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ABSTRACT

In this paper we present a reliable approach for real-time

outdoor trail following and obstacle avoidance. The trail

classification is done using an off-the-shelf webcam and

a pitched 2D laser scanner on a KURT2 robot equipped

with an Intel Centrino laptop. This simple setup enables

us to follow given pathways of different kinds using a GPS

receiver for rough orientation.
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1 Introduction

A major challenge in outdoor mobile robotics is the classi-

fication of navigable and non-navigable terrain. The vari-

ability of the environment, which is caused by different

types of trail surfaces, fuzzy road boundaries, and many

distinct illumination conditions, pose great difficulties for

reliable sensor data interpretation. In addition, autonomous

robot navigation at higher velocities requires data interpre-

tation to happen close to or at real-time. Driving at walk-

ing pace, for instance, while simultaneously avoiding haz-

ardous situations such as leaving the trail, colliding with

obstacles, approaching steep inclines or cliffs, demands fast

controll cycles from the software. For autonomous robot

navigation, two decisive issues have to be solved in par-

allel. Sensor data interpretation has to deliver meaningful

results and this is expected to be done in real-time.

There are many ways how to approach this problem. Dur-

ing the DARPA (Defense Advanced Research Projects

Agency) Grand Challenge in 2005, current state of art

research on autonomous ground vehicle navigation, on a

large scale, was demonstrated by many teams [5]. These

competitors relied on high-end computer hardware and var-

ious different combinations of mulitple sensors such as 2D

and 3D laser scanners, radar systems, and all kinds of vi-

sion systems. However, the processing capabilities of most

autonomous mobile robots are usually limited to those of

standard mobile computers. Therefore, it is of interest to

investigate the possibilities and limitations of autonomous

robot navigation that relies only on standard hardware and

sensors. In that context, an important objective is to de-

velop efficient algorithms that facilitate real-time process-

ing of sensory information such that autonomous mobile

robots are able to move at higher velocities and avoid any

hazardous situations.

This paper presents a simple but efficient solution for au-

tonomous outdoor navigation using a pitched 2D laser

scanner and a webcam. Trail following at walking pace and

avoiding of hazardous situations in real-time is achieved

through statistical analysis of single 2D laser scanns and

image processing. Laser data is being processed at full scan

rate of 72 Hz, images are processed at 13 Hz. The modu-

lar software architecture is implemented on a KURT2 plat-

form (see section 1.1). The system’s performance is tested

on trails within the Botanical Garden of the University of

Osnabrück. The robot is able to navigate from a starting

point to a goal position past defined GPS coordinates while

remaining on the trail.

1.1 The KURT2 Robot

Figure 1. The KURT2 Robot with pitched laser scanner,

webcam, GPS sensor and laptop.

KURT2 is a mobile robot platform with a size of 45 cm

(length) × 33 cm (width) × 26 cm (height) and a weight of

15.6 kg. See Figure 1. Indoor as well as outdoor models

exist. Equipped with a 2D laser range finder, the height in-

creases to 47 cm and the weight increases to 22.6 kg. Two

90 W motors (short-term 200 W) are used to power the 6

wheels. The outdoor version has larger wheels compared to

the indoor version, with the middle ones shifted outwards.



Front and rear wheels have no tread pattern to enhance ro-

tating. Kurt2 operates for about 4 hours with one battery

charge (28 NiMH cells, capacity: 4500 mAh). The core

of the robot is an Intel-Centrino-1400 MHz with 768 MB

RAM and a Linux operating system. An embedded 16-Bit

CMOS microcontroller is used to process commands to the

motor. A CAN interface connects the laptop with the mi-

crocontroller. The robot is equipped with three different

sensors: A SICK laser range finder, a Logitech webcam

and a Garmin GPS receiver. The laser scanner is fixed on

the middle of the robot, tilted downwards in an angle of 23

degrees. A plane with 181 data points is scanned every 13

ms. The webcam is mounted on top of the range finder and

delivers images with a resolution of 320 by 240 pixels at a

framerate of 13fps. The 12 channel EGNOS enabled GPS

receiver localizes the robot every second within the typical

GPS error of about 10 to 15 meters.

1.2 Related Work

As shown in [4, 6], 2D laser range data on plain surfaces

like gravel paths and cobblestone pavements varies signif-

icantly from data on grass, bushes and other plants, where

range values are spatialy scattered. These principles are

extendable to 3D laser point clouds [7–9]. However, 3D

data analysis is computationally expensive and requires a

3D scanner or several 2D scanners.

A comprehensive approach to autonomous robot naviga-

tion using 2D laser data and visual information was re-

cently introduced in [1–3]. Andersen et al. used a pitched

2D laser scanner for terrain classification. An algorithm

was developed that fuses seven distinct classifiers that are

obtained from a single scan: raw height, roughness, step

size, curvature, slope, width, and invalid data. Long range

support for road outline was provided via the analysis

of chromacity and edge detection within single camera

frames. The system was tested on a number of different

roads, missions up to 3km in length have been completed

successfully. Although many aspects of the approach re-

ported here are similar to the work published in [2], there

are two main differences. First, we prove that simple but ef-

ficient interpretation of distance-based mean and variance

values is sufficient for navigable terrain classification of our

test environment. Second, all of our sensors are being ana-

lyzed in real-time. Thus, we are able to interpret laser data

at 72 Hz and video data at 13 Hz, which is quite an ad-

vancement compared to 10 Hz and 1 Hz as reported in [2].

2 Sensor Data Evaluation

Since the sensors work at different frequencies, a parallel

software architecture is used in which each sensor is han-

dled in a seperate thread. This avoids the polling problem

in sequencial architectures and makes the system scaleable.

After a sensor delivers new information, a suitable online

classification algorithm is applied. Visual classification is

based on standard image processing algorithms. The inter-

pretation of the laser range data relies on statistical analy-

sis. Efficient implementations for both purposes are pro-

vided by the open source library LTI-Lib.

Figure 2. The software architecture of the KURT2 robot

2.1 Visual Classification

The algorithm consists of three main processing steps:

Trail border detection, object extraction and direction con-

trol. Each processing step is divided into several sub-steps

which are described in the following sections.

Between the steps of image processing, the CPU time slice

is given to other sensor data processing threads and motor

control. This ensures that after each step enough idle time

is available for laser data classification and GPS localisa-

tion.

Trail Border Detection

Most trails have grass or planted borders. Therefore in a

first processing step all green pixels of the image are re-

placed by black ones. This ensures that the contrast be-

tween the trail, which normally has gray or brown colors,

and planted boundaries is maximized. Since LTI delivers

color information in RGB format, we tried to set different

RGB combinations to black. The best result is achieved if

the following condition is fulfilled:

G ≥ R ∧ G ≥ B + 10.

Since color information is no longer needed after replacing

green pixels, the following computations are performed on

the gray scale channel.

In the next processing step, a Gaussian convolution is ap-

plied to eliminate fine textures and small structures like

boundaries between cobblestones or gravel. Afterwards,

the contrast is enhanced to emphasize the boundaries of the

pathway and remove more irrelevant details. As a result

of these processing steps, the pathway is repesented by the

brightest area in the image. To seperate this area from the



Figure 3. Processing steps for border extraction: The figure shows an original webcam image and the steps after applying the

following filters: green to black, gaussian blur, contrast enhancement, thresholding and border extraction.

rest of the image, a threshold filter is applied that paints

black all areas that do not belong to a pathway.

Finally, a gradient filter is applied to extract the edges of

the detected pathway. The results of these processing steps

are shown in Fig. 3.

Object Extraction

Sometimes the boundaries of disruptions like shadows or

highlights are marked by the edge extraction algorithm. In

most cases, these wrongly classified structures lie within

the boundaries of the trail or interrupt them. Since the cam-

era is slightly shiftet downwards, the path fills most of the

camera image. Therefore the biggest contour surrounding

the smaller ones is extracted using the LTI-Libs object ex-

traction algorithm (cf. Fig. 4).

Direction Control

To generate a control signal, the robot’s position on a trail

is estimated as follows: A vertical line in the center of the

picture is used as a reference. The intersections between a

horizontal line and the extracted boundaries are calculated.

The centre of the intersections is compared to a point on

the reference line. On the center of the trail, the two points

should match. Otherwise, the calculated point is shifted

with respect to the reference point. This shift is interpreted

as a control signal: By driving in the direction of the com-

puted shift, the robot will move towards the center of the

trail.

Figure 4. Detected borders after edge detection (left) and

object extraction(right).

In order to follow the course of the trail, we compute the

deflection on several horizontal lines. The final control

command is computed by calculating the weighted mean

of these deflections. Since lower lines represent the trail di-

rectly in front of the robot, these lines have a greater weight

than the upper lines (see Fig. 5).

Figure 5. Signal Generation: Horizontal lines correspond-

ing to four increasing qualitative distances to the robot are

used for generating the direction control signal.

2.2 Laser Scanner Data Classification

The laser data classification algorithm is based on statisti-

cal analysis of the provided proximity values. Since only

the area in front of the robot is of interest, the field of view

of the laser scanner is restricted to 40 degrees on the left

and right side. The mean and the variance of the proximity

values within each area are calculated. The classification

algorithm uses these four values to decide in which direc-

tion to drive. Since these operations only need little com-

putational time, the robot is able to analyze the scans at a

frequency of 72 Hz. This high classification rate allows the

robot to quickly detect hazards such as potholes, downward

stairs and obstacles in front of it.

Avoiding Hazardous Situations

Hazard situations are detected using the mean of the prox-

imity values. If the mean exceeds a predefined maximum,

the robot assumes to be in front of an unpassable hole in the
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Figure 6. The robot control architecture: If the laser data interpretation reveals a hazardous situation in front of the robot, the

driving behaviour is stopped and a suitable avoiding behavior activated. Otherwise the camera signal is merged with the GPS

signal to follow the given trail.

ground. If the mean falls below a certain minimum value,

an obstacle in front of the robot is detected. In both cases a

suitable turn behaviour is activated.

Classification of Navigable Terrain

The trail classification relies on the assumption that navi-

gable terrain are relatively plain. Therefore it is expected

that the variance of the proximity values in these regions is

lower compared to non-navigable areas. In non-navigable

regions, objects on the surface, plants or potholes will in-

crease the variance of the proximity values.

In order to generate a control signal, the laser scanner val-

ues are divided into two parts representing the left and right

side of the trail profile in front of the robot. If the variance

on one side exceeds a threshold and the variance on the

other side is below this threshold, a control signal towards

the area with the lower variance is generated. As a result

the robot will navigate towards regions of low variance.

Sample scans for hazardous situations and trail detection

are shown in Fig. 7

2.3 GPS Guidance

While the robot is moving, its current position is deter-

mined using the onboard GPS Sensor. The difference be-

tween two consecutive positions is used to calculate the

current bearing towards the next given GPS waypoint. The

left and right components of the bearing indicate in which

direction the robot has to turn.

3 Robot Control

A controller module merges the different control signals

derived by the three sensors into one final controlling out-

put. To achieve an adequate hierachy of importance, four

basic behaviours are implemented: A driving behavior, two

behaviors for avoiding non-navigable areas on the left or

right side of the robot, and a turn behaviour to drive away

from obstacles.

Since detecting hazardous situations is of great importance,

the derived signal by the distance-based obstacle detection

gets the highest priority. If the center of the moving direc-

tion is classified non-navigable, the robot makes a full stop

and switches to the turn behaviour. The first action of this

behaviour is to set back one robot length. Then, if the area

in the direction of the next waypoint is classified as drive-

able, the robot turns into this direction and resumes normal

driving behaviour. Otherwise, it turns towards the direction

with minimal variance in the laser range data.

If the surface is classified non-navigable either on the left or

right side of the moving direction, the robot switches to one

of the avoiding behaviours. The resulting control output is

a short move into the opposite direction.

The driving behaviour will be active if no hazards are de-

tected by the laser scanner. In this case the control signals

from the visual path classification and the navigation mod-

ule are fused into one output signal. The resulting signal

keeps the robot on the trail that leads to the next goal. The

influence of the GPS signal depends on the robot’s distance

to the next way point. As long as the next waypoint is still

far away, the output signal is generated by the visual classi-

fication steps. If the robot gets closer to the next waypoint,

the GPS signal will increase its influence and turn the robot

towards the right direction. The complete control architec-

ture is shown in Fig. 6.

4 Experiments

The performance of the system was tested in the Botan-

ical Garden of the University of Osnabrück. There

are a wide variety of trail types; some are plain and

have clear defined boundaries, others are rough and

consist mainly of cobblestones or are covered with

gravel. Please refer to http://kos.informatik.

uni-osnabrueck.de/download/kgc/ for videos

showing the autonomous behaviour of the KURT2 robot.
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Figure 7. Some sample laser scans taken on the same pathway in the botanical garden. Scan (a) was taken in the plain middle

of the road. Scan (b) was taken on the left border and shows a high variance in the left part of the range data. Since the variance

in the right part is low, a control signal in that direction was generated. Scan (c) shows an obstacle directly in front of the robot.

After that scan the turn-behavior was activated.

Figure 8. Different kinds of trails used for reliability eval-

uation: A graveled trail bordered by a stone wall (top left),

a trail surrounded by lawns (top right), a cobblestone trail

(bottom left), and the main trail of the Botanical Garden

that is bordered by different types of terrains (bottom right).

Table 1. Correct boundary detections for each sensor and

the fused control signal on different trails.

Trail Data Sets Scanner Camera Signal

Wall 5590 98 % 0 % 98 %

Lawn 6030 27 % 92 % 98 %

Cobblestone 4410 59 % 30 % 85 %

Main Trail 1 7452 54 % 61 % 91 %

Main Trail 2 17482 46 % 55 % 91 %

Reliability Evaluation

To evaluate the reliablity of the different classification al-

gorithms and the fused data compared to “ground truth”

we set up the following experiment: The robot was driven

manually on one boundary of a trail. In this position, each

sensor is expected to generate a control signal towards the

middle of the trail. These control signals were logged and

compared with predefined values. To cover the different

kinds of terrains, we have chosen four characteristical trails

that are predominant in the botanical garden (see Fig. 8).

The results of these experiments are shown in Table 1.

The first tested trail was covered with light gray gravel bor-

dered by a quarrystone wall. Since the contrast between the

trail and the wall was very low, the camera was unable to

detect the trail’s boundary. However, the vertical alignment

of the wall resulted in descreasing distance values and in-

creasing variance within each laser scan. Therefore it was

possible to recognise this wall as an obstacle and detect the

trail almost perfectly.

The second trail was plain and bordered by lawn. Here the

grass was nearly cut down to the level of the trail. There-

fore, in most cases, the border between the lawn and the

trail was not recognisable within the laser data. Since the

green replacement step in the visual classification algo-

rithm results in a contrast difference between the trail and

the green areas, the camera signal was accurate in 92%.

The fused signal reached an accuracy of 98%.

The third trail was a small cobblestone path. In this case,

the boundary of the path was not clearly defined. Since

we tried to follow the obvious border of the paved areas,

our given ground truth did not represent the boundary of

non-navigable regions. Hence, the generated control sig-

nal did not always match our expectations, resulting in a

rather low fused accuracy of 85%. Even though the robot

left the cobbled road during autonomous driving mode, it

never collided with any obstacles on this trail or drove into

obviously non-navigable areas. This case demonstrates that

the overall system performance is far better than indicated

by this experiment.

The last two tests were performed on longer sections of the

main trial in the Botanical Garden. We chose sections with

different kinds of boundaries. Since each sensor has clas-

sification disadvantages in some border configurations, the

overall stand-alone performance of every single sensor was

mediocre. The fusion of the camera and scanner signals

lead to accuracies of 91%.

The results of these experiments show that visual classi-

fication detects nearly all bounderies of the garden’s trails

correctly in situations where contrast between the pathways

and their borders is high. Severe problems occur if the field

of view of the camera is outside a trail. In these cases, other

objects, which stand out in the background, are classified

as driveable areas. Also stony walls tend to have high con-

trast differences between the stones, which are certainly not



the road. In such cases, the algorithm classifies the splices

as boundary, corrupting the signal. Under bright sunlight,

hard shadows and highlights generate high contrast differ-

ences in the camera images, falsifying the detected road

borders. In these situations, the robot tends to avoid the

shadows.

The laser scanner classification is most reliable. Collisions

even with moving objects like walking persons never hap-

pened. Since in most cases the changeover from driveable

to non-driveable is characterized by ridges, the statistical

interpretation of range data works almost perfectly. Prob-

lems occured if the pathway was bordered by lawn areas

where the grass was on the same level as the road.

Although both approaches sometimes mis-classify the

trails, the interaction of both leads to an appropriate per-

formance. If the robot drives towards ridges or other obsta-

cles, the control signal from the laser scanner classification

initiates a turn. Low boundaries on the other hand are often

detected by the camera owing to the green pixel replace-

ment.

The results of the tested trails show high reliablity rates of

80 to 90%. But these values do not reflect the practical

performance of the system. In experiments, the robot was

manually forced to drive on a border of a trail. Since in au-

tonomous driving mode, it would avoid those borders and

stay on the trail, it would have had several chances to detect

a boundary before it reaches the actual border. Therefore

the error rate in autonomous mode is far lower than the ex-

perimental results suggest.

The performance of the robot in autonomous driving mode

is demonstrated in the provided videos. The videos show

that the robot was able to follow any given trail at walk-

ing pace and avoid possible hazardous situations. In more

than 30 minutes of autonomous driving, only two manual

direction corrections via joystick were needed. However,

in some cases, when a trail got too bumpy, we had to sta-

bilize the robot in order to avoid a tip over, since the robot

is not well-balanced with the heavy laser scanner mounted

on the front side.

With activated GPS navigation, the visual classification

was ruined. In small scale environments like the Botani-

cal Garden, the GPS resolution of 10 to 15 meters is too

inaccurat for reliable navigation. In most cases, the tar-

get way points were detected outside the trail, therefore the

robot tended to head towards non-navigable areas. Only on

very broad pathways was the robot able to navigate into the

correct direction.

5 Summary and Outlook

This paper has presented an approach for outdoor road fol-

lowing. The resulting system is highly reliable in keep-

ing the robot on the road as well as avoiding dangers, i.e.

obstacles, potholes and downward steps. Nevertheless the

hardware requirements for the underlying computations are

very low so that the system is open for functional expan-

sions.

The sensors used for road classification were a standard we-

bcam and a 2D laser scanner. All computations were done

online on an Intel Centrino 1400 MHz laptop.

The system was tested in the Botanical Garden of the Uni-

versity of Osnabrück. In autonomous driving mode the

robot was able to follow different kinds of roads includ-

ing graveled and roughly cobbled pathways. The evaluated

performance showed reliability rates beyond 90%. The ex-

perienced overall performance was even much better.

Given its parallel software architecture, the system is suit-

able for the newly developed multi-core processors like the

Intel Core Duo. On these multi threading systems, more

computational time will be available providing the oppor-

tunity to implement more sophisticated algorithms using

learning methods for visual classification or parameter tun-

ing.
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