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Abstract

This paper proposes a handheld mapping system consisting of a stereo camera setup combined with low-cost automotive LiDAR.

The prototype system is applicable to various types of mobile monocular, stereo vision and LiDAR data collection and processing.

Capturing dense RGB-D data outdoors with low-cost sensors is challenging, especially when low latency is required. Readily

available commercial RGB-D sensors are typically limited to a range of less than 10 m, which is too small to capture large outdoor

structures. Currently available low-cost automotive LiDAR scanners feature a suitable range but provide only sparse data. To enable

low-latency dense RGB-D scans we augment the sparse LiDAR data with the RGB data stream based on learned models. We apply

monocular depth estimation based on a single image and apply scale correction based on learned priors and sparse automotive

LiDAR scans. Using the laser scan data, accurate metric information is incorporated directly into the scale estimation stage. For

validation, the learning-based depth map completion is compared to traditional LiDAR mapping using scan matching on an outdoor

data set acquired with the proposed handheld. While the model-based regression of the sparse LiDAR data produces significantly

less accurate results in our experiments, it is able to compute dense RGB-D data from a single sparse 3D scan and monocular RGB

image with low latency.

1. Introduction

The appearance of RGB-D sensors, such as Microsoft Kinect

or Intel Realsense sensors, enabled low-cost, dense 3D cap-

ture of indoor scenes at high framerates. Hence, these sensors

are also frequently employed for mobile robots or manipula-

tion tasks using robotic grippers. Off-the-shelf RGB-D sensors

are typically limited for outdoor applications due to their lim-

ited range. In addition, sensors that rely on pattern projection

are often degraded by bright sunlight. As a result, capturing

low-latency RGB-D data of large-scale outdoor scenes typic-

ally requires more expensive sensor setups that combine high-

resolution LiDAR scanners with cameras.

Capturing low-latency RGB-D outdoors on large structures is

a challenge on a budget. Low-cost automotive laser scanners

provide high update rates of typically 10-20 Hz but the point

cloud of a single scan is rather sparse. Similarly, feature-based

Visual Odometry approaches (Qin et al., 2018, Geneva et al.,

2020) provide real-time 3D reconstruction only for the feature

points. In contrast, Structure-from-Motion (SfM) techniques

using dense matching provide detailed models of large-scale

environments but require significant time for post-processing

to solve the photogrammetric bundle adjustment over multiple

views. Stereo vision with a baseline of 10-40 cm, which is suit-

able for a handheld system, does not provide sufficient depth

accuracy at a typical distance in the range of 10-100 m regu-

larly observed in outdoor scenes.

Moreover, learning-based approaches are used for depth pre-

diction. Recent learning-based monocular depth methods (Yin

et al., 2023, Hu et al., 2024, Koch et al., 2018, Li et al., 2017)

provide high-quality depth estimation of structures. However,

since the estimation is based on a single image it naturally
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Figure 1. Proposed handheld mapping system with stereo RGB

cameras and Livox Avia LiDAR sensor.

loses scale and intrinsic information and the relative positions

between different structures are distorted.

This work proposes a handheld mapping system composed of a

stereo camera setup combined with an automotive LiDAR. To

enable low-latency dense RGB-D scans, we complete the sparse

LiDAR data using the RGB data stream based on learned mod-

els. Using the LiDAR data accurate metric depth information

is incorporated directly into the estimation stage. We employ

a state-of-the-art approach for monocular depth image estima-

tion, Metric3Dv2 (Hu et al., 2024), and scale the result based on
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Figure 2. Backside and top of the proposed handheld mapping system for data collection.

learned priors (Yuan et al., 2024). To compare the quality, we

capture a dataset with the proposed hardware and compare the

learning-based depth map completion to traditional 3D map-

ping results using scan matching.

The main contributions of this paper are the description of the

proposed prototype hardware, a method for completing sparse

LiDAR data based on monocular depth estimation, and exper-

iments on real world data for comparing the resulting depth

maps with a model of the scene created from registered LiDAR

scans.

2. Hardware Setup

Different handheld personal mapping systems have been pro-

posed in the literature. Some setups rely on multi-camera

systems, such as GuPho (Torresani et al., 2021, Menna et

al., 2022), goScout3D (Bräuer-Burchardt et al., 2023) or

Ant3D (Perfetti et al., 2024). Visual Odometry is used to es-

timate an initial trajectory on the fly, which is post-processed

into a dense 3D model using a Structure-from-Motion (SfM)

pipeline. This can also be informed by monocular depth estim-

ation (Padkan et al., 2023). Fisheye or wide angle cameras are

used to achieve a wide field of view (Holdener et al., 2017),

which is particular helpful in constrained spaces.

Other handheld systems use a combination of a monocular cam-

era and LiDAR, such as the R3LIVE handheld (Lin and Zhang,

2022), or multi-sensor setups including automotive LiDAR and

RGB-D cameras (Proudman et al., 2022). These handheld

devices use Simultaneous Localization and Mapping (SLAM)

techniques to register the observations from individual sensors

into a consistent global model of the outdoor environment.

2.1 Handheld Mapping System

Our custom-built handheld mapping device, inspired by the

previous work, is shown in Figure 1 and Figure 2. It em-

ploys low-cost automotive LiDAR and industrial vision cam-

eras. The mechanical structure is based on a commercial cam-

era rig (NEEWER CA016 Video Camera Cage Rig) with the

sensors mounted to the top bar. The sensors are attached to the

rig using a custom 3D-printed adapter. Below the sensors, a

3D printed enclosure is mounted with an embedded PC for data

recording and power supply electronics.

The sensors used are a Livox AVIA Lidar and two

IDS U3-30C0CP global-shutter cameras with Sony IMX392

2.35 MPixel RGB CMOS sensors. The LiDAR sensor has a

Field of View (FoV) of 70.4◦ × 77.2
◦. It is a triple-echo sensor

with a range of 450 m and a specified range precision of 2 cm.

We use the non-repetitive circular scanning mode with 24.000

points per scan. This enables creating more dense scans by ac-

cumulating laser scans of an area since the scan pattern changes

over time. The cameras are equipped with 4 mm lenses, which

results in a similar FoV of 77.3
◦

× 61.9
◦. Hardware signals

are used to trigger the two cameras simultaneously and precise

timestamps are assigned to both the images and LiDAR scans.

We record stereo images at 100 Hz and laser scans at 10 Hz.

For the work at hand we extract a synchronized stereo image

and LiDAR scan data stream with 10 Hz by selecting the pair

of RGB images closest to the receive timestamp of the LiDAR

data.

The system is equipped with a LattePanda Sigma embedded

PC for data processing. It features a 12-core Intel Core i5-

1340P CPU and fast SSD storage to handle the high-frequency

image data. The entire setup is powered via USB-C. This al-

lows powering the system either with a USB-C power bank

or a USB-C power supply. The system includes a power de-

livery controller set to 20 V, which allows a power consump-

tion of up to 140 W. When the embedded computer is running

at maximum load and all sensors are operating, the combined

power requirement is approximately 100 W. In typical opera-

tion, a 86 Wh power bank provides about 1.5 to 2 hours of con-

tinuous operation.

2.2 Software Architecture

The software architecture is built on top of the Robot Operating

System 2 (ROS)1. We use the LiDAR drivers provided by the

manufacturer and the GenICam interface of the vision cameras.

ROS tools are used for data visualization and storage of sensor

messages in ROS file format. Network Time Protocol (NTP) is

used for synchronizing the clocks over the network. A touch-

screen is integrated on the back of the 3D-printed housing for

data display. This allows the data to be checked during record-

ing for quality control. In addition, a push button is mounted

in the 3D printed case near the rig’s handles, which allows the

user to start and stop the recording session while holding the

system with both hands. Remote control via a WiFi network is

also possible.

A standard stereo calibration of the cameras is performed us-

ing a calibration board with ChArUco markers. Additionally,

we find the co-calibration between the LiDAR coordinate frame

1 https://www.ros.org/



Figure 3. Example of a colored point cloud of Veitshöchheim

Palace created using the proposed system. The red line

visualizes the trajectory of the handheld mapping system.

and the right camera. As a pre-processing step a stereo rectific-

ation of the images is applied and the data processing is com-

puted on the rectified images. For experiments with monocular

depth estimation, we only use the right camera of the handheld

system since it is closest to the LiDAR sensor. This way the

offset between the sensors is small and the viewing direction as

well as the field of view are similar.

3. Data Processing

The prototype hardware system allows for different types of

data collection and processing, such as monocular, stereo vis-

ion, LiDAR scanning, or a combination. Since the focus of the

presented work is on the acquisition of large outdoor scenes, the

following sections consider monocular RGB data in combina-

tion with LiDAR. The stereo setup of the handheld provides

scale constraints for dense bundle adjustment in SfM. How-

ever, direct acquisition of 3D scans from stereo vision at larger

distances is limited given the baseline of approximately 30 cm.

Therefore, in the following sections, we look at depth estima-

tion using LiDAR and learning-based monocular depth meth-

ods.

3.1 Trajectory Estimation

The Livox LiDAR has a large FoV of more than 70
◦. There-

fore, in urban areas, enough structure is visible in each scan,

and scan matching is applicable. We apply straight-forward re-

gistration based on the Iterative Closest Point (ICP) algorithm.

Octree reduction with a voxel size of 25 cm is applied. To deal

with the sparse automotive data we apply scan-to-map registra-

tion instead of scan-to-scan registration, which is more stable.

We keep a meta scan of the last 3-5 seconds, which corresponds

to 30-50 scans. Every new incoming scan is registered against

this scan group. Since the automotive scanner has a changing

scan pattern, a fixed number of scans for creating the meta scan

is suitable. Moreover, we apply distance or movement-based

subsampling, such that we do not aggregate a high number of

scans for the same area when standing still. For large trajector-

ies, loop-closing based on (Borrmann et al., 2008) is applied.

Figure 3 shows an example trajectory created using ICP-based

scan matching and the resulting point cloud. The point cloud is

colored using the RGB images. The trajectory of the handheld

system is visualized as a red line.

3.2 Depth Map Completion of Sparse LiDAR Data

Most commonly, stereo reconstruction is performed from multi-

view setups, for example, by triangulating 3D points from cor-

responding 2D image correspondences from two different cam-

eras, or by SfM using a single camera. Recent learning-based

monocular depth methods (Yin et al., 2023, Hu et al., 2024,

Koch et al., 2018, Li et al., 2017) provide high-quality depth

estimation of structures from single RGB images. Current mod-

els, are able to preserve edges and planar regions and produce

s consistent depth that accurately captures the structure of the

scene. We use the Metric3Dv2 (Hu et al., 2024) model for mon-

ocular depth estimation.

However, monocular methods do not accurately recover the

metric scale. In addition, similar to human vision the meth-

ods suffer from ambiguous illusions where alternative interpret-

ations of depth cues exist. Metric3Dv2 addresses some of these

issues by using a canonical camera transformation to make the

learned model more robust to changes in, for example, focal

length. Still, the structure of the scene is not always accurately

captured. We constrain the solution and scale the monocular

depth accurately using the true measurements of the LiDAR

data. However, we only have sparse depth measurements avail-

able from laser scans. Therefore, we need an approach to re-

gress the depth image adjustment from LiDAR to apply it to

the entire depth image extracted from monocular depth meth-

ods. And we need to do this in a way that takes into account the

structure of the scene.

Here, we apply our method ScaleCov (Yuan et al., 2024), which

supports sparse LiDAR depth completion as shown in Figure 4.

The top row shows the input monocular RGB image and the

sparse LiDAR depth image (single scan of the Livox Avia). The

middle image shows the resulting completed depth map. Note

that the applied color map is the same for the sparse LiDAR

depth and the completed depth. Additionally, the bottom image

visualizes the depth variance. Note that parts of the image that

cannot be assigned a valid depth, such as the sky, also have a

high variance. Therefore, we do not trust the final completed

depth if the variance is above a certain threshold.

ScaleCov uses a learned covariance function as a prior sim-

ilar to DepthCov (Dexheimer and Davison, 2023). However,

unlike DepthCov, we do not directly regress the depth image.

With sparse LiDAR input, this leads to poor estimates for cer-

tain structures without any true depth observations. Regressing

the true measurements for these structures without any observa-

tions leads to arbitrary results and does not accurately capture

the structure of the scene.

Therefore, we use the monocular depth estimation from Met-

ric3Dv2 as a starting point. We then compute a sparse scale ad-

justment by computing scale values for all image points where
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Figure 4. Completed LiDAR depth map using ScaleCov. Top:

Input RGB image and sparse LiDAR depth map. Middle:

Completed depth map. Bottom: Normalized variance.

the depth computed from LiDAR points overlaps the estimated

depth. For these depth image points, we have a true measure-

ment and compute an accurate scale adjustment. This results

in a sparse scale image to adjust the monocular depth image.

We regress this scale image on the true LiDAR measurements

using a deep-learned covariance function in a Gaussian process

regression. Regressing the scale to a structure without any true

observations from the laser scan is less problematic because the

structure estimated by Metric3Dv2 is still preserved.

Figure 5 shows the completed point cloud created from the

depth image in Figure 4 side by side with the sparse LiDAR

data. In this example, the overall scale is correctly adjusted.

However, the parts of the image with little or no true LiDAR

observations show large errors. For example, note that the win-

dow near the left edge of the completed point cloud is not

straight. Therefore, we use the completed depth only for the

areas covered by the true LiDAR measurements and do not trust

the completed depth outside the FoV of the LiDAR scanner.

This improves the consistency of the generated RGB-D frames.

4. Experiments

We apply the proposed handheld system for mobile mapping.

Figure 6 shows example point clouds of Veitshöchheim Palace.

The data is collected with the handheld system and an average

(a) Sparse LiDAR point cloud (b) Completed point cloud

Figure 5. Comparision of sparse input and completed point

cloud. Left: Sparse LiDAR point cloud with 17.627 points.

Right: Completed point cloud with 401.687 points.

walking speed of 0.84 m

s
. During data collection the sensors

always point towards the captured object. The trajectory around

Veitshöchheim Palace is 251 m long and was captured in 5 min.

It consists of 3000 LiDAR scans and RGB images.

The images in the top row of Figure 6 show the results of a point

cloud created by scan matching from the full dataset, including

all 3000 scans. There are about 48.8 million points in the point

cloud. The points are colored using the RGB images.

To compare the result of the depth map completion we select a

subset of 15 scans evenly distributed along the trajectory. Using

only 15 laser scans the sparse result is visualized in the middle

is obtained. This point cloud has approximately 0.3 million

points. If we apply the proposed depth map completion to the

same 15 frames, we get the result in the bottom row. The com-

pleted point cloud has about 5.7 million points. After apply-

ing ScaleCov the overall scale of the resulting point clouds is

metrically correct. However, we observe some distortions and

outliers in the final data. In particular, the smaller structures,

such as the windows of the palace, show errors in the regressed

depth.

Figure 7 visualizes a comparison between the reference cloud

created using scan matching from 3000 scans and the result ob-

tained from learning-based depth map completion with only 15

input frames. The point cloud on the left is colored by the dis-

tance between the reference and completed point cloud. Note

that the overall scale of the palace is correctly captured. Large

errors are observed especially in areas with few true measure-

ments, such as the roof of the palace or the ground in front

of the palace. Looking at the error histogram of the cloud-to-

cloud distance on the left in Figure 7, we observe that most of

the errors are below 20 cm. However, coarse errors in the depth

structure and outliers are present in the completed point cloud.

Considering accuracy, scan matching of laser scans or com-

puting Dense Bundle Adjustment on multiple views leads to

better results. However, if only sparse depth data is avail-

able or a low latency is required, the proposed depth comple-

tion produces correctly scaled dense RBG-D frames with only

a single RGB image and a sparse laser scan as input. The

model inference for monocular depth estimation and comple-

tion of the scale map is computed in 200-500 ms using a single

desktop GPU. This latency is similar to stereo vision processing

pipelines, such as publicly available GPU implementations of

Semi Global Matching (Hirschmüller, 2008, fixstars Develop-

ment Team, 2024).



Figure 6. Resulting point clouds of Veitshöchheim Palace with the trajectory of the handheld system visualized as a red line. Top:

Aggregated LiDAR point cloud from 3000 scans as a reference. Middle: Sparse LiDAR point cloud from 15 scans. Bottom: Result

obtained using depth map completion based on the same 15 scan positions.
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Figure 7. Point cloud of the result from 15 scans using depth map completion compared to the reference scan created using scan

matching from 3000 scans. Left: Completed point cloud colored by distance to the reference cloud with corresponding colorbar.

Right: Corresponding error histogram of the cloud-to-cloud distance.



5. Conclusions

In summary, this work provides details on the hardware setup

and processing pipeline of a handheld mapping system, which

leverages low-cost automotive LiDAR in combination with a

stereo camera setup. We apply monocular depth estimation

combined with scale correction based on learned priors. In con-

trast to aggregating LiDAR scans or applying Dense Bundle

Adjustment in a window of multiple views, the proposed ap-

proach is able to generate dense RGB-D scans from a single

sparse laser scan and a single RGB image.

In addition, we provide an evaluation of depth estimation using

learning-based approaches in the context of depth map com-

pletion of sparse LiDAR data. We provide real-world res-

ults on datasets acquired using the proposed mapping system.

The evaluation shows that the model-based regression of the

sparse LiDAR data produces significantly less accurate results

in our experiments. However, when latency is important or only

sparse data is available, the method is able to compute dense

RGB-D data with correct scale from a single sparse 3D scan

and a monocular RGB image with latencies similar to stereo

vision processing pipelines.

In this work, we focused on the regressing of single sparse depth

maps. Given a moving handheld system the result can be further

improved by multi-view fusion, such as scan aggregation and

applying Dense Bundle Adjustment in a local window of input

frames, using the last collected LiDAR and RGB frames.
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