ←addvoxel curvoxel
44: for ←i 0, 2 do
45: if stepped i[ ] then
46: if <step i[ ] 0 then
47: if > +mult i maxMult i[ ] [ ] 1 then
48: return
49: ← +addvoxel i addvovel i[ ] [ ] 1
50: else if >mult i maxMult i[ ] [ ] then
51: return
52: if ≠addvoxel curvoxel then
53: VISITORaddvoxel
54: for ←i 0, 2 do
55: if ∨ >stepped i mult i maxMult i[ ] [ ] [ ] then
56: return
57: VISITOR curvoxel

Algorithm 3 executes the voxel traversal. The difference to the
original algorithm is twofold. Firstly, as explained in Section 4.3, our
version increments tMax not by directly adding tDelta but by adding a
multiple of it to the initial tMax value (line 40). This makes it necessary
that the additional counter mult is kept updated for each dimension
(line 38). As a side effect the algorithm also uses the value of mult to
decide when the target voxel is reached (lines 47, 50, and 55). Sec
ondly, our version is able to step into more than one direction at once.
This is achieved by stepping into every direction that shares the
minimum tMax value minVal. As explained in Section 4.2, additional
checks need to be carried out if a step was done into more than one
direction at the same iteration step to also consider potentially “graced”
voxels. These checks are done in lines 42 to 53 and lead to the VISITOR

callback being executed one additional time within a given loop itera
tion if necessary.
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5. Panorama scans from terrestrial mapping

Attempting to apply the same technique from mobile mapping to
terrestrial scans will result in unexpected false positives as they are
visualized in Fig. 6. The effect is created from the alignment of the
ground relative to the voxel grid together with an effect shown in
Fig. 7a. From that Figure it seems apparent that the problem is the small
incident angle but as Fig. 7b shows, similar problems also occur at a
high incident angle. The underlying problem is that 3D point cloud data
only samples the underlying continuous objects. And it is doing so at
different sampling rates per volume depending on the distance from the
scanner and the incident angle on a surface.

A solution implies not traversing the lines of sight towards the red
points in A2 and A3 in Fig. 7a and b until the last voxel but stopping
early enough such that actually static voxels are not marked as free. But
where to stop traversing the voxel grid toward a given point must not be
a function of the point toward which the traversal is done but a function

of the points “in front” of it as seen from the scanner position. For ex
ample, the problem is not solved by computing the surface normal at a
given point and only traversing the line of sight toward that point up to
one voxel diagonal away from that surface. This approach solves the
problem in Fig. 7a but not the problem shown in Fig. 7b. Instead, the
offset in Fig. 7b is determined by the green point in D3.

To calculate this offset or “clipping distance”, we create the concept
of points closer to the scanner “shadowing” points further away from
the scanner. For each point in a scan, we compute whether it’s in the
“shadow” of a point closer to the scanner and if yes, stop the traversal
through the voxel grid at the point that is casting the shadow. Like with
real shadows, the “shadow” a point casts is the larger the closer it is to
the scanner. Since points by themselves do not have a volume, we
choose a sphere with the radius of one voxel diagonal and the casting
point in its center as the object casting the shadow. To also cater for
situations as shown in Fig. 7a we do not simply clip the rays toward the
shadowed points by the distance of the point casting the shadow from

Fig. 6. Result of naive approach to detecting dynamic points by directly using the method from mobile mapping. Dynamic points are marked in magenta. There are
several “stripes” of false positives on the ground.

Fig. 7. Two examples for false posi-
tive when applying a naive approach
to find dynamic voxels. The raster re-
presents the 2D voxel boundaries.
Blue lines mark the scanner lines of
sight. Dark lines are object bound-
aries. Gray areas mark solid space
while white areas mark free space.
Round dots represent the measured
scan points of two scans in red and
green, respectively. Left: Due to the
surface being scanned at a shallow
angle, the scan measuring the red
points will wrongly mark voxel B2 as
free when traversing the line of sight
up to the red point in A2. Right: Due
to the tip of the structure in D3 only
measured by the green scan, it will be
wrongly marked as free when traver-
sing the line of sight up to the red
point in A3. (For interpretation of the
references to color in this figure le-
gend, the reader is referred to the web

version of this article.)
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Fig. 8. Synthetic dataset “sim” from
Underwood et al. (2013). Magenta points re-
present the actual dataset: a small cube on the
floor of a bigger cube. For each point, the
maximum search distance was computed and is
represented by a yellow point. The scanner lo-
cation is in the upper left. (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this
article.)

Fig. 9. The lecture hall dataset with points colored such that all points with the same color are shadowed by the same point. For visualization purposes, a very large
voxel size of 20 cm was chosen. Top-Row: Perspective Projection Center- and Bottom-Row: Panorama Projection Upper right and Bottom: Colored by point
shadows Upper-Left: Colored by reflectance Center: Colored by point distance. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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the scanner but instead compute the surface normal at the point casting
the shadow and clip the traversal distance of all points in the shadow to
be at least one voxel diagonal away from that surface.

Fig. 8 visualizes the idea of shadows clipping the traversal distance
to points behind them. The figure comes from the synthetic dataset
“sim” from Underwood et al. (2013) and magenta points represent the
scene: a small cube on the floor of a bigger cube. The scanner location is
in the upper left of the image. Each of the magenta points of the scene
has an associated yellow point which represents up to where the line of
sight from the scanner toward it will be traversed. The corner of the
cube in the center of the image shows a disk of yellow points. The disk
is created because we let a sphere cast the shadow and the orientation
of the disk results from the value of the normal vector at the corner of
the cube. Further to the right, two more disks are visible, shadowing
more points. The shadow is explicitly visible in the background to the
right. The effect of creating disk shaped shadows is only present at the
corner points closest to the scanner. For the rest of the scene, the flat
surfaces of the environment are shadowed by flat surfaces as well. The
surface of the scene is quasi “eroded” into the empty space to create the
traversal offset for each point while at the same time taking surface
normals into account.

Figs. 9 and 10 visualize which points shadow other points in a real
scene and a synthetic dataset, respectively. Every point with the same
color is shadowed by a common point. The colored shapes are elliptical
disks representing cuts of a cone. The cone shape is the volume that is
shadowed by a given point. Points closer to the scanner shadow a larger
volume and thus create bigger blobs of color in these figures. The de
pendency is best visible from the panorama images in Figs. 9a and b.
Bright areas in the upper panorama images represent points close to the
scanner. These areas create big shadows as is shown in the lower pa
norama image. Darker points are further away and create smaller
shadows.

5.1. Implementation

It is very costly to iterate over all points in a scan and for each one
find the point which potentially shadows them, especially because no
such point may exist and also because the shadow size of each point
varies by its distance from the scanner. Thus, instead of determining
which point shadows a given point, we sort all points by distance from
the scanner and then find all points falling into each of their shadows.
By not processing points which already fell into the shadow of another
point, only very few computations are required even for large scans
because usually few points in the “foreground” shadow many points in
the “background”.

Algorithm 4. Compute maximum search ranges for every point in a
scan

1: for ←p SORTPOINTSBYDISTANCEpoints do
2: if maxrange p[ ] then
3: continue ▷ Point was

already processed
4: if <p voxeldiagonal then
5: error ▷ Point is too close

to the scanner

6: ←
−( )angle 2·arcsin voxeldiagonal

p voxeldiagonal

7:
←neighbors AngularRangeSearchpoints p angle, ,

8: ←normal CalcNormneighbors
9: ← ∥ ∥anglecos normal p·
10: if > =anglecos 0 then
11: ← −normal normal1· ▷ Normal vector

toward scanner
12: ← +pbase p voxeldiagonal normal· ▷ plane base
13: ←dividend pbase normal·
14: ← ∥ ∥divisor normal p·
15: if =divisor 0 then ▷ Parallel case
16: =maxrange p[ ] 0
17: continue
18: =maxrange p dividend divisor[ ] /
19: if <maxrange p[ ] 0 ▷ Scanner behind

plane
20: =maxrange p[ ] 0
21: for ←q neighbors do
22: if =p q ▷ Skip the current

point
23: continue
24: ← ∥ ∥divisor normal q·
25: if =divisor 0 then ▷ Parallel case
26: continue

27: ←d dividend
divisor

28: if >d q then ▷ Don’t lengthen
29: continue
30: if <d 0 ▷ Scanner behind

plane
31: ←d 0
32: if <maxrange q d[ ] then ▷ Already

shadowed by a
closer one

33: continue
34: ←maxrange q d[ ]

Fig. 10. The sim dataset with points colored such that all points with the same color are shadowed by the same point using a voxel size of 0.6. Left: Colored by
distance Right: Colored by point shadows. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Algorithm 4 computes for each input point in the array points the
distance up to which the line of sight from the scanner toward that
point will be traversed. All members of the array points are given in the
local scanner coordinate system and the results are stored in the asso
ciative array maxrange. The algorithm uses three additional functions.
SORTPOINTSBYDISTANCE sorts the input points by their distance from the
scanner. Since the points are given in the local scanner coordinate
system, this amounts to comparing vector lengths. The function ANGU-

LARRANGESEARCH returns all points which are seen under a given angular
radius around a given point from the perspective of the scanner. The
function CALCNORM computes a normal vector of the given input points
via singular value decomposition of the covariance matrix of the input
points.

The loop iterates over all the points of a single scan. The traversal
has to be done in ascending order of their distance from the scanner. By
doing so and by skipping points that were already handled (line 3) the
procedure finishes very quickly as only a small subset of points actually
has to go beyond line 3.

Fig. 11 visualizes lines 6 and 7 from Algorithm 4. Point p is pro
cessed first by computing the angle under which the scanner sees a
sphere with its center one voxel diagonal in front of p and with the
radius of one voxel diagonal (line 6). The function ANGULARRANGESEARCH

then finds the magenta points as neighbors of p in line 7.
The neighbors are then used by CALCNORM to compute their normal

vector (line 8) which is ensured to point toward the scanner (line 11).
The base of a plane is then computed in line 12 and visualized in
Fig. 12. That base lies one voxel diagonal away from p in the direction
of the computed normal vector of the neighbor points. Lines 13 to 20
then compute the distance up to which the voxel grid will be traversed
towards p and stored in the associative array maxrange p[ ]. As given in
Fig. 12, the search distance is clipped to the intersection of the

computed plane with the line connecting the scanner and p. Lines 13
and 14 compute the intersection using the algebraic method of com
puting line/plane intersections. Line 15 and 19 cater for two rare cases.
Should the plane either be parallel to the scanner or should the scanner
be located behind the plane, then the distance from the scanner up to p
will not be traversed through the voxel grid and thus maxrange p[ ] is set
to zero.

Fig. 13 visualizes lines 21 to 34 from Algorithm 4. The loop iterates
over all points q in the angular neighborhood of p except p itself. For
each point q, the intersection with the plane is computed. For that in
tersection test, only the divisor has to be updated for each q as the
dividend contains the plane properties and stays the same. The same
tests for parallelism and the distance being negative are done for q as
they were for p. Additional checks include to not lengthen the traversal
distance (line 28) and to take care not to update a maxrange with a
larger value than what might’ve been computed in an earlier iteration
(line 32).

6. Sphere quadtree

To efficiently compute the result of the function ANGULARRANGESEARCH

from Algorithm 4 we use triangle quadtrees on a sphere surface, also
known as hierarchical triangular meshes (Szalay et al., 2007) or sphere
quadtrees (Fekete, 1990). That data structure has so far mostly been
used for Geographic Information Systems to model features on top of
the earth surface (Goodchild and Shiren, 1992) or in astronomy to map
objects in the sky (Budavári et al., 2010). For our purposes we use it as a
search tree to find all points in a certain angular neighborhood in a
terrestrial panorama scan with an average lookup complexity of
O n(log ). We create one sphere quadtree per scan with its center at the
origin of the scanner local coordinate system.

Fig. 11. A scanner on the right measured the points in blue and magenta on the left. All distances equal to one voxel diagonal are highlighted in green. This visualizes
lines 6 and 7 from Algorithm 4. The closest point to the scanner p gets processed. Points falling into the shadow of p created by the sphere in front of it are marked in
magenta. Remaining points are marked in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 12. A plane is added, orthogonal to the normal vector of the magenta points and one voxel diagonal away from them in scanner direction. That plane is then used
to clip the search distance through the voxel grid towards p (shown in orange). This visualizes lines 8 to 20 from Algorithm 4. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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To this end, we project all points of a single scan onto the surface of
a unit sphere. This operation is done by computing the normalized
vector of each point and thus, points in the data structure are stored in
Euclidean coordinates of normal vectors. Storing points with their
length normalized avoids to repeatedly normalize them for angle
computation when searching the data structure. Since sphere quad tree
queries only require the angular position, discarding the distance in
formation of the inserted points does not pose any disadvantage.

The data structure consists of eight quadtrees. Each quad tree re
cursively subdivides an eighth of a sphere surface into triangles where
each triangle is subdivided into four more triangles until leaf nodes in
the graph contain no more than a certain maximum number of points.
We chose the eight sides of an octahedron as the top level structure
providing the base triangles for the sphere quadtrees because by
aligning the octahedron with the coordinate axis, it is very efficient to
decide for every new point p into which octree to insert it. We achieve
this by arranging the eight octrees in an array of length eight in an
ordering such that the index of the octree into which each new point
has to go is computed using only 13 instructions in assembly and
without any branching:

= > ≪ > ≪ >idx p x p y p z( . 0) 2‖( . 0) 1‖( . 0)

Using an icosahedron as the base structure results in a more uniform
distribution of triangles over the sphere surface but at the expense of
much more costly geometric computations once a new point is inserted
or once the data structure is queried for angular neighbors.

A given triangle is subdivided into four new triangles by averaging
the vertices of each pair of vertices making the three sides of the tri
angle and normalizing the result. The three new vertices together with
the three existing vertices then form the four new triangles and thus the
four new quadtree nodes. Because of the normalization step, all vertices
of all triangles remain on the surface of the unit sphere. Points are
sorted into each of the four new triangles by computing the triple
product of the point with the three newly created edges. Thus, on
average, 1.5 computations of the triple product are required on each
level of the triangle quadtree to reach the right leaf node to insert the
new point into.

A visualization of how the points from a terrestrial scan are inserted
into the data structure is shown in Figs. 14 and 15. Each subfigure
shows one additional recursion step. Fig. 15b shows the reflectance
values of the recorded points of the original input scan projected on a
perfect sphere in the same orientation as the sphere quadtrees are
displayed. Particularly Fig. 15a allows to clearly recognize the shape of
the scanned buildings shown in Fig. 15b. The density of subdivisions
per sphere surface stems from the structure of the underlying data. The
unmodified input data from the laser range finder results in a very
homogeneous subdivision of the sphere quad trees because of the

regular angular resolution of the laser beam sweeps. Thus, for visuali
zation purposes we reduced the input data to 10 random points per
30 cm voxel before inserting it into the octrees. Due to this reduction
step, more points are seen under the same angle if the points are further
away from the scanner location. This leads to a higher triangle sub
division in regions of far away points.

7. Clustering for noise removal

In certain situations the voxel traversal algorithm will result in false
positives: voxels marked as free even though they contain static points.
These situations arise if no good normal vector could be computed from
the underlying point cloud data. False positives usually manifest
themselves in only one or two adjacent voxels being marked as free.
Most true positives are groups of connected voxels of much larger
number. Thus, to reduce the number of false positives we cluster the set
of voxels that were marked as dynamic and then remove those clusters
with a number of voxels below a certain threshold from that set. The
method introduces new false negatives in situations where moving
objects in a scene occupy less volume than the given threshold.

We define clusters through the neighborhood relationship between
voxels. We consider the neighbors of a voxel as all voxel adjacent to it
or more precisely:

Definition 3. A voxel A is a neighbor of another voxel B if each
coordinate component of A does not differ from the respective
coordinate component of B by more than 1.

This means that every voxel has 26 neighbors: six adjacent to its
sides, twelve adjacent to its edges and eight adjacent to its corners. We
then assign the same cluster identifier to all groups of voxels that share
a transitive neighborhood relationship. Or in other words: different
clusters are separated by at least one free voxel between them.

Due to the voxel datastructure, computing the cluster identifier that
each dynamic voxel belongs to is straight forward: We iterate through
all voxels that were marked as free and then for each voxel, identify the
clusters its neighbors belong to. If no neighbor belongs to a cluster, the
current voxel will start a new cluster. If only one cluster was found in
the neighborhood, then the current voxel is added to it. If more than
one cluster was found in the neighborhood, then all these clusters are
merged into a single cluster and the current voxel is added to it.

This clustering technique is very fast not only because of its linear
computational complexity but also because typical scenes only contain
comparatively few dynamic voxels. Finally, clustering by voxels allows
quick clustering of the underlying points which may be an order of
magnitude more in number while taking advantage of the already ex
isting voxel data structure. Solutions working on the raw point data for
clustering are understandably slower.

Fig. 13. The plane is also used to cap the search distance up to the angular range neighbors of p. The neighbors of p are q q1, 2 and q3 marked in magenta and the
maximum search distance marked in orange. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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8. Sub-voxel accuracy

In this section we present an algorithm that addresses a specific kind
of false negatives our algorithm produces. In the common case where a
dynamic object is seen directly adjacent to a static object, false nega
tives are introduced because the voxel grid is only traversed up to the
maximum traversal range computed from the point shadows. For ex
ample, for a person standing on the ground, the person might be re
moved but their feet remain.

To avoid these false negatives we introduce an algorithm that is able
to produce a result with sub voxel accuracy: instead of marking a full
voxel as dynamic and removing all points from it, we just remove a

subset of points from a voxel. That subset will include the dynamic
points that were not marked before and thus reduce the amount of false
negatives.

We use Fig. 16 to illustrate our approach to achieve subvoxel ac
curacy and reduce the number of false negative classifications. The
input is shown in Fig. 16a. The green scan only measures the static
horizontal surface while the red scan measures parts of the static sur
face and a vertical dynamic structure. After walking the voxel grid to
find voxels seen as free by the scan resulting in the green points we end
up with the situation displayed in Fig. 16b. Voxels B3, B4, C3 and C4
got correctly classified and points in them were removed. What remains
are false negatives in voxel B2 and C2. Classifying these voxels as

Fig. 14. Starting from an octahedron, triangles are recursively subdivided into four new triangles (with vertices on the surface of a unit sphere) until less than a given
number of points recorded by the scanner (maximum leaf-node size was 100) falls into each triangle.

Fig. 15. Visualization of the nodes of a sphere octree from a terrestrial scan on the left with the reflectance values of that scan as a texture on a sphere in the same
orientation on the right. The final data structure contains 580,000 points. Left: Eighth and final subdivision (13,769 faces) Right: A perfect sphere textured with the
reflectance values of the laser scan.
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dynamic is wrong because that would also remove points that were
correctly measured by the green scan as part of the static horizontal
surface.

The algorithm we use to remove these false negatives from voxels
B2 and C2 will compute a situation as is seen in Fig. 16c: all red points
are removed from voxels B2 and C2. This removes the false negatives
while at the same time introducing some false positives because some of
the red points in voxels B2 and C2 were correctly classified as static.
Thus, our approach to achieve subvoxel accuracy implements a trade
off. We remove remaining false negatives at the cost of more false po
sitives. We accept this trade off because qualitatively speaking the re
sult shown in Fig. 16c is superior to the result in Fig. 16b. Even though
we now classified too many points as dynamic, after removing them
from the scene, there are still enough static (green) points left in the
respective voxels to not create any “holes” in the scene. Thus, our ap
proach to achieve subvoxel accuracy is particularly interesting for si
tuations where our algorithm is used to acquire a scan that only con
tains the static environment. Another possible use case are situations in
which one is interested in extracting point clouds of individual moving
objects for later processing. In that case, extracting too few points
would result in an incomplete pointcloud model. Quantitatively
speaking the algorithm worsens the result. When comparing the raw F1
scores of the results before and after applying the algorithm for sub
voxel accuracy, the F1 score is typically worse afterwards due to the
introduction of more false positives.

The algorithm works as follows: similarly to the clustering algo
rithm, we iterate over all voxels that were marked as free. For each of
these free voxels we record which scan identifier it contains. For voxel
B3 in Fig. 16 that is just a single scan identifier: ”red”. First, we gather
the neighbor voxels according to Definition 3. Secondly, we iterate over
all neighbor voxels that were classified as static. Thirdly, for each of the
static neighbor voxels we remove all the points coming from scan
identifiers marked as free in the original voxel. For Fig. 16 this removes
the red points from voxel B2. In summary, the algorithm deletes points
belonging to a scan that was found in an adjacent dynamic voxel from
each static voxel. To completely prevent that “holes” in the scan are
created by this method, we never remove points from voxels which
would not contain any points anymore after the removal.

A qualitative comparison of a scene with and without the subvoxel
algorithm applied is found in Fig. 17. As shown in the upper two
images, without the algorithm, artifacts are remaining close to the
ground. These artifacts are removed in the lower two images. Points
from the ground are also missing but not visible because the respective
voxels still contain points from all the other scans that measured that
area of the ground.

9. Results

In this section we present how our algorithm performs in quanti
tative and qualitative terms as well as in terms of runtime on

commodity hardware. We do this by showing the results of running the
algorithm by itself as well as by comparing it with other solutions in
terms of runtime and solution quality.

9.1. Quantitative assessment

To quantify the output of our approach we made use of four datasets
with points that come with labels indicating whether they are dynamic
or static. We use these annotations to accurately compute and compare
false positives and negatives, precision, recall and the F1 score. Three
datasets were provided5 together with a competing change detection
implementation by Underwood et al. (2013). The fourth dataset “lec
turehall” was recorded by us to have a high resolution and high pre
cision dataset only consisting of two scans. The quantitative results in
this section can be reproduced by executing the run.sh shell script
that we provide for download.6 The script will download and compile
our software as well as the software by Underwood et al., download the
necessary datasets and finally run both solutions on each dataset.

The four datasets are shown in Fig. 18. We list the number of points
and the number of scans of each dataset in Table 1. The last column lists
the number of comparisons that we carried out when running the al
gorithm by Underwood et al. on the datasets. The number is usually
equal to −N N( 1)

2
because all scans overlap. The only exception is the

campus dataset where we selected only the scan pairs that shared a
significant overlap.

The sim dataset in Fig. 18a is a synthetic dataset where virtual laser
range finders measure a cube in one of two positions from four different
vantage points. The lab dataset in Fig. 18b is from a robot moving
through a cluttered lab environment with small boxes being present or
not at multiple locations. The third dataset carpark from Fig. 18d
consists of four stationary scans in a carpark environment where a car
was moved into different positions for each scan. The fourth dataset
lecturehall is shown in Fig. 18e and is a small lecture hall scanned from
two vantage points by a Riegl VZ 400 laser scanner. One of the scans
has two people in it while the other does not. The campus dataset was
recorded with the same scanner and Fig. 18f shows a top view of the
registered complete pointcloud. Renderings of the Würzburg dataset are
shown in Figs. 22 and 24. The last two datasets come without labels
indicating a ground truth for static and dynamic points.

In contrast to the results shown in the paper by Underwood et al. we
pass all points of the three Underwood datasets into each algorithm and
not only a subset of them. The third scan of the carpark dataset was
wrongly aligned, so we registered the scans again using the ICP im
plementation from slam6D before passing the points to each algorithm.

We computed the results without running clustering for noise re
moval in the end. Since the clustering algorithms are in principle

Fig. 16. Two scans (red and green
points) of a horizontal surface and
dynamic points only seen in the red
scan. Left: The original input with
both scans (nothing removed).
Center: Voxels B3, B4, C3, and C4
were marked as see-through and thus
got their points removed. Artifacts
still exist in voxels B2 and C2. Right:
Voxels B2 and C2 got the red points
removed because the red points were
removed from an adjacent voxel. (For
interpretation of the references to
color in this figure legend, the reader
is referred to the web version of this
article.)

5 http://www.acfr.usyd.edu.au/papers/icra13-underwood-changedetection.shtml.
6 https://robotik.informatik.uni-wuerzburg.de/telematics/download/isprs2018/.
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independent of the method that was used to partition the input point
cloud into static and dynamic points, it would not allow to make any
meaningful statements about the respective underlying change detec
tion algorithms anymore. Furthermore, by choosing the correct cluster
size for true positives, it is possible to achieve nearly ideal results with
any algorithm that produces only few false negatives which is the case
for both compared algorithms.

The algorithm by Underwood et al. was executed in the variant that
compares individual pairs of scans. This choice was made because the
results in the respective paper suggest better F1 scores in the non
clustering case when working on pairs compared to combining multiple
scans. Pairs were chosen such that the measured scene is always dif
ferent between the two scans. To achieve optimal results, we ran their
algorithm on a discrete set of parameters Ta and T m( )r to find the
combination yielding optimal results.

We ran our algorithm multiple times as well, each time with dif
ferent voxel sizes. We didn’t apply our approach of achieving sub voxel
accuracy because it can lower the F1 score.

The results are shown in Table 2. We achieve similar F1 scores on
the synthetic “sim” dataset. False negatives are introduced in our
method due to the alignment of the floor with the voxel grid, preventing
a perfect score. Our method is outperformed in the “lab” dataset. The
dataset is challenging because of its very noisy nature (see Fig. 18f) and
because the dynamic objects are very small. Our algorithm correctly
identifies the moving boxes in the “lab” dataset and does not introduce
false negatives. But it generates comparatively large number of false
positives on corners and edges of the environment. Since only 0.19% of
all points in the dataset are labeled as dynamic, it only requires few
voxels marked as false positives to produce a bad F1 score. Our method
slightly outperforms the approach by Underwood et al. in the “carpark”
dataset. The best F1 score we achieved for the carpark dataset with the
Underwood method differs from the value they present in their paper
because we used their full dataset including the last scan as well as all
scan lines. Both methods result in equal scores on the “lecturehall”
dataset.

Our algorithm produces false positives in situations where scans are
either not correctly registered or due to sensor noise. An example is a
flat surface where not all points lie on the surface. The points “in front”
of the surface in scanner direction will then be marked as “see through”

even though they belong to a static object. Another source of false
positives arises when surface normals are wrongly computed and thus
point shadows are not determined correctly. This in turn will lead to
false positives as they were shown in Fig. 7. Due to the very noisy
nature of the “lab” dataset there were many sources of both of these
issues, leading to a high number of false positives. Another source of
false positives are mirrors and transparent objects. Lastly if enabled
some false positives are introduced by our approach to subvoxel accu
racy.

False negatives are created either in situations where a volume was
only seen by a single laser scan or in volumes that were “shadowed” by
closer points. We observed the latter problem in a dataset where we
placed the scanner directly on the ground instead of on a tripod to take
a scan. This resulted in points from the ground directly adjacent to the
scanner to shadow most of the lower part of the scan and thus make it
impossible for our algorithm to classify any points close to the ground
as dynamic. Additionally, false negatives are introduced if the chosen
voxel size is so small, that rays are able to penetrate objects without
intersecting a voxel with points in it. Since the point density typically
decreases with their distance from the sensor, this effect also occurs at
very far distances. Applying a clustering filter can also introduce false
negatives if the dynamic object is smaller than the chosen minimum
cluster size.

We also observe how the optimal input parameters to the algorithms
T T,a r and the voxel size are different for each dataset despite the lab and
the carpark dataset being recorded with the same sensor. More research
is needed to determine if the input parameters may be predicted upfront
without requiring manual labeling of a training dataset.

9.1.1. F1 score by voxel size
The only variable of our algorithm is the voxel size. We display the

dependency of the F1 score on the voxel size in Fig. 19. Since the
computation of voxel shadows and ray traversal ranges is essential for
our approach, the Figure also shows the F1 scores yielded from different
methods to acquire the point set for computation of the normal vector.
Since our main method described in Section 5 uses all points seen under
a certain angle for normal computation we call that method “angle” in
Fig. 19. This method consistently achieved the best quantitative results
on all datasets we tested our method on. Additionally, it is also the

Fig. 17. Result of applying the algo-
rithm to achieve sub-voxel accuracy
on an actual dataset. Dynamic points
are magenta while static points are
yellow. Upper-Left: No subvoxel ac-
curacy with dynamic points in ma-
genta. Upper-Right: No subvoxel ac-
curacy with leftover false negatives on
the ground. Lower-Left: With sub-
voxel accuracy and dynamic points in
magenta. Lower-Right: With sub-
voxel accuracy no false negatives re-
main on the ground. (For interpreta-
tion of the references to color in this
figure legend, the reader is referred to
the web version of this article.)

J. Schauer, A. Nüchter ISPRS Journal of Photogrammetry and Remote Sensing 143 (2018) 15–38

28



fastest method which is explained by it being the only method that
doesn’t require an additional search tree to be computed. All the other
methods execute searches in a k d tree which stores and queries points
by their cartesian coordinates and not their angular coordinates. The
“knearest” and “range” methods compute the points neighbors for
normal computation by finding the k nearest points around the query
point or by retrieving all points in a radius of one voxel diagonal, re
spectively. The “knearest global” and “range global” methods do the
same but using a k d tree that was computed for the global point cloud
instead of operating on the point cloud for each individual scan. The
“1nearest” method completely bypasses normal computation and in
contrast to all the other methods does not utilize the algorithm dis
played in Section 5 for computing the maximum traversal distances
toward each point at all. Instead, it operates by finding all points within
a radius of one voxel diagonal of the line of sight toward each point and
storing as the maximum traversal distance the distance of the closest
point from the scanner inside this volume. Since this method requires a
k d tree query for every single point in the dataset it is the slowest of all
the methods.

9.1.2. F1 score by rotation and translation
Due to discretizing the measured volume by a voxel grid we expect

the quality of our solution to heavily depend on how the data is aligned
relative to the voxel grid. Thus, we compute the F1 scores of various

Fig. 18. Datasets from Underwood et al. (2013) and our own dataset lecturehall.

Table 1
Overview of the used datasets and their properties.

name #points #scans #cmp

sim 387838 8 28
lab 5815910 12 66
carpark 1965017 4 6
lecturehall 44574647 2 1
campus 2227455077 146 3456
würzburg 86585411 6 15

Table 2
Comparison of F1-scores achieved by our method compared with the method by
Underwood et al.

dataset Underwood 3DTK

name Ta T m( )r F1-score voxel size(m) F1-score

sim 1.4 0.1 0.98 0.6 0.98
lab 1.2 0.2 0.71 0.175 0.42
carpark 1.0 0.35 0.78 0.125 0.83
lecturehall 0.8 0.3 0.96 0.1 0.96
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rotations and translations for the “sim” dataset. We chose the dataset
because all its implicit surfaces are orthogonal to each other and should
thus yield the most meaningful results.

To compare the influence of rotation on the results we compute
overall 1000 rotations of the “sim” dataset around all three coordinate
axes with a voxel size of 1.0. Specifically we compute all permutations
of rotations between 0 and 45 degrees in five degree steps around all
three coordinate axes ( × × =10 10 10 1000). We do not check beyond
45 degrees as the results are symmetric due to the orthogonal nature of
the voxel grid.

We visualize our results using the histogram seen in Fig. 20. The
figure displays the frequency of the achieved F1 scores in bins of 0.001
in width. The shape of the histogram suggests a gaussian distribution.
Fitting a gaussian function through our data reveals a standard devia
tion of 0.006. The position of the gaussian at 0.93 aligns with the results
we achieve for the voxel size of 1.0 and no rotation. The low standard
deviation of our results suggests a negligible influence of the alignment
of flat surfaces relative to the voxel grid.

Similarly, we translated the “sim” dataset along all three coordinate
axes to evaluate the relationship between the F1 score and the posi
tional offset of the data relative to the voxel grid. To this end, we
computed all permutations of translating the dataset along all three
coordinate axes by distances ranging from 0.0 to 1.0 in steps of 0.05.
Larger shifts were not investigated because the results repeat them
selves due to the chosen voxel size of 1.0.

Evaluating the results for shifts along all three coordinate axes revealed
that only translation along one coordinate axis had a considerable effect on
the F1 scores. That axis was the one perpendicular to the ground that the
moving boxes are placed upon. This makes sense because false negatives are
introduced depending on how much of the volume where each box touches
the ground intersects with the voxel that is still part of the ground. We show
the F1 scores for shifts along that axis in Fig. 21. Each displayed measure
ment represents the accumulated F1 scores for all shifts along all three co
ordinate axis with only the chosen axis fixed. The measurements “wrap
around” as the value achieved for an offset of 0 are equal to the ones
achieved for an offset of 1.0.

Fig. 19. F1-score per voxel size for different methods to acquire the points for normal computation in the sim dataset. Voxel sizes differ by 0.1 from each other and
measurements are connected with a line for visual clarity.

Fig. 20. Histogram of F1-scores for 1000 permutations of rotations of the input data around all three coordinate axes. The x-axis shows the F1-scores. The y-axis
shows the number of values falling into bins of 0.001 in width. A gaussian is fitted through the measurements.
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9.2. Qualitative assessment

For qualitative analysis we are using the three datasets from Fig. 22.
The column “normals” displays the percentage of points for which
surface normal computation as part of finding the shadowed points was
required. As detailed in Section 5, the computations have to be carried
out for only a very small fraction of all input points.

In contrasts to the datasets we used for quantitative analysis, these
datasets do not come with any ground truth labeling of points, classi
fying them whether they are indeed static or dynamic. Thus, without
being able to identify false positives and false negatives, F1 scores
cannot be computed.

All datasets were measured using a Riegl VZ 400 laser scanner. The
grayscale values represent the measured reflectance. We processed

them using a voxel size of 10 cm, a minimum cluster size of 40 voxels
and with sub voxel accuracy enabled. Raw data concerning the number
of points and number of scans of each dataset is found in Table 3. The
runtimes in the last column of the table were gathered on an Intel Xeon
e5 2630 v3 Desktop system with 8 physical cores with 2.4 GHz each
and as many threads as there were scans in the dataset. All datasets

Fig. 21. F1-scores achieved by translating the input along the axis perpendicular to the plane on which the moving cubes are placed. The x-axis shows the offset along
the axis. The y-axis the achieved F1-score. Measurements are connected with a line for visual clarity.

Fig. 22. Overview of the datasets used for qualitative analysis.

Table 3
Overview of the datasets used for qualitative analysis.

name #points #scans normals(%) t(s)

Bremen city 215652387 13 0.222 2939
Würzburg city 86585411 6 0.21 4967
Randersacker 194754633 11 0.010 1344
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were registered using slam6D from 3DTK The 3D Toolkit.7

We collected the “Würzburg city” dataset specifically for evaluation
with our change detection algorithm. Thus, we chose a time of day
where the market place was moderately crowded such that enough
change is present. Since the quality of our approach is highly sensitive
to the quality with which the dataset is registered, we took care to
choose very small epsilon and high iteration numbers to achieve the
best registration possible for the dataset.

The “Bremen city” dataset is presented to show how our algorithm
can be directly applied on datasets that were recorded without our
approach in mind. The dataset was recorded in February 2010, seven
years before work on our change detection approach started.
Furthermore, the dataset shows some small registration errors which
we will use to show how they effect the result of our approach in
Section 10.

Finally, the “Randersacker” dataset was included because it mainly
consists of foliage and other greenery. While normal vectors are easily
computed on most surfaces in an urban environment like “Würzburg
city” and “Bremen city”, we wanted to include a dataset with only few
flat surfaces to show how our method performs in them.

Figs. 23 and 24 display the results for the “Bremen city” and
“Würzburg city” datasets, respectively. The left hand side column
shows the original scan partitioned into static (yellow) and dynamic
(magenta) points. The right hand side column shows the dataset
without the points that were identified as dynamic. Since the “Bremen
city” dataset was recorded without our algorithm in mind, it was
measured very early on a Sunday morning to include as few pedestrians

as possible. Thus, it includes considerably less moving objects com
pared to the “Würzburg city” dataset where we took care to pick a time
where the scan area was moderately crowded. Our approach reliably
identifies pedestrians, cars, trams and an opened door. Due to our ap
proach to subvoxel accuracy, no false negatives remain on the ground.
After removal of the dynamic objects, no holes are created on the
ground.

The results from the “Randersacker” dataset are shown in Fig. 25.
Since only few moving objects were present at the time when the da
taset was taken, we only present the partitioned rendering with static
points in yellow and dynamic points in magenta. Similarly to the urban
datasets, moving objects were correctly classified. Both images show
how foliage is not classified as dynamic even though in both renderings,
the trees were measured by multiple scans. Thus, our algorithm is not
only appropriate for urban environments but also for scenes with few
flat surfaces.

9.3. Performance

The algorithms that we benchmarked are implemented in C++.
For simplicity we use a std::unordered map < struct voxel,
std::set < size t≫ data structure to store which voxel coordinate
contains points from which scan slice. We tested our algorithm on an
Intel Xeon e5 2630 v3 Desktop system with 8 physical cores with
2.4 GHz each.

We conducted a similar experiment to find the dependency of the
algorithm runtime from the number of input points. We randomly
sampled the first scan of the “lecturehall” dataset to obtain input point
clouds ranging from 1 million up to 22 million points and then executed
our method on each of the resulting point clouds. The results are shown

Fig. 23. Bremen city dataset: Each row shows the same camera position. Left column: Static points in yellow and dynamic points in magenta. Right column: scene
with only static points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7 http://threedtk.de.
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in Fig. 26 and again indicate a linear relationship. This makes sense
because for the voxel traversal we access voxels in the grid using O (1)
operations on a hash map.

For a fair comparison we run everything single threaded even
though the method by Underwood et al. has a slight advantage because
processes are run connected by a UNIX pipe and thus they are partly
executed in parallel. The inputs to both approaches are pointclouds in
ASCII text format. Since the algorithms by Underwood require multiple
executions of points detect change, we convert the input into
binary format for faster load times.

The runtime measurements shown in Table 4 were obtained by
timing the full execution pipeline. To speed up the approach by Un
derwood et al. we converted the original ASCII point cloud data files
into their binary format. As the method by Underwood et al. is only able
to compare pairs of scans, the runtime results for the “sim”, “lab” and
“carpark” datasets are not very meaningful. Our method easily out
performs theirs in terms of runtime because we apply their method on
all possible combination of scan pairs, leading to −N N( 1)

2
comparisons

for N scans. For a fairer comparison we recorded the “lecturehall” da
taset. It only consists of two scans and thus allows to directly compare
one run of the Underwood et al. method with one run of our approach.
As listed in Table 4, both approaches require a similar amount of time.

To also give evidence for our claim that the method by Underwood
et al. performs slower for the purpose of “scan cleaning” on datasets

Fig. 24. Würzburg city dataset: Each row shows the same camera position. Left column: Static points in yellow and dynamic points in magenta. Right column: scene
with only static points. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 25. Randersacker dataset con-
taining lots of foliage. Scans show
static points in yellow and dynamic
ponits in magenta. Despite not of-
fering a clear surface, foliage is not
removed. Left: People sitting on a
bench in the lower right Right:
Segways in the foreground and stu-
dents in the background. (For inter-
pretation of the references to color in
this figure legend, the reader is re-
ferred to the web version of this ar-

ticle.)

Fig. 26. The x-axis shows the number of points passed to the algorithm. The y-
axis shows the number of points that the algorithm is able to process per
second.

Table 4
Runtimes of our method versus the method by Underwood

dataset Underwood 3DTK

name t s( ) normals(%) t s( )

sim 25 8.03 6
lab 405 0.02 29
carpark 34 0.23 23
lecturehall 837 0.003 687
campus 12.8 days 0.16 13.1 h
würzburg 7961 0.21 4967
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with many scans, we used the “campus” dataset. Fig. 18f shows the
dataset from above. That dataset consists of 146 scans with 15 Million
points per scan on average for a total of 2.2 Billion points for the whole
dataset. Comparing all possible scan pairs of this dataset would lead to
10585 comparisons. But since it doesn’t make sense to compare scans
that do not overlap in their observed volume we used a heuristic to
discard all scan pairs that do not share a sufficiently large observed
volume. Our heuristic uses the voxel datastructure that was already
generated by the “peopleremover” to find those scans pairs. This
heuristic under approximates because ideally we are not only interested
in the scans that measure points in a shared volume but also in the scan
pairs where the free volume observed by one scan intersects with the
measured points by the other. But even with this conservative heuristic,
there exist 8372 scan pairs (79% of all possible scan pairs) in this da
taset that share at least one 10 cm voxel with each other. This is ex
plained by the large open spaces in the dataset. To further reduce the
number of scan pairs that we choose for comparison with the algorithm
by Underwood et al. we also discard all pairs that share less than 1000
voxel with each other. This leaves 3456 scan pairs to compare. Since the
“campus” dataset does not contain any labels of dynamic objects, we re
used the parameters that worked best for the “lecturehall” dataset. The
results shown for the “campus” dataset in Table 2 indicate, that the
algorithm by Underwood et al. performs an order of magnitude slower
in this task compared to our solution. The number of compared scan
pairs could be further reduced but for the purpose of “scan cleaning”,
the fewer comparisons are made, the more false negatives will be in
troduced in situations where a volume is seen as occupied by most scans
and only seen as free by a few.

Our approach allows trading solution quality for runtime. For ex
ample, if the “lecturehall” dataset were processed with a voxel size of
17.5 cm instead of 10 cm as shown in Table 2, then the F1 score would
only slightly decrease from 0.96 to 0.95 but computation time would be
cut by 18% down to 567 s.

The voxel traversal algorithm is very well suited for multithreading.
Not only the voxel traversal can be run concurrently but also other parts
of the execution pipeline can be run concurrently. While it is possible to
introduce even more parallelism, our current implementation is able to
handle scans in parallel for computing the maximum traversal ranges
through the occupancy grid as well as during the voxel traversal phase.
We didn’t introduce parallelism in the other parts as they only require
very little runtime in practice (filling the occupancy grid, clustering and
sub voxel accuracy) or are heavily I/O bound (loading input from files

and storing the results).
As our benchmark system has eight physical cores we tested with

one to eight threads in parallel and recorded the runtimes of each part
of the algorithm. We used the first eight scans of the “Bremen city”
dataset as input, with a voxel size of 10, a minimum cluster size of 40
and with subvoxel accuracy enabled.

The results are shown in Fig. 27. The phases of the algorithm for
which runtimes have separately been timed coincide with the enu
meration from Section 3. The runtimes for “maxranges” and “voxel
traversal” do not scale completely linearly with the number of threads
because of overhead in critical sections when the results are joined and
because different scans take a different amount of time, leading to si
tuations where only one CPU is still active near the end of each phase.
Using datastructures that minimize the time spent in critical sections as
well as adding parallelization to other parts of the algorithm is future
work. The runtimes of “clustering” and “sub voxel” are not visible in
the barchart as each of them takes less than 3 s on the given dataset.

Since it’s the main variable of our algorithm, we show the de
pendency of the runtime on the chosen voxel size. We used the first scan
of the “Bremen city” dataset and executed our algorithm on it with
varying voxel size, a minimum cluster size of 40 and with subvoxel
accuracy enabled. Since only a single scan was processed, only one
thread was used. The results are shown in Fig. 28. As expected, a larger
voxel size results in faster execution as less voxels have to be traversed.
The only part of the algorithm with a runtime dependent on the voxel
size is the voxel traversal itself. It can be seen how the runtime scales
inverse proportional to the voxel size.

Lastly, we also investigated whether our approach can be leveraged
for achieving better point cloud registration results. Our idea was, that
dynamic objects may have a negative impact on how well two scans can
be matched. To evaluate our hypothesis, we used the Würzburg city
dataset as it contained the highest number of dynamic points (2.65% of
all occupied voxels are marked dynamic). We executed our algorithm
with a voxel size of 10, a minimum cluster size of 40 and with subvoxel
accuracy. We then registered the resulting cleaned scans again using
slam6D from 3DTK using the same parameters as we used for the initial
registration of the dataset. The results we achieved indicate no sig
nificant change in the scan registration. The differences in translation
were not larger than 0.01mm in any direction and the differences in
angular orientation generally below 0.001° but never larger than 0.05°.

Fig. 27. Runtime of our algorithm in seconds (y-axis) depending on the used number of threads (x-axis).
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10. Limitations

Our approach suffers from some limitations. False positives are in
troduced in the following situations:

• Incorrectly computed normal vectors lead to wrong shadowing in
formation and thus to some lines of sight traversed through the
voxel grid longer than they should’ve been traversed, resulting in
voxels marked as see through which are actually not. This situation
easily occurs in either very noisy scans or for parts of a point cloud

that doesn’t have any clear normal vector like fences, wires, meshes
and foliage. An example is shown in Fig. 30a.

• Solid objects that the laser beam can pass through due to their op
tical properties like glass will be marked as dynamic because they
are seen as see through. An example is shown in Fig. 30b.

• Surfaces with high reflectivity will result in points being seen in
places “behind” the mirror and thus result in voxels being marked as
see through that lie in a direct line of sight between them and the
sensor. An example is shown in Fig. 31. Work as in Koch et al.
(2017) can mitigate this effect.

Fig. 28. Runtime of our algorithm in seconds (y-axis) depending on the voxel size (x-axis).

Fig. 29. Slight registration errors at the church towers lead to incorrectly aligned surfaces. The outer surface is thus marked as dynamic. Left: Towers of Bremen
Cathedral (St. Petri Dom zu Bremen) Right: Tower of Church of Our Lady (Kirche Unser Lieben Frauen).

Fig. 30. Examples for false positives Left: False positives due to wrongly computed normal vectors along the boom of a crane Right: False positives on a facade due to
transparent windows.

J. Schauer, A. Nüchter ISPRS Journal of Photogrammetry and Remote Sensing 143 (2018) 15–38

35



• If our approach to subvoxel accuracy is used, some false positives
will be introduced as was shown in Section 8.

• If scans are not precisely aligned “double walls” or similar effects are
created where there should only be a single wall. In these situations
the wall in front of the other will wrongly be marked as “see
through”. An example is shown in Fig. 29.

In turn, false negatives occur during the following circumstances:

• At the boundaries between static and dynamic parts of the scan,
some artifacts will be left depending on the voxel size and align
ment. This effect can be reduced using our algorithm for subvoxel
accuracy which was explained in Section 8.

• Incorrectly computed normal vectors leading to wrong shadowing
information can result in a traversal distance toward a point being
cut off too early and thus miss traversing voxels that should be seen
as free.

• If the line of sight from a second scan never intersects with a voxel
that the former scan measured, then that voxel will never be marked

as dynamic. This situation occurs through occlusion by otherwise
dynamic points, by the scanner placements or in volumes where the
point density is very low, as it typically is the case the further objects
are away from the sensor.

In summary, apart from these properties, the quality of our results
has similar limitations as competing methods and is highest in situa
tions where the measurement noise is low, scans can be correctly re
gistered and there are no transparent or reflecting objects in the scene.

11. Future work

So far we use the C++ standard library functionality like
std::set and std::unorderded map to build the voxel grid. We
started with this simple approach to be able to show that good results
can be achieved even when discretizing the input data with a regular
occupancy grid. The bottleneck of our algorithm is the walk through the
voxel grid and most time during its traversal is spent looking up grid
cell information from the occupancy grid. Using an

Fig. 31. The high reflectivity of surfaces commonly found in factory environments poses a great challenge. The wall in the top figure has holes because of reflected
points “behind” the wall (in red). These points are false as the wall is solid and the area on the right in the bottom figure should be empty. Top: “Holes” in the wall
created by points (in red) recorded behind the wall. The points are not exactly aligned with the holes due to parallax. Bottom: Top-view of the scene, showing the
same points behind the wall (in red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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std::unordered map already gives us better runtimes than com
peting approaches but we assume that we can further increase perfor
mance by using datastructures which are directly designed for fast
traversal through an occupancy grid. Examples for such implementa
tions are Octomap (Hornung et al., 2013) as well as our own Octree
implementation (Elseberg et al., 2013) which both offer an octree data
structures which implement ray tracing capabilities. Another approach
would be to replace the voxel grid by a sparse voxel DAG (Kämpe et al.,
2013) which is specifically optimized to facilitate fast ray tracing
through it.

Since the only data structure that must remain in memory is the
occupancy grid, and since the memory requirement of that grid is
several orders of magnitude less than the raw point cloud data, espe
cially when using techniques like sparse voxel DAGs, it becomes fea
sible to process point clouds which would otherwise not fit into memory
by loading scans on demand. For each step of the algorithm, only the
points of a single scan are required and thus it becomes possible to

immediately remove data from memory after it has been processed.
Lastly, many laser scanners are able to return more than one echo.

Typically, structures that result in multiple laser echos are edges,
fences, power lines or vegetation (Elseberg et al., 2011). These are also
all the structures which typically do not provide good normal vectors.
Information about multiple echos could be used to make our algorithm
more robust against situations in which normal vectors cannot be
computed.

12. Conclusion

We presented an approach specifically tailored to remove dynamic
portions of 3D point cloud data. Our solution is suitable for scan slices
from mobile mapping as well as for terrestrial scan data. We show ex
perimental evidence that our approach compares favourably in quality
to an existing solution for scan pairs. In terms of runtime our method is
superior as it compares arbitrarily many scans with linear complexity.

Appendix A

Listing 1 and Listing 2.
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