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Abstract. 6D SLAM (Simultaneous Localization and Mapping) or 6D
Concurrent Localization and Mapping of mobile robots considers six di-
mensions for the robot pose, namely, the x, y and z coordinates and
the roll, yaw and pitch angles. Robot motion and localization on nat-
ural surfaces, e.g., driving with a mobile robot outdoor, must regard
these degrees of freedom. This paper presents a robotic mapping method
based on locally consistent 3D laser range scans. Scan matching, com-
bined with a heuristic for closed loop detection and a global relaxation
method, results in a highly precise mapping system for outdoor environ-
ments. The mobile robot Kurt3D was used to acquire data of the Schloss
Birlinghoven campus. The resulting 3D map is compared with ground
truth, given by an aerial photograph.

1 Introduction

Automatic environment sensing and modeling is a fundamental scientific issue
in robotics, since the presence of maps is essential for many robot tasks. Manual
mapping of environments is a hard and tedious job: Thrun et al. report a time
of about one week hard work for creating a map of the museum in Bonn for
the robot RHINO [25]. Especially mobile systems with 3D laser scanners that
automatically perform multiple steps such as scanning, gaging and autonomous
driving have the potential to greatly improve mapping. Many application areas
benefit from 3D maps, e.g., industrial automation, architecture, agriculture, the
construction or maintenance of tunnels and mines and rescue robotic systems.

The robotic mapping problem is that of acquiring a spatial model of a robot’s
environment. If the robot poses were known, the local sensor inputs of the robot,
i.e., local maps, could be registered into a common coordinate system to create a
map. Unfortunately, any mobile robot’s self localization suffers from imprecision
and therefore the structure of the local maps, e.g., of single scans, needs to be
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314 A. Nüchter et al.

used to create a precise global map. Finally, robot poses in natural outdoor en-
vironments involve yaw, pitch, roll angles and elevation, turning pose estimation
as well as scan registration into a problem in six mathematical dimensions.

This paper proposes algorithms that allow to digitize large environments and
solve the 6D SLAM problem. In previous works we already presented partially
our 6D SLAM algorithm [19,23,24]. In [19] we use a global relaxation scan match-
ing algorithm to create a model of an abandoned mine and in [24] we presented
our first 3D model containing a closed loop. This paper’s main contribution is an
octree-based matching heuristic that allows us to match scans with rudimentary
starting guesses and to detect closed loops.

1.1 Related Work

SLAM. Depending on the map type, mapping algorithms differ. State of the
art for metric maps are probabilistic methods, where the robot has probabilistic
motion and uncertain perception models. By integrating of these two distribu-
tions with a Bayes filter, e.g., Kalman or particle filter, it is possible to localize
the robot. Mapping is often an extension to this estimation problem. Beside
the robot pose, positions of landmarks are estimated. Closed loops, i.e., a sec-
ond encounter of a previously visited area of the environment, play a special role
here. Once detected, they enable the algorithms to bound the error by deforming
the already mapped area such that a topologically consistent model is created.
However, there is no guarantee for a correct model. Several strategies exist for
solving SLAM. Thrun reviews in [26] existing techniques, i.e., maximum likeli-
hood estimation [10], expectation maximization [9,27], extended Kalman filter
[6] or (sparse extended) information filter [29]. In addition to these methods,
FastSLAM [28] that approximates the posterior probabilities, i.e., robot poses,
by particles, and the method of Lu Milios on the basis of IDC scan matching
[18] exist.

In principle, these probabilistic methods are extendable to 6D. However no
reliable feature extraction nor a strategy for reducing the computational costs
of multi hypothesis tracking, e.g., FastSLAM, that grows exponentially with the
degrees of freedom, has been published to our knowledge.

3D Mapping. Instead of using 3D scanners, which yield consistent 3D scans
in the first place, some groups have attempted to build 3D volumetric represen-
tations of environments with 2D laser range finders. Thrun et al. [28], Früh et
al. [11] and Zhao et al. [31] use two 2D laser scanners finders for acquiring 3D
data. One laser scanner is mounted horizontally, the other vertically. The latter
one grabs a vertical scan line which is transformed into 3D points based on the
current robot pose. Since the vertical scanner is not able to scan sides of objects,
Zhao et al. use two additional, vertically mounted 2D scanners, shifted by 45◦

to reduce occlusions [31]. The horizontal scanner is used to compute the robot
pose. The precision of 3D data points depends on that pose and on the precision
of the scanner.
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A few other groups use highly accurate, expensive 3D laser scanners [1,12,22].
The RESOLV project aimed at modeling interiors for virtual reality and tele-
presence [22]. They used a RIEGL laser range finder on robots and the ICP
algorithm for scan matching [4]. The AVENUE project develops a robot for
modeling urban environments [1], using a CYRAX scanner and a feature-based
scan matching approach for registering the 3D scans. Nevertheless, in their recent
work they do not use data of the laser scanner in the robot control architecture
for localization [12]. The group of M. Hebert has reconstructed environments
using the Zoller+Fröhlich laser scanner and aims to build 3D models without
initial position estimates, i.e., without odometry information [14].

Recently, different groups employ rotating SICK scanners for acquiring 3D
data [15,30]. Wulf et al. let the scanner rotate around the vertical axis. They
acquire 3D data while moving, thus the quality of the resulting map crucially
depends on the pose estimate that is given by inertial sensors, i.e., gyros [30]. In
addition, their SLAM algorithms do not consider all six degrees of freedom.

Other approaches use information of CCD-cameras that provide a view of the
robot’s environment [5,21]. Nevertheless, cameras are difficult to use in natural
environments with changing light conditions. Camera-based approaches to 3D
robot vision, e.g., stereo cameras and structure from motion, have difficulties
providing reliable navigation and mapping information for a mobile robot in
real-time. Thus some groups try to solve 3D modeling by using planar scanner
based SLAM methods and cameras, e.g., in [5].

1.2 Hardware Used in Our Experiments

The 3D Laser Range Finder. The 3D laser range finder (Fig. 1) [23] is built
on the basis of a SICK 2D range finder by extension with a mount and a small
servomotor. The 2D laser range finder is attached in the center of rotation to
the mount for achieving a controlled pitch motion with a standard servo.

The area of up to 180◦(h)×120◦(v) is scanned with different horizontal (181,
361, 721) and vertical (128, 256, 400, 500) resolutions. A plane with 181 data
points is scanned in 13 ms by the 2D laser range finder (rotating mirror device).
Planes with more data points, e.g., 361, 721, duplicate or quadruplicate this
time. Thus a scan with 181 × 256 data points needs 3.4 seconds. Scanning the
environment with a mobile robot is done in a stop-scan-go fashion.

Fig. 1. Kurt3D in a natural environment. Left to right: Lawn, forest track, pavement.
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The Mobile Robot. Kurt3D Outdoor (Fig. 1) is a mobile robot with a size of
45 cm (length) × 33 cm (width) × 29 cm (height) and a weight of 22.6 kg. Two
90 W motors are used to power the 6 skid-steered wheels, whereas the front and
rear wheels have no tread pattern to enhance rotating. The core of the robot is
a Pentium-Centrino-1400 with 768 MB RAM and Linux.

2 Range Image Registration and Robot Relocalization

Multiple 3D scans are necessary to digitalize environments without occlusions.
To create a correct and consistent model, the scans have to be merged into
one coordinate system. This process is called registration. If the robot carrying
the 3D scanner were precisely localized, the registration could be done directly
based on the robot pose. However, due to the unprecise robot sensors, self lo-
calization is erroneous, so the geometric structure of overlapping 3D scans has
to be considered for registration. As a by-product, successful registration of 3D
scans relocalizes the robot in 6D, by providing the transformation to be applied
to the robot pose estimation at the recent scan point.

The following method registers point sets in a common coordinate system. It
is called Iterative Closest Points (ICP) algorithm [4]. Given two independently
acquired sets of 3D points, M (model set) and D (data set) which correspond
to a single shape, we aim to find the transformation consisting of a rotation R
and a translation t which minimizes the following cost function:

E(R, t) =

|M|∑

i=1

|D|∑

j=1

wi,j ||mi − (Rdj + t)||2 . (1)

wi,j is assigned 1 if the i-th point of M describes the same point in space as the
j-th point of D. Otherwise wi,j is 0. Two things have to be calculated: First,
the corresponding points, and second, the transformation (R, t) that minimizes
E(R, t) on the base of the corresponding points.

The ICP algorithm calculates iteratively the point correspondences. In each
iteration step, the algorithm selects the closest points as correspondences and
calculates the transformation (R, t) for minimizing equation (1). The assumption
is that in the last iteration step the point correspondences are correct. Besl et
al. prove that the method terminates in a minimum [4]. However, this theorem
does not hold in our case, since we use a maximum tolerable distance dmax for
associating the scan data. Such a threshold is required though, given that 3D
scans overlap only partially.

In every iteration, the optimal transformation (R, t) has to be computed.
Eq. (1) can be reduced to

E(R, t) ∝ 1

N

N∑

i=1

||mi − (Rdi + t)||2 , (2)

with N =
∑|M|

i=1

∑|D|
j=1 wi,j , since the correspondence matrix can be represented

by a vector containing the point pairs.
Four direct methods are known to minimize eq. (2) [17]. In earlier work

[19,23,24] we used a quaternion based method [4], but the following one, based
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on singular value decomposition (SVD), is robust and easy to implement, thus
we give a brief overview of the SVD-based algorithm. It was first published by
Arun, Huang and Blostein [2]. The difficulty of this minimization problem is to
enforce the orthonormality of the matrix R. The first step of the computation
is to decouple the calculation of the rotation R from the translation t using the
centroids of the points belonging to the matching, i.e.,

cm =
1

N

N∑

i=1

mi, cd =
1

N

N∑

i=1

dj (3)

and

M ′ = {m′
i = mi − cm}1,...,N , D′ = {d′

i = di − cd}1,...,N . (4)

After substituting (3) and (4) into the error function, E(R, t) eq. (2) becomes:

E(R, t) ∝
N∑

i=1

∣∣∣∣m′
i −Rd′

i

∣∣∣∣2 with t = cm − Rcd. (5)

The registration calculates the optimal rotation by R = VUT . Hereby, the
matrices V and U are derived by the singular value decomposition H = UΛVT

of a correlation matrix H. This 3 × 3 matrix H is given by

H =
N∑

i=1

d′
im

′T
i =

⎛

⎝
Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

⎞

⎠ , (6)

with Sxx =
∑N

i=1 m′
ixd′ix, Sxy =

∑N
i=1 m′

ixd′iy , . . . [2].

We proposed and evaluated algorithms to accelerate ICP, namely point re-
duction and approximate kd-trees [19,23,24]. They are used here, too.

3 ICP-Based 6D SLAM

3.1 Calculating Heuristic Initial Estimations for ICP Scan Matching

To match two 3D scans with the ICP algorithm it is necessary to have a suffi-
cient starting guess for the second scan pose. In earlier work we used odometry
[23] or the planar HAYAI scan matching algorithm [16]. However, the latter can-
not be used in arbitrary environments, e.g., the one presented in Fig. 1 (bad
asphalt, lawn, woodland, etc.). Since the motion models change with different
grounds, odometry alone cannot be used. Here the robot pose is the 6-vector
P = (x, y, z, θx, θy, θz) or, equivalently the tuple containing the rotation matrix
and translation vector, written as 4×4 OpenGL-style matrix P [8].1 The fol-
lowing heuristic computes a sufficiently good initial estimation. It is based on
two ideas. First, the transformation found in the previous registration is applied
1 Note the bold-italic (vectors) and bold (matrices) notation. The conversion between

vector representations, i.e., Euler angles, and matrix representations is done by al-
gorithms from [8].
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Fig. 2. Left: Two 3D point clouds. Middle: Octree corresponding to the black point

cloud. Right: Octree based on the blue points.

to the pose estimation – this implements the assumption that the error model
of the pose estimation is locally stable. Second, a pose update is calculated by
matching octree representations of the scan point sets rather than the point sets
themselves – this is done to speed up calculation:

1. Extrapolate the odometry readings to all six degrees of freedom using pre-
vious registration matrices. The change of the robot pose ∆P given the
odometry information (xn, zn, θy,n), (xn+1, zn+1, θy,n+1) and the registration
matrix R(θx,n, θy,n, θz,n) is calculated by solving:

⎛

⎜⎜⎜⎜⎜⎜⎝

xn+1

yn+1

zn+1

θx,n+1

θy,n+1

θz,n+1

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

xn

yn

zn

θx,n

θy,n

θz,n

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎜⎜⎝

R(θx,n, θy,n, θz,n) 0

1 0 0
0 0 1 0

0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
·

⎛

⎜⎜⎜⎜⎜⎜⎝

∆xn+1

∆yn+1

∆zn+1

∆θx,n+1

∆θy,n+1

∆θz,n+1

⎞

⎟⎟⎟⎟⎟⎟⎠
.

︸ ︷︷ ︸
∆P

Therefore, calculating ∆P requires a matrix inversion. Finally, the 6D pose
Pn+1 is calculated by

Pn+1 = ∆P · Pn

using the poses’ matrix representations.

2. Set ∆P best to the 6-vector (t, R(θx,n, θy,n, θz,n)) = (0, R(0)).

3. Generate an octree OM for the nth 3D scan (model set M).

4. Generate an octree OD for the (n + 1)th 3D scan (data set D).

5. For search depth t ∈ [tStart, . . . , tEnd] in the octrees estimate a transformation
∆P best = (t, R) as follows:
(a) Calculate a maximal displacement and rotation ∆P max depending on

the search depth t and currently best transformation ∆P best.
(b) For all discrete 6-tuples ∆P i ∈ [−∆P max, ∆P max] in the domain ∆P =

(x, y, z, θx, θy, θz) displace OD by ∆Pi ·∆P ·Pn. Evaluate the matching
of the two octrees by counting the number of overlapping cubes and save
the best transformation as ∆P best.
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6. Update the scan pose using matrix multiplication, i.e.,

Pn+1 = ∆Pbest · ∆P · Pn.

Note: Step 5b requires 6 nested loops, but the computational requirements
are bounded by the coarse-to-fine strategy inherited from the octree processing.
The size of the octree cubes decreases exponentially with increasing t. We start
the algorithm with a cube size of 75 cm3 and stop when the cube size falls below
10 cm3. Fig. 2 shows two 3D scans and the corresponding octrees. Furthermore,
note that the heuristic works best outdoors. Due to the diversity of the environ-
ment the match of octree cubes will show a significant maximum, while indoor
environments with their many geometry symmetries and similarities, e.g., in a
corridor, are in danger of producing many plausible matches.

After an initial starting guess is found, the range image registration from
section 2 proceeds and the 3D scans are precisely matched.

3.2 Computing Globally Consistent Scenes

After registration, the scene has to be correct and globally consistent. A straight-
forward method for aligning several 3D scans is pairwise matching, i.e., the new
scan is registered against a previous one. Alternatively, an incremental matching
method is introduced, i.e., the new scan is registered against a so-called meta-
scan, which is the union of the previously acquired and registered scans. Each
scan matching has a limited precision. Both methods accumulate the registration
errors such that the registration of a large number of 3D scans leads to inconsis-
tent scenes and to problems with the robot localization. Closing loop detection
and error diffusing avoid these problems and compute consistent scenes.

Closing the Loop. After matching multiple 3D scans, errors have accumulated
and loops would normally not be closed. Our algorithm automatically detects a
to-be-closed loop by registering the last acquired 3D scan with earlier acquired
scans. Hereby we first create a hypothesis based on the maximum laser range and
on the robot pose, so that the algorithm does not need to process all previous
scans. Then we use the octree based method presented in section 3.1 to revise
the hypothesis. Finally, if a registration is possible, the computed error, i.e., the
transformation (R, t) is distributed over all 3D scans. The respective part is
weighted by the distance covered between the scans, i.e.,

ci =
length of path from start of the loop to scan pose i

overall length of path

1. The translational part is calculated as ti = cit.
2. Of the three possibilities of representing rotations, namely, orthonormal ma-

trices, quaternions and Euler angles, quaternions are best suited for our
interpolation task. The problem with matrices is to enforce orthonormality
and Euler angles show Gimbal locks [8]. A quaternion as used in computer
graphics is the 4 vector q̇. Given a rotation as matrix R, the corresponding
quaternion q̇ is calculated as follows:
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q̇ =

⎛

⎜⎜⎝

q0

qx

qy

qz

⎞

⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

√
trace (R)

1
2

r3,3−r3,2√
trace(R)

1
2

r2,1−r2,3√
trace(R)

1
2

r1,2−r1,1√
trace(R)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with the elements ri,j of R.2 (7)

The quaternion describes a rotation by an axis a ∈ �3 and an angle θ that
are computed by

a =

⎛

⎜⎜⎜⎜⎝

qx√
1−q2

0

qy√
1−q2

0

qz√
1−q2

0

⎞

⎟⎟⎟⎟⎠
and θ = 2arccos qo.

The angle θ is distributed over all scans using the factor ci and the resulting
matrix is derived as [8]:

Ri =

⎛

⎝
cos(ciθ) + a2

x(1 − cos(ciθ)) az sin(ciθ) + axay(1 − cos(ciθ))
−az sin(ciθ) + axay(1 − cos(ciθ)) cos(ciθ) + a2

y(1 − cos(ciθ))
ay sin(ciθ) + axaz(1 − cos(ciθ) −ax sin(ciθ) + ayaz(1 − cos(ciθ))

−ay sin(ciθ) + axaz(1 − cos(ciθ))
−ax sin(ciθ) + ayaz(1 − cos(ciθ))

cos(ciθ) + a2
z(1 − cos(ciθ))

⎞

⎠ . (8)

The next step minimizes the global error.
2 If trace (R) (sum of the diagonal terms) is zero, the above calculation has to be

altered: Iff r1,1 > r2,2 and r1,1 > r3,3 then,

q̇ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

r2,3−r3,2√
1+r1,1−r2,2−r3,3

1
2

√
1 + r1,1 − r2,2 − r3,3

1
2

r1,2+r2,1√
1+r1,1−r2,2−r3,3

1
2

r3,1+r1,3√
1+r1,1−r2,2−r3,3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, if r2,2 > r3,3 q̇ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

r3,1−r1,3√
1−r1,1+r2,2−r3,3

1
2

r1,2+r2,1√
1−r1,1+r2,2−r3,3

1
2

√
1 − r1,1 + r2,2 − r3,3

1
2

r2,3+r3,2√
1−r1,1+r2,2−r3,3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

otherwise the quaternion q̇ is calculated as

q̇ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

r1,2−r2,1√
1−r1,1−r2,2+r3,3

1
2

r3,1+r1,3√
1+r1,1−r2,2−r3,3

1
2

r2,3+r3,2√
1−r1,1−r2,2+r3,3

1
2

√
1 − r1,1 − r2,2 + r3,3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



Heuristic-Based Laser Scan Matching for Outdoor 6D SLAM 321

Diffusing the Error. Pulli presents a registration method that minimizes the
global error and avoids inconsistent scenes [20]. The registration of one scan is
followed by registering all neighboring scans such that the global error is dis-
tributed. Other matching approaches with global error minimization have been
published, e.g., [3,7]. Benjemaa et al. establish point-to-point correspondences
first and then use randomized iterative registration on a set of surfaces [3]. Eggert
et al. compute motion updates, i.e., a transformation (R, t), using force-based
optimization, with data sets considered as connected by groups of springs [7].

Based on the idea of Pulli we designed the relaxation method simultaneous
matching[23]. The first scan is the masterscan and determines the coordinate
system. It is fixed. The following three steps register all scans and minimize the
global error, after a queue is initialized with the first scan of the closed loop:

1. Pop the first 3D scan from the queue as the current one.
2. If the current scan is not the master scan, then a set of neighbors (set of all

scans that overlap with the current scan) is calculated. This set of neighbors
forms one point set M . The current scan forms the data point set D and is
aligned with the ICP algorithms. One scan overlaps with another iff more
than p corresponding point pairs exist. In our implementation, p = 250.

3. If the current scan changes its location by applying the transformation
(translation or rotation) in step 2, then each single scan of the set of neigh-
bors that is not in the queue is added to the end of the queue. If the queue
is empty, terminate; else continue at step 1.

In contrast to Pulli’s approach, our method is totally automatic and no interac-
tive pairwise alignment has to be done. Furthermore the point pairs are not fixed
[20]. The accumulated alignment error is spread over the whole set of acquired
3D scans. This diffuses the alignment error equally over the set of 3D scans [24].

4 Experiment and Results

The following experiment has been made at the campus of Schloss Birlinghoven
with Kurt3D. Fig. 3 (left) shows the scan point model of the first scans in top
view, based on odometry only. The first part of the robot’s run, i.e., driving
on asphalt, contains a systematic drift error, but driving on lawn shows more
stochastic characteristics. The right part shows the first 62 scans, covering a
path length of about 240 m. The heuristic has been applied and the scans have
been matched. The open loop is marked with a red rectangle.

At that point, the loop is detected and closed. More 3D scans have then
been acquired and added to the map. Fig. 4 (left and right) shows the model
with and without global relaxation to visualize its effects. The relaxation is
able to align the scans correctly even without explicitly closing the loop. The
best visible difference is marked by a red rectangle. The final map in Fig. 4
contains 77 3D scans, each consisting of approx. 100000 data points (275 ×
361). Fig. 5 shows two detailed views, before and after loop closing. The bottom
part of Fig. 4 displays an aerial view as ground truth for comparison. Table 1
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Fig. 3. 3D model of an experiment to digitize part of the campus of Schloss Bir-

linghoven campus (top view). Left: Registration based on odometry only. Right: Model

based on incremental matching right before closing the loop, containing 62 scans each

with approx. 100000 3D points. The grid at the bottom denotes an area of 20×20m2

for scale comparison. The 3D scan poses are marked by blue points.

compares distances measured in the photo and in the 3D scene. The lines in
the photo have been measured in pixels, whereas real distances, i.e., the (x, z)-
values of the points, have been used in the point model. Taking into account
that pixel distances in mid-resolution non-calibrated aerial image induce some
error in ground truth, the correspondence show that the point model at least
approximates reality quite well.

Table 1. Length ratio comparison of measured distances in the aerial photographs

with distances in the point model as shown in Fig. 4

1st line 2nd line ratio in aerial views ratio in point model deviation

AB BC 0.683 0.662 3.1%
AB BD 0.645 0.670 3.8%
AC CD 1.131 1.141 0.9%
CD BD 1.088 1.082 0.5%
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C

D

A
B

Fig. 4. Top left: Model with loop closing, but without global relaxation. Differences

to Fig. 3 right and to the right image are marked. Top right: Final model of 77 scans

with loop closing and global relaxation. Bottom: Aerial view of the scene. The points

A – D are used as reference points in the comparison in Table 1.
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Fig. 5. Detailed view of the 3D model of Fig. 4. Left: Model before loop closing. Right:

After loop closing, global relaxation and adding further 3D scans. Top: Top view.

Bottom: Front view.

Fig. 6. Detailed views of the resulting 3D model corresponding to robot locations of

Fig. 1
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Mapping would fail without first calculatingheuristic initial estimations for
ICP scan matching, since ICP would likely converge into an incorrect minimum.
The resulting 3D map would be some mixture of Fig. 3 (left) and Fig. 4 (right).

Fig. 6 shows three views of the final model. These model views correspond to
the locations of Kurt3D in Fig. 1. An updated robot trajectory has been plotted
into the scene. Thereby, we assign every 3D scan that part of the trajectory
which leads from the previous scan pose to the current one. Since scan matching
did align the scans, the trajectory initially has gaps after the alignment (see Fig.
7).

We calculate the transformation (R, t) that maps
the last pose of such a trajectory patch to the start-
ing pose of the next patch. This transformation is
then used to correct the trajectory patch by dis-
tributing the transformation as described in sec-
tion 3.2. In this way the algorithm computes a con-
tinuous trajectory. An animation of the scanned
area is available at http://kos.informatik.uni-
osnabrueck.de/6Doutdoor/. The video shows the
scene along the trajectory as viewed from about 1 m
above Kurt3D’s actual position.
The 3D scans were acquired within one hour by tele-
operation of Kurt3D. Scan registration and closed
loop detection took only about 10 minutes on a

Fig. 7: The trajectory after
mapping shows gaps, since
the robot poses are corrected
at 3D scan poses

Pentium-IV-2800 MHz, while we did run the global relaxation for 2 hours. How-
ever, computing the flight-thru-animation took about 3 hours, rendering 9882
frames with OpenGL on consumer hardware.

In addition we used the 3D scan matching algorithm in the context of RoboCup
Rescue 2004. We were able to produce online 3D maps, even though we did not
use closed loop detection and global relaxation. Some results are available at
http://kos.informatik.uni-osnabrueck.de/download/Lisbon RR/.

5 Discussion and Conclusion

This paper has presented a solution to the SLAM problem considering six de-
grees of freedom and creating 3D maps of outdoor environments. It is based on
ICP scan matching, initial pose estimation using a coarse-to-fine strategy with
an octree representation and closing loop detection. Using an aerial photo as
ground truth, the 3D map shows very good correspondence with the mapped
environment, which was confirmed by a ratio comparison between map features
and the respective photo features.

Compared with related approaches from the literature [6,10,26,27,28,29] we
do not use a feature representation of the environment. Furthermore our al-
gorithm manages registration without fixed data association. In the data asso-
ciation step, SLAM algorithms decide which features correspond. Wrong cor-
respondences result in unprecise or even inconsistent models. The global scan
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Fig. 8. Abstract comparison of SLAM approaches. Left: Probabilistic methods. The

robot poses Xi as well as the positions of the associated landmarks Yi are given in terms

of a probability distribution. Global optimization tries to relax the model, where the

landmarks are fixed. Small black dots on lines mark adjustable distances. Right: Our

method with absolute measurements Yi (note there are no black dots between scan

poses and scanned landmarks). The poses Xi are adjusted based on scan matching

aiming at collapsing the landmark copies Yik for all landmarks Yi. Data association is

the search for closest points.

matching based relaxation computes corresponding points, i.e., closest points,
in every iteration. Furthermore, we avoid using probabilistic representations to
keep the computation time at a minimum. The model optimization is solved in
a closed form, i.e., by direct pose transformation. As a result of these efforts,
registration and closed loop detection of 77 scans each with ca. 100000 points
took only about 10 minutes.

Fig. 8 compares the probabilistic SLAM approaches with ours on an abstract
level as presented by Folkesson and Christensen [9]. Robot poses are labeled
with Xi whereas the landmarks are the Yi. Lines with black dots correspond to
adjustable connections, e.g., springs, which can be relaxed by the algorithms. In
our system, the measurements are fixed and data association is repeatedly done
using nearest neighbor search.

Needless to say, a lot of work remains to be done. We plan to further im-
prove the computation time and to use sensor uncertainty models. In addition,
semantic labels for sub-structures of the resulting point model will be extracted.
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328 A. Nüchter et al.

28. S. Thrun, D. Fox, and W. Burgard. A real-time algorithm for mobile robot mapping
with application to multi robot and 3D mapping. In Proc. ICRA, 2000.

29. S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. F. Durrant-Whyte.
Simultaneous localization and mapping with sparse extended information filters.
Machine Learning and Autonomous Robots, 23(7 – 8):693 – 716, July/August 2004.

30. O. Wulf, K. O. Arras, H. I. Christensen, and B. A. Wagner. 2D Mapping of
Cluttered Indoor Environments by Means of 3D Perception. In Proc. ICRA, 2004.

31. H. Zhao and R. Shibasaki. Reconstructing Textured CAD Model of Urban Envi-
ronment Using Vehicle-Borne Laser Range Scanners and Line Cameras. In Proc.
ICVS, pages 284 – 295, Vancouver, Canada, July 2001.


	Introduction
	Related Work
	Hardware Used in Our Experiments

	Range Image Registration and Robot Relocalization
	ICP-Based 6D SLAM
	Calculating Heuristic Initial Estimations for ICP Scan Matching
	Computing Globally Consistent Scenes

	Experiment and Results
	Discussion and Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


