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ABSTRACT:

Planetary surfaces consist of rough terrain and cave-like environments. Future planetary exploration demands for accurate mapping.

However, recent backpack mobile mapping systems are mostly tested in structured, indoor environments. This paper evaluates the use

of a backpack mobile mapping system in a cave-like environment. The experiments demonstrate the abilities of an continuous-time

optimization approach by mapping part of a lavatube of the La Corona volcano system on Lanzarote. We compare two strategies for

trajectory estimation relying either on 2D or 3D laser scanners and show that a 3D laser scanner substantially improved the final results.

Figure 1. Photo of the La Corona lavatube on Lanzarote at the

“Jameo de la Puerta Falsa”

1. INTRODUCTION

The exploration of Solar System bodies relies heavily on remote

sensing and mapping (e.g. Massironi et al. (2018)). Planetary sur-

face exploration, either robotic, human, or human-robotic, relies

on experiments that can be tested on Earth analogues (cf. Baker

(2014); Garry and Bleacher (2011). The ESA astronaut training

campaign extensions PANGAEA-X (Sauro et al., 2018; Bessone

et al., 2018) took place on the island of Lanzarote in 2017 and

2018 and hosted several experimental suites focussing on field

geology and exploration. One of the objectives was to test tech-

nologies for exploration and mapping in low lighting conditions,

lava tubes and rough terrain. Lanzarote was chosen due to its geo-

logical resemblance to Mars and Moon. One of the test suites was

AGPA (Rossi et al., 2018a,b), which stands for Augmented field

Geology and Geophysics for Planetary Analogues and comprises

a flexible suite of remote sensing and geophysical experiments.

One of the experiments conducted within AGPA is the mapping

of part of the Corona lava tube, more specifically the accessible

area known as “Jameo de la Puerta Falsa”, shown in Figure 1.
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Lidar (light detection and ranging) systems produce 3D mod-

els with high spatial accuracy independent of lighting conditions

and visible features. For high precise measurements terrestrial

laser scanning is the method of choice. However, in unstruc-

tured environments like the one at hand, a large amount of scan-

ning positions are required to avoid occlusions. Mobile mapping

systems with sensors mounted on cars allow for faster measure-

ments from changing viewpoints and are the method of choice

for mapping urban environments. Robotic solutions (Nüchter

et al., 2013) or solutions with scanners mounted on carts, like

the viametris iMMS (VIAmetris, 2015; Thomson et al., 2013),

the Google Street View Trolley (Google, 2015), or the NavVis

3D Mapping Trolley (NavVis, 2015) are applicable in smaller al-

leys. At stairs as well as dirt or gravel roads these systems still

meet their limits. Airborne laser scanning is not restricted to spe-

cific terrain and thus has advantages, but it is not available in

roofed environments or tunnels or gives unsatisfying results in ar-

eas with a lot of trees or bushes. Backpack mounted systems, also

known as personal laser scanning, such as “The Cartographer” by

Google (Lardinois, 2015), the Zebedee 3D sensor system (Bosse

et al., 2012) or the Leica Pegasus:Backpack (Leica, 2015) have

been presented as ideal solutions to overcome these issues for

indoor mapping. However, they have mostly been tested in struc-

tured environments.

In previous work, we presented our backpack mobile mapping

system (Nüchter et al., 2015), featuring a high-end laser scanner,

namely the Riegl VZ-400, for mapping with various setups and

we evaluated its performance in structured indoor and outdoor

environments (Lauterbach et al., 2015). In contrast to the Akhka-

Backpack by Kukko et al. (2012), which also provides a high-end

laser scanner, we do not incorporate a global navigation satellite

system (GNSS) for localization. In urban canyons or tunnels,

a GNSS-free approach is advantageous, since the GNSS signal

may be disturbed, and thus, localization would fail. Corso and

Zakhor (2013) and Lehtola et al. (2015) also present GNSS-free

solutions based on laser scanners. However, they are currently

restricted to environments where the 2.5D assumption holds true

or to 1D trajectories on flat floors, respectively.
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Figure 2. The backpack with Riegl VZ-400 and Velodyne

VLP16 Lite laser scanners

This paper evaluates the use of the backpack mobile mapping

system for use in unstructured cave-like environments where the

2.5D assumption does not hold true. Not only consists the floor of

rough terrain but also the walls are highly unstructured. To enable

the backpack system to work in such an environment the setup is

modified. The system from (Lauterbach et al., 2015) relies on

a 2D laser scanner to estimate the trajectory of the Riegl VZ-

400. This is shown to give poor results in unstructured environ-

ments. Therefore the 2D laser scanner is replaced by a 3D laser

scanner commonly used in automotive applications improving

the initial trajectory significantly. A semi-rigid SLAM (Simul-

taneous Localization and Mapping) approach is used to optimize

the point clouds. The main contributions are the development of

an upsampling-based scan registration for trajectory estimation

and the improvement of a semi-rigid ICP (Iterative Closest Point)

strategy.

2. BACKPACK MOBILE MAPPING SYSTEM

2.1 System configuration

The central sensor of the backpack system (cf. Fig. 2) is a Riegl

VZ-400 3D laser scanner (Riegl Laser Measurement Systems,

2019). It rotates back and forth around its vertical axis, provid-

ing a horizontal field of view (FoV) of 270◦ and a vertical FoV

of 100◦, thus continuously collecting data and avoiding the blind

spot caused by the human operator. It runs at a rotational speed

of 1/6 ◦

s
−1 recording 2D scan lines with 120Hz at an angular

resolution of 0.5◦. The maximum range is 350m. For motion

estimation the system relies on a Velodyne VLP16 Lite 3D laser

scanner. It provides full 360◦ scans at a frequency of 10Hz with

a maximum range of 100m. The vertical FoV of 30◦ is sparsely

covered by 16 scan lines with a resolution of 2
◦ vertically and

0.2◦ horizontally. The laser scanners are connected by LAN to a

laptop running the Robot Operating System (ROS) for data log-

ging. The offset between the two 3D sensors is calibrated by

registration of laser scans in a static environment.

2.2 Processing pipeline

The workflow is depicted in Fig. 3. The recorded sparse 3D laser

scans are upsampled and registered according to Sec. 3 to es-

timate the initial trajectory. Next, the 3D laser scans from the

terrestrial laser scanner are extracted in the unwinding step, dis-

cretized in 2D scan slices. The initially created point cloud is

then optimized with continuous-time ICP and SLAM described

in Sec. 4.2 and 4.1.

3. TRAJECTORY ESTIMATION

Due to the flat world assumption the effectiveness of mapping

systems relying on a 2D laser scanner is limited in rough envi-

ronments. Nüchter et al. (2015) estimate the trajectory by pro-

cessing 2D laser scans with HectorSLAM (Kohlbrecher et al.,

2011). To improve results, attitude information from an inertial

measurement unit (IMU) is used by HectorSLAM to reject points

that are far away from the ground plane for scan matching.

Recently arising 3D laser scanners used in automotive applica-

tions combine multiple 2D scan lines at different scan angles.

The resulting point clouds are sparse in vertical direction, thus

traditional scan registration variants, such as the well-known ICP

algorithm Besl and McKay (1992), tend to fail. This is resolved

by either extracting features, that are present in multiple lines,

like edges or planes (Zhang and Singh, 2014), or by making as-

sumptions about the underlying surface. Holz and Behnke (2014)

therefore create a simple quad mesh in order to estimate the point

normals and then apply a variant of the Generalized-ICP (Segal

et al., 2009). Similar to this we approximate the surface by up-

sampling the point cloud. Inspired by the idea of range images,

the sensor data is first organized into a ring or bin structure, pre-

serving the real measurement. For each point two triangles are

created with its successor of the same ring and the two concurrent

points in the next ring. As in (Holz and Behnke, 2014) triangles

are rejected if an edge is nearly parallel to the line of sight with

respect to the scan pose or a depth discontinuity is detected con-

sidering angular and range dependent thresholds. A valid triangle

is then further subdivided into smaller triangles until the largest

edge is shorter than a threshold. The vertices of the triangles

form a virtual scan. Octree reduction generates a homogeneous

distribution of points. Finally the trajectory is estimated by in-

cremental registration using ICP and the data from the terrestrial

scanner unwound using this trajectory.

4. TRAJECTORY OPTIMIZATION

Common 3D registration approaches expect the sensor not to

move during individual measurements. As this rigidity assump-

tion does not hold true for many applications in the automotive

field or for mobile mapping, continuous-time optimization ap-

proaches have recently moved into the research focus. Two gen-

eral approaches to this problem are combined for the backpack

system, the optimization of the entire trajectory at once versus

sequential optimization.

4.1 Continuous-time SLAM

Given a sufficiently estimated trajectory, the entire point cloud

can be improved by optimizing the entire trajectory. We use the

approach from (Elseberg et al., 2013) that is based on the ICP

concept known for rigid registration algorithms. The initial point

cloud is a set of scan slices, each of which is assigned a time

stamped pose during the trajectory estimation. We first split the

trajectory into overlapping sections and match these using the au-

tomatic high-precision registration of terrestrial 3D scans, i.e.,

the graph-based SLAM approach presented in (Borrmann et al.,
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Figure 3. workflow of our backpack system

2008a). The graph is estimated using a heuristic that measures

the overlap of sections based on the number of closest point pairs.

After applying globally consistent scan matching on the sections

the actual continuous-time or semi-rigid matching, as described

in (Elseberg et al., 2013), is applied, using the results of the rigid

optimization as starting values to compute the numerical min-

imum of the underlying least square problem. The choice of

the subdivision is crucial for the results. Local trajectory errors

within a sub-scan cannot be improved. A finer discretization, e.g.,

to single 2D scan slices, does not constrain a 6 DoF pose suffi-

ciently.

For long trajectories in unstructured environments this global ap-

proach is problematic. If the trajectory error is larger than the fea-

tures in the scene, wrong point correspondences are likely to oc-

cur and to move the point cloud into local minima. Additionally,

memory requirements and runtime increase. Thus, a sequential

method is developed to minimize local errors before the global

optimization.

4.2 Semi-rigid ICP

The sequential approach of continuous-time ICP extends the work

in (Elseberg et al., 2013; Lauterbach and Nüchter, 2018). To

achieve separate 3D scans, as needed for scan registration, we

group scan slices into submaps. The submaps are sequentially

merged into larger submaps, also called meta-scans. One arbi-

trarily chosen scan of each submap is labeled as reference scan

and defines a local coordinate system. The submaps are regis-

tered rigidly with ICP. Afterwards the transformation is locally

distributed to all individual scan slices between the two reference

scans. Although not constrained, a linear distribution of the trans-

lation and SLERP interpolation shows to be sufficient for small

errors. Alternatively we use an error distribution based on (Else-

berg et al., 2013). The ICP is applied sequentially to all submaps

generated along the trajectory.

A key issue in scan registration is the search for closest point

pairs. The search trees in 3DTK (Elseberg et al., 2012) are op-

timized for small memory footprint and fast search operations.

However, due to their compact representation in memory they do

not allow for dynamic extension. Thus, in sequential registration

the map needs to be rebuilt for each new inserted submap. To

speed up the incremental registration process, several searchtrees

for already merged submaps are maintained and queried in par-

allel. 5 k-d trees have shown to be a good trade-off between in-

creasing search time and reducing construction time for a new

k-d tree containing the complete meta-scan.

5. EXPERIMENTS

5.1 Dataset

The approach is tested on datasets collected during the ESA PAN-

GAEA-X campaigns in 2017 and 2018. The test site is located

in a lava tube of the La Corona volcano system on Lanzarote.

This lava tube is an approximately 8km long cave formed by hot

lava melting rocks during its flow towards the sea. It is accessible

at several so called “Jameos”, where the ceiling of the tube col-

lapsed. The experiments map an approximately 70m long part of

the tube at “Jameo de la Puerta Falsa”. This part consists of two

halls 10m to 20m wide and high, connected by a narrow passage

of 3m times 3m. The floor is covered by rocks of different sizes,

that have to be circumvented or stepped over, as well as two steep

passages of hard soil.

The experiments consist of several runs along a trajectory of 55m

to 60m in either direction using the backpack configuration de-

scribed above. Additional runs using a SICK LMS 151 2D laser

profiler allow to compare the approach to the system from (Lauter-

bach et al., 2015). Subsequently the datasets are denoted as Tra-

jectory3D and Trajectory2D. Table 1 summarizes the information

on the presented datasets.

Terrestrial laser scans collected at 15 static positions along the

trajectory (cf. Fig. 4), to minimize occlusions, serve as ground

truth. These high precise and dense laser scans are registered

using the ICP and SLAM (Borrmann et al., 2008b) algorithms

implemented in 3DTK (Nüchter et al., 2018).

For evaluation, we apply the processing pipeline described in 2.2

to both datasets. Although continuous-time SLAM is able to use

time discretization based on single points, the chosen discretiza-

tion in the unwinding step results in 2D scan slices. A pose is

assigned to each scan slice by interpolating linearly in time be-

tween trajectory points. Each of the iterative optimization pro-

cesses that follows is repeated manually optimizing parameters

such as size of the submap and maximum matching distance in a

coarse to fine manner.

After applying the pipeline to each run of each dataset the data

of two consecutive runs is combined into one point cloud to re-

duce occlusions caused by the limited FoV of the sensor. The

continuous-time SLAM optimizes the trajectory. The initial tra-

jectory for datasets using the 2D laser scanner was generated us-

ing Hector SLAM as described in (Lauterbach et al., 2015). To

compensate the drift in the pose estimation from Hector SLAM

and to ensure global consistency in this scenario the best results

from individual optimization for each direction are selected and

merged.
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Table 1. Information on the datasets presented

Dataset Motion Sensor Time [s] Line Scans Points ICP iterations SLAM iterations

Trajectory3D Velodyne VLP16 391 39937 40,381,128 10 + 15 200

Trajectory2D SICK LMS151 433 43019 35,704,888 10 200 + 600 + 30

Figure 4. Reference point cloud, colored by reflectance values.

Above: view near the starting point of the experiments. Below:

detail at the turning point of the trajectory.

For continuous-time ICP we grouped scans of 2 or 1 revolution

of the Riegl VZ-400 resulting in submaps of 960 and 480 scans,

respectively. We applied 10 iterations of continuous-time ICP on

each run of Trajectory3D and another 15 on the combined dataset.

Continuous-time SLAM was applied only on the combined runs

with 200 iterations. On Trajectory2D we apply continuous-time

ICP only for 10 iterations on each run. (cf. Tab. 1) For the runs

shown in Fig.5 the continuous-time SLAM needs 600 iterations

to compensate the drift in run A and 200 iterations to correct run

B. Only 30 iterations on the combined dataset yield the final point

cloud.

Start A
Start B

Figure 5. Unwound initial point clouds from dataset

Trajectory2D w.r.t. ground truth (semi transparent yellow) from

top view. The gray lines depict the estimated trajectory from

HectorSLAM. At the beginning of each run A and B the point

clouds match the reference cloud, but quickly diverge.

100 cm

80 cm

60 cm

40 cm

20 cm

0cm

Figure 6. Final point cloud for dataset Trajectory3D, colored by

deviation from ground truth. Blue indicates low and red large

errors. Above: detail from the lavatube near the starting point.

Below: detail at the turning point of the trajectory. The gray line

resembles the trajectory.

5.2 Results

The estimated trajectory calculated by our approach using upsam-

pled laser scans for registration, produces an initial point cloud

that represents the environment well on a global scale. As ex-

pected the trajectories generated by HectorSLAM are prone to

drift. As shown in Fig. 5, the point clouds of each run (Start

A and B) match the reference cloud near their origin but then

quickly diverge. The reason for this is discussed in 3. However,

the optimization successfully corrects for this drift, so that the fi-

nal point cloud of dataset Trajectory2D also reflects the general

shape of the lava tube.

The cloud to cloud distance between the backpack datasets and

the ground truth data gives a measure of accuracy (Fig. 6, 7, 9).

Fig. 6 visualizes the deviation from ground truth for dataset Tra-

jectory3D. Large errors are indicated in red, while points with

small distance to the closest points are colored blue. The top im-

age shows the optimized point cloud near the start respectively

end of the trajectory, which corresponds to the right side of the

side view in Fig. 9. To support the visual representation the cor-

responding error histogram in Fig. 10 shows that most errors lie

in low decimeter range. 95% of all points feature an error less

than 20 cm and even 80% an error less than 10 cm. However the

pose of some scan slices is still incorrect, thus providing errors

up to 50 cm, mainly at the walls.
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Figure 7. Final point cloud for dataset Trajectory2D, colored by

deviation from ground truth. Above: detail from the lavatube

near the starting point. Below: detail at the turning point of the

trajectory. The gray line resembles the trajectory.

The bottom image of Fig. 6 shows the same point cloud at the

turning point of the trajectory. The errors are larger in this region

compared to the top image. The reasons are two-fold. First, there

are gaps in the ground truth data as visualized in Fig. 8. Due to

the positioning on the ground, the terrestrial laser scan (yellow)

suffers from occlusions. Clearly seen by the magenta areas in the

background these holes are filled by the backpack dataset Trajec-

tory3D. As we used the distance to the closest point as an error

measure, points up to the maximum search distance of 100 cm

at the borders are wrongly assigned a high error, as seen for the

green and red points in the background of Fig. 6 in the bottom

image. Second, in such optimization problems the uncertainty

grows with distance to the reference point, which is in our case

the starting point of the trajectory. The green points at the ceil-

ing originate from the scans near the turning point, i.e., the poses

with the largest distance to the origin.

For the second dataset Fig. 7 depicts the same views as Fig. 6 does

for the first dataset. As expected the error is higher in comparison

to dataset Trajectory3D. The wallpoints in the top image have

errors around 60 cm while the errors on the ceiling grow up to

100 cm at edges. Although individual smaller structures are still

distinguishable, they appear blurred. Interestingly the errors are

similarly distributed at the end of the tube (bottom image) as near

the start point, except one spot on the ceiling in the middle. This

becomes clear in the side view in Fig. 9. This effect originates

from the fact that the starting point for the second run is near the

left side and thus its trajectory is more precise near the origin.

Again, the visual impression is supported by the corresponding

histogram in Fig. 11. The local inaccuracy is revealed by the fact

that less than 80% and 52% of all points provide an error less

than 20 cm and 10 cm, respectively.

To summarize the results, both approaches for trajectory estima-

tion yield point clouds that resemble the shape of the environ-

Figure 8. Comparison of dataset Trajectory3D (magenta) to

ground truth (yellow). Note that the reference point cloud suffers

from occlusions that are not present in the backpack data.

ment after optimization, although the initial trajectory generated

by HectorSLAM contains large drift errors. The setup with the

3D automotive laser scanner improves the accuracy on a local

scale resulting in a point cloud with a point to point distance of

less than 20 cm for 95% of the data.

6. CONCLUSIONS AND FURTHER WORK

In this paper we propose a pipeline for a backpack mobile map-

ping system and evaluate its use on data collected in an rough

cave-like environment. In order to estimate the initial trajectory

of a terrestrial laser scanner, we match sparse 3D laser scans with

upsampling based registration. The applied optimization step us-

ing continuous-time ICP and SLAM manages not only to correct

for large drift, but yields a point cloud, where 79% of all points

have an error of less than 10 cm.

Further work includes the application of the pipeline to open field

environments as well as fusion of IMU data, that was recorded

but not used in the pipeline. Open field datasets also allow for

the integration of GNSS systems to further improve the trajectory

estimation.
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Hertzberg, J., 2008a. Globally consistent 3d mapping with
scan matching. Journal Robotics and Autonomous Systems
(JRAS) 56(2), pp. 130–142.

Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A. and
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