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ABSTRACT:

Mobile mapping systems are commonly mounted on cars, ships and robots. The data is directly geo-referenced using GPS data and

expensive IMU (inertial measurement systems). Driven by the need for flexible, indoor mapping systems we present an inexpensive

mobile mapping solution that can be mounted on a backpack. It combines a horizontally mounted 2D profiler with a constantly spinning

3D laser scanner. The initial system featuring a low-cost MEMS IMU was revealed and demonstrated at MoLaS: Technology Workshop

Mobile Laser Scanning at Fraunhofer IPM in Freiburg in November 2014. In this paper, we present an IMU-free solution.

1. INTRODUCTION

As there is a tremendous need for fast, reliable, and cost-effective

indoor mapping systems, we designed a man-portable mapping

system, which does not need an IMU (intertial measurement unit)

nor an external positioning system. Current state-of-the-art robotic

solutions (Nüchter et al., 2013) or systems where scanners are

mounted on carts, like the viametris iMMS (VIAmetris, 2015;

Thomson et al., 2013), are not suitable for a large number of ap-

plications, as closed doors in front of the carts and doorsteps may

preclude their application. A backpack mounted system, also

known as personal laser scanning, is the ideal solution to over-

Figure 1. Photos of the first author operating the backpack system

at MoLAS, in Freiburg, November 2014.

come these issues as the user has his hands free to open doors.

Recently, Google unveiled “The Cartographer, Its Indoor Map-

ping Backpack” for similar use cases (Frederic Lardinois, TC,

2015). While they rely on Hokuyo laser scanners similar to the

Zebedee system (CSIRO, 2015), which are inexpensive devices

with low data rate, accuracy and range, the here presented solu-

tion features a high-end laser scanner, namely a Riegl VZ-400,

for mapping. A professional laser scanner is used by Kukko et

al. (2012) in a conventional setting employing GPS (Global Posi-

tioning System) and IMU sensors.

The backpacking system is inspired by the robotic system Irma3D

(Nüchter et al., 2013) but the basis is now a Tatonka load carrier.

Similar to the Volksbot RT 3 chassis aluminium components and

system solutions for building fixtures have been attached to the

load carrier using pipe clamps. Energy is currently provided by

two Panasonic 12 V lead-acid batteries with 12 Ah, but to save

weight, these will be replaced by lithium polymer batteries. Sim-

ilar to Irma3D (Nüchter et al., 2013), the backpack features a

horizontally scanning SICK LMS 100, which is used to observe

the motion of the carrier using a 2D mapping variant based on the

signed distance function. The central sensor of the backpack sys-

tem is the 3D laser scanner Riegl VZ-400. The VZ-400 is able to

freely rotate around its vertical axis to acquire 3D scans. Due to

the setup, however, there is an occlusion of about 100◦ from the

backside of the backpack and the human carrier. The backpack

is also equipped with a network switch to receive the data from

the two scanners and to connect the 12”-laptop (Samsung Q45

Aura laptop with an Intel Core 2 Duo T7100 processor), which is

carried by the human.

Our mapping solution (cf. Fig. 1 and 2) relies on a horizontally

mounted 2D profiler, the SICK LMS 100 laser scanner. A SLAM

software called TSDSlam (May et al., 2014) generates an initial

planar 3 DoF (degree of freedom) trajectory of the backpack. The

trajectory is then used to “unwind” the data of the Riegl VZ-400.

The Riegl scanner itself is rotating around its vertical axis, such

that the environment is gaged multiple times. This is exploited

in our calibration and semi-rigid SLAM solution. While the cal-

ibration computes the 6 DoF pose of every sensor, the semi-rigid



Figure 2. Images of the backpack system. Left: Side view with

all of its sensors and equipment. Right: Detailed view of the

SICK and the switch.

SLAM deforms the trajectory of the backpack in 6 DoF such that

the 3D point cloud aligns well.

The system is ready to use and this paper presents results obtained

with data acquired during a presentation at MoLaS: Technology

Workshop Mobile Laser Scanning at Fraunhofer IPM in Freiburg,

Germany in November 2014, cf. Fig. 1. The Fraunhofer Insti-

tute for Physical Measurement Techniques IPM develops mea-

suring techniques and systems for industry and laser scanning,

especially mobile laser scanning is of core interest. Through-

out the paper, we will present results obtained from this dataset.

It features the atrium of the institute where data has been ac-

quired on a round trip in the first floor. A previous version of

the system was presented in (Nüchter et al., 2015, , accepted).

There, however, we relied on a 2D mapping algorithm called

HectorSLAM (Kohlbrecher et al., 2011) and required a low-cost

MEMS (microelectromechanical systems) IMU. Previously we

also published an analysy of the occuring scan patterns of the

backpack system (Elseberg et al., 2013b).

2. SYSTEM ARCHITECTURE

Figure 3 presents the overall architecture of the backpack. For

sensor data acquisition we exploit ROS, the so-called robotic op-

erating system (Quigley et al., 2009) which is a middleware for

Linux operating systems. ROS is a set of software libraries and

tools that are used in the robotic community to build robot ap-

plications. As a middleware, it connects device drivers, pro-

grams and tools on a heterogeneous computer cluster. ROS pro-

vides standard operating system services such as hardware ab-

straction, low-level device control, implementation of commonly

used functionality, message-passing between processes, and pack-

age management. It enables time-stamped sensor data logging
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Figure 3. Overall system architecture. The ROS nodes can run online, i.e., during data acquisition, while the map optimization is

executed afterwards.

and the control of the devices. Programs are run as indepen-

dent processes as so-called ROS nodes. The data of the 2D Li-

DAR (Light detection and ranging) is fed into the 2D SLAM

subsystem, available in the autonohm/obviously library (Mobile

Robotics Lab at TH Nueremberg, 2015), which is described in the

following section. It is also implemented as ROS node. The out-

put of this 2D SLAM ROS node serves as input of the six degree

of freedom (6 DoF) semi-rigid SLAM, which registers the 3D

data from the Riegl VZ-400 and is implemented using the frame-

work 3DTK — The 3D Toolkit (Andreas Nüchter et al., 2011).

Since we calculate in this second step truely with 6 DoF, it is not

critical, that the horizontal scanner data is used in a 2D SLAM

approach first. Since, the horizontal scanner operates with 25 Hz,

we neglect the motion between two 3D scans.

The 2D map can be viewed during data acquisition by using the

default viewer of ROS, i.e., rviz. This enabled the operator to

detect failures and unmapped areas early. Screenshots of the gen-

eration of the 2D map from the MoLAS scenario are given in

Figure 4.

3. 2D MAPPING BASED ON SIGNED DISTANCE

FUNCTIONS

For conciseness we explain the 2D mapping framework in this

section which is applied to the profiles acquired by the horizon-

tally mounted scanner to build a representation based on Signed

Distance Functions (SDF). In a previous publication, we gener-

alized the KinectFusion approach (Izadi et al., 2011) to make it

applicable to different types of sensors, i.e., 2D and 3D laser scan-

ners, Time-of-Flight and stereo cameras or structured light sen-

sors (May et al., 2014). Further work has focused on 2D SLAM,

involving the integration into a ROS based framework as well

as extending the algorithm to multi-source cooperative mapping

(Koch et al., 2015).

The 2D SLAM framework is a grid based mapping approach that

applies a main loop which is triggered by new sensor data and

consists of three steps. The map consists of a grid containing

Truncated Signed Distances (TSD) similar to the KinectFusion

approach (Izadi et al., 2011), i.e., each cell holds the distance to

the closest obstacle. We call this representation TSD grid in the

remainder. The first step reconstructs a model M = {mi | i =
1, . . . , nM} consisting of nM points, in the 2D case defined as

mi = (xi, yi)
T

from the current map. This virtual sensor frame

is generated by applying ray-casters from the last known position

using the physical parameters of the input device (see Fig. 5).

Step two uses this data as a model for scan matching with the

current sensor data, the scene D = {di | i = 1, . . . , nD}, with

nD as the number of sensor measurements in the newly acquired

data, containing coordinates di = (xi, yi)
T

. This is done in two

substeps:



Figure 4. Eight frames showing the 2D map created in the MoLAS scenario (cf. Fig. 1). The red line denotes the trajectory. The

superimposed grid has a size of 10× 10m2

.

• A pre-registration step aligns both scans roughly using the

Random Sample and Consensus (RANSAC) paradigm by Fis-

chler and Bolles (1981). Therefore the algorithm picks two

model points and searches for point pairs with similar dis-

tances in the scene. This search is done in a brute force

manner. For each matching pair, the transformation between

the model point pair and the scene point pair is calculated.

Afterwards this transformation is applied to the scene scan.

The applied transformation is rated using the overall square

error between both scans and the number of inliers. In this

case inliers are defined as scene points with a corresponding

model point within a maximal range, e.g. within 0.1 m.

These steps are iterated multiple times and the best trans-

formation over all iterations is saved. Accordingly the al-

gorithms yields good estimates for a high number of inliers

and a small square error between the scans. For the exper-

iments the algorithm uses the best transformation after 50

iterations. Actually the number of iterations should be set

according to a desirable probability for finding a good esti-

mate. Anyway 50 iterations led to good estimates for scans

with up to 271 points.

Each iteration of the algorithm evaluates a random sample

of the model. Accordingly the actual algorithm has no itera-

tive character like an Iterative Closest Point (ICP) algorithm

for example. This increases the robustness of the scan align-

ment as it is not likely that the algorithm converges into the

wrong local minimum. Accordingly the pre-registration es-

pecially helps to align scans with bigger offsets where an

ICP algorithm tends to fail. This is an advantage in the

backpacking scenario as the human should not care about

moving slowly.

Furthermore, performance issues due to the brute-force search

are overcome by several measures: First, the scans are sub-

sampled by only picking up to every fourth point. Second,

possible rotational and translational parameters are limited

between two scans. This offers the possibility to determine

wrong estimations quickly. Finally, points are ignored, if

they originate from non-overlapping areas with the given es-

timate.

• The ICP algorithm introduced by Zhang (1994) and Chen

and Medioni (1991) is deployed on the roughly aligned scans

θ

Figure 5. Ray-casting model for the 2D profiler.

to refine the estimate of the pre-registration.

The application of this two stage approach helps us to overcome

the drawbacks of each algorithm. The ICP algorithm performs

poorly for large rotational errors between scans. In comparison

the pre-registration step is robust against large pose changes but

has a lower accuracy. After both steps, the sensor pose, denoted

as 3×3 transformation matrix Ti, is updated with the incremental

pose change T
∗

i from time step i− 1 to i. The third step uses the

current pose and sensor data to update the representation. This is

explained in detail in the following.

Reconstruction. The representation based on SDF has the char-

acteristic, that ray-casting can be employed to generate scans

from arbitrary points of view. The reconstruction from the TSD

grid at a certain point of view entails information of all integrated

scans so far and features reduced noise. The sensor model for the

ray-caster defines a set of vectors, i.e., the line of sight of each

laser beam, cf. Fig. 5.

A ray-caster in the SDF representation searches for sign changes

in the function. This approach has the benefit that skipping solid

objects through wrong step size or an unfortunate location of

the points, which might occur in voxel based strategies, is vir-

tually impossible. The reason for this is, that the sign change

which represents an object is not restricted to one layer of vox-

els / cells, wherefore the ray-caster is allowed to skip the actual

object location. A layer of thickness r, which refers to the trunca-

tion radius, contains negative values as well making sure the sign

change is detected. Nevertheless, this spoils the accuracy of the



reconstruction, but we correct the error by interpolation with the

neighboring cells. The resulting coordinates are used to fill in a

point cloud, resulting in a virtual data frame guaranteeing a high

amount of similarity to the real input point cloud.

Data Integration. The representation as a TSD grid has several

benefits but contains also pitfalls. For instance, on the contrary

to a Cartesian voxel based approach, the map building is diffi-

cult and calculation resource consuming. This results from the

characteristics of the SDF generation.

The SDF is calculated for every grid cell visible by the sensor,

wherefore the first step is back projecting the cell centroids V =
{vi | i = 1, . . . , nv}, i.e., assigning a certain laser beam. As

these coordinates are in the world coordinate system, they need

to be registered to the sensor coordinate system as follows:

V
∗ = T

−1
i V (1)

The centroids v∗

i are assigned to laser beams as follows:

αi = arctan

(

v∗iy

v∗ix

)

, (2)

ii =
αi

r
(3)

where αi is the beam’s polar angle, ii the assigned beam index

and r the sensor’s angular resolution.

4. 3D MAPPING

3D mobile mapping with constantly spinning scanners has been

studied in the past by the authors, thus we summarize our work

from (Borrmann et al., 2008) and (Elseberg et al., 2013a). The

software is suited to turn laser range data acquired with a rotating

scanner while the acquisition system is in motion into precise,

globally consistent 3D point clouds.

4.1 Calibration

Calibration is the process of estimating the parameters of a sys-

tem. We need to estimate the extrinsic parameters, i.e., the 3 DoF

attitude and 3 DoF position of the two laser scanners with respect

to some base frame. Up to now, we worked in the SOCS (scanner

own coordinate system) of the SICK scanner. We use the ROS

package tf (the transform library), that lets us keep track of mul-

tiple coordinate frames over time. tf maintains the relationship

between coordinate frames in a tree structure buffered in time,

and allows transforming points, vectors, etc. between any two

coordinate frames at any desired point in time.

In (Elseberg et al., 2013a) we presented a general method for the

calibration problem, where the 3D point cloud represents sam-

ples from a probability density function. We treated the ”‘un-

wind”’ process as a function where the calibration parameters are

the unknown variables and used the Reny entropy, computed on

closest points regarding a timing threshold, as point cloud quality

criterion. Since computing derivatives of such an optimization is

not possible, we employ Powell’s method, which minimizes the

function by a bi-directional search along each search vector, in

turn and therefore resembles a gradient descent. This optimiza-

tion usually takes about 20 minutes on a standard platform but

needs to be done only once for a new setup.

4.2 6D SLAM

For our backpack system, we need a semi-rigid SLAM solution,

which is explained in the next section. To understand the basic

idea, we summarize its basis, 6D SLAM.

6D SLAM works similarly to the the well-known iterative clos-

est points (ICP) algorithm, which minimizes the following error

function

E(R, t) =
1

N

N
∑

i=1

∥

∥mi − (Rdi + t)
∥

∥

2
(4)

to solve iteratively for an optimal rotation T = (R, t), where

the tuples (mi,di) of corresponding model M and data points

D are given by minimal distance, i.e., mi is the closest point to

di within a close limit (Besl and McKay, 1992). Instead of the

two-scan-Eq. (4), we look at the n-scan case:

E =
∑

j→k

∑

i

|Rjmi + tj − (Rkdi + tk)|
2
, (5)

where j and k refer to scans of the SLAM graph, i.e., to the graph

modelling the pose constraints in SLAM or bundle adjustment.

If they overlap, i.e., closest points are available, then the point

pairs for the link are included in the minimization. We solve for

all poses at the same time and iterate like in the original ICP.

The derivation of a GraphSLAM method using a Mahalanobis

distance that describes the global error of all the poses

W =
∑

j→k

(Ēj,k −E
′

j,k)
T
C

−1
( Ē

′

j,k −E
′

j,k) (6)

where E
′

j,k is the linearized error metric and the Gaussian dis-

tribution is (Ēj,k,Cj,k) with computed covariances from scan

matching as given in (Borrmann et al., 2008) does not lead to dif-

ferent results (Nüchter et al., 2010). Please note, while there are

four closed-form solutions for the original ICP Eq. (4), lineariza-

tion of the rotation in Eq. (5) or (6) is always required.

4.3 Semi-rigid SLAM

In addition to the calibration algorithm, we also developed an

algorithm that improves the entire trajectory of the backpack si-

multaneously. The algorithm is adopted from (Elseberg et al.,

2013a), where it was used in a different mobile mapping con-

text, i.e., on wheeled platforms. Unlike other state of the art al-

gorithms, like (Stoyanov and Lilienthal, 2009) and (Bosse and

Zlot, 2009), it is not restricted to purely local improvements. We

make no rigidity assumptions, except for the computation of the

point correspondences. We require no explicit motion model of

a vehicle for instance. The semi-rigid SLAM for trajectory opti-

mization works in 6 DoF, which implies that the planar trajectory

generated by TSD SLAM is turned into poses with 6 DoF. The

algorithm requires no high-level feature computation, i.e., we re-

quire only the points themselves.

In case of mobile mapping, we do not have separate terrestrial 3D

scans. In the current state of the art developed by (Bosse and Zlot,

2009) for improving overall map quality of mobile mappers in

the robotics community the time is coarsely discretized. This re-

sults in a partition of the trajectory into sub-scans that are treated

rigidly. Then rigid registration algorithms like the ICP and other

solutions to the SLAM problem are employed. Obviously, trajec-

tory errors within a sub-scan cannot be improved in this fashion.

Applying rigid pose estimation to this non-rigid problem directly

is also problematic since rigid transformations can only approx-

imate the underlying ground truth. When a finer discretization



is used, single 2D scan slices or single points result that do not

constrain a 6 DoF pose sufficiently for rigid algorithms.

Mathematical details of our algorithm are given in (Elseberg et

al., 2013a). Essentially, we first split the trajectory into sec-

tions, and match these sections using the automatic high-precise

registration of terrestrial 3D scans, i.e., globally consistent scan

matching (Borrmann et al., 2008). Here the graph is estimated

using a heuristics that measures the overlap of sections using the

number of closest point pairs. After applying globally consistent

scan matching on the sections the actual semi-rigid matching as

described in (Elseberg et al., 2013a) is applied, using the results

of the rigid optimization as starting values to compute the numer-

ical minimum of the underlying least square problem. To speed

up the calculations, we make use of the sparse Cholesky decom-

position by (Davis, 2005).

A key issue in semi-rigid SLAM is the search for closest point

pairs. We use an octree and a multi-core implementation using

OpenMP to solve this task efficiently. A time-threshold for the

point pairs is used, i.e., we match only to points, if they were

recorded at least td time steps away. This time corresponds to the

rotation time of the Riegl scanner, i.e., it is set to 6 sec. In ad-

dition, we use a maximal allowed point-to-point-distance which

has been set to 0.25 cm.

Semi-rigid SLAM transforms all points; points in a scanline via

interpolation over the time-stamps. Finally, all scan slices are

joined in a single point cloud to enable efficient viewing of the

scene. The first frame, i.e., the first 3D scan slice from the Riegl

scanner defines the arbitrary reference coordinate system. By us-

ing known landmarks, the acquired point cloud can be transferred

into the building coordinate system.

4.4 Constraining SLAM

Inspired by the work of (Triebel and Burgard, 2005) and to ac-

celerate the solution of the semi-rigid SLAM solution, we con-

strain the problem. As the operator walks on a planar surface, we

add a horizontal plane below the scanner, resembling the ground

roughly. This point cloud is pushed into the framework as 0th

scan. Consequently, semi-rigid SLAM adds automatically a SLAM

graph edge from every node to this plane and finds closest point

pairs. This yields a slight constraint and guides the optimization.

5. EXPERIMENTS, RESULTS, AND DISCUSSION

The backpack has been presented and demonstrated at MoLaS:

Technology Workshop Mobile Laser Scanning at Fraunhofer IPM

in Freiburg, Germany. A data set has been acquired in the hallway

in the Fraunhofer institute (see Figure 1). The Riegl VZ-400 was

rotating around the vertical axis back and forth to avoid the blind

spot. The data was acquired in 185 seconds. In this time, 19350

vertical scan slices have been acquired by the Riegl scanner and

are extracted from the corresponding .rxp-file.

The result of TSD SLAM was already given in Figure 4. As it

is a consistent 2D map, it serves as an input for “unwinding” the

Riegl data yielding an initial 3D point cloud. The top of Figure 6

shows a part of the point cloud prior to the semi-rigid SLAM, i.e.,

directly after unwinding it, below are the corresponding views af-

ter the optimization. The middle part gives an intermediate result,

while the final optimization result is given in the bottom part. The

interior quality of the point cloud improves, which can be seen at

the floor of the corridor. The final point cloud cloud is presented

in Figures 7 and 8. Figure 7 shows all 14,459,693 3D point, while

Figure 8 presents two different detailed views corresponding to

Figure 6 with mapped reflectances are shown. The lettering of

the poster becomes visible. The red line always denotes the com-

puted trajectory of the backpack. The experiment was performed

prior to the social event and thus, the oscillation originates from

the normal human walking motion.

The result is far from perfect. One reason is that several dynamic

objects are in the scene, like people walking by. The data set was

acquired during a crowded workshop. An example is shown in

Figure 9. Since semi-rigid SLAM depends on closest point cor-

respondences wrong correspondences, e. g., the ones from dy-

namic objects, lead to incorrect pose estimations and thus to im-

precise 3D point clouds. However, the resulting accuracy in the

centi-/decimeter range is sufficient for many applications of in-

door mapping, like floor and cleaning plan generation. As shown

in our previous work in (Elseberg et al., 2013a) the overall quality

of the 3D point cloud can be improved, by using a more precise

starting estimate for unwinding the data of the Riegl scanner. One

could incorporate an IMU, anyhow, we aimed at demonstrating

with this work, that IMU-free solutions are implementable.

Figure 6. Top: “unwound” 3D point cloud. Bottom: Optimized

point cloud using semi-rigid SLAM. Center: Intermediate result.



Figure 7. “unwound” 3D point cloud. Top left: 3D view. Top

right: Bird eye view. Bottom: Side views.

6. CONCLUSIONS AND FUTURE WORK

The paper presents the hardware and system architecture of our

backpack mobile mapping system. It is currently designed for

indoor applications, does not require GPS information or an ex-

pensive IMU. It is flexible and can easily be set up. Its techni-

cal basis is a horizontally-mounted 2D LiDAR, an effective 2D

SLAM algorithm and an calibration and semi-rigid SLAM algo-

rithm operating on the 3D point cloud.

Needless to say, a lot of work remains to be done. In future work,

Figure 8. Overall view of the final result. The points have been

colored using reflectances and the red line denotes the trajectory.

Figure 9. People walking through the scene, while scanning was

in progress.

we aim at testing the backpack in an outdoor environment and in-

corporating a GPS. Furthermore, we will integrate an algorithm

for estimating human steps and several cameras to color the point

cloud. Last but not least, we are planning to replace the laptop

with a small form factor industrial computer/raspberry pi or alike

to gain improvements in system weight and size. Furthermore,

we plan to systematically analyze the obtained accuracies in dif-

ferent setups, including sloped or in uneven environments.

ACKNOWLEDGMENTS

The project started while the first two authors were at Jacobs Uni-

versity Bremen, Germany. We would like to thank our former stu-

dents Remus Dumitru, Araz Jangiaghdam, George Adrian Man-

dresi, Vaibhav Kumar Mehta, Robert Savu, and David Redondo.

An initial student video is available under the following URL:

http://youtu.be/tI7kztEtEFM.

References
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