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Abstract— This paper presents a novel scheme for fast color
invariant ball detection in the RoboCup context. Edge filtered
camera images serve as an input for an Ada Boost learning
procedure that constructs a cascade of classification and regres-
sion trees (CARTs). Our system is capable to detect different
soccer balls in the RoboCup and other environments. The
resulting approach for object classification is real-time capable
and reliable.

I. INTRODUCTION

A fundamental problem in the design of autonomous mobile
cognitive systems is to perceive the environment. A basic part
of perception is to learn, detect and recognize objects, which
must be done with respect to the limited resources of a mobile
robot and the limited choice of available kinds of sensors.
The performance of a mobile robot crucially depends on the
accuracy, duration and reliability of its perceptions and the
involved interpretation process. This paper describes a real
time capable, color and scale invariant object learning and
detection scheme. The arrangement of Haar-like features of
objects is learned. To calculate the features, the computa-
tionally efficient representation of integral images is applied.
The Gentle Ada Boost learning technique is used to learn a
selection of Classification and Regression Trees (CARTs) with
four splits. Several selections are combined to a cascade of
classifiers. To ensure the color-invariance of the input images,
they are first preprocessed by applying an edge detection Sobel
filter. By passing the filtered images through a threshold, all
color information is omitted.

The motivation of our research was triggered by our interest
in the Robot World Cup Soccer Games and Conferences
(RoboCup) [5], which was created as a standard scenario
where technologies could be integrated and developed, thereby
encouraging innovative work in the fields of robotics and
computer vision and promoting the public understanding of
science.

Our experiments were carried out by the autonomous mobile
robot Kurt3D, originally constructed to digitalize environments
in 3D [13], [15], [14]. Kurt3D also has other applications, such
as educational robotics, or in our case, soccer robotics [5].

The most common techniques for object detection, i.e., ball
detection, in the RoboCup context rely on color information.
In the last few years, fast color segmentation algorithms have
been developed to detect and track objects in this scenario [1],
[7]. The community agreed that in the near future, visual cues
like color will be removed to come to a more realistic setup
with robots playing with a “normal” soccer ball [16].

Some research groups have already started to develop algo-
rithms for color invariant ball detection. One is described by
Coath and Musumeci, who presented an edge-based ball detec-
tion system [2]. They developed an adaptive arc identification
and location system that processes image data containing edge
information.

General Object detection and classification, i.e., not within
the RoboCup context, has intensely been researched in com-
puter vision [10], [11], [17]. Common approaches use neural
networks or support vector machines (SVM), for example, to
detect and classify objects. Rowley et al. detect faces using
a small set of simple features and neural networks [11] and
Papageorgiou et al. recognize pedestrians with simple vertical,
horizontal and diagonal features and SVMs [10]. Recently,
Viola and Jones have proposed a boosted cascade of simple
classifiers for fast face detection [17].

Independent from our work Treptow et al. used Viola and
Jones’ algorithm to track objects without color information.
In contrast to their object detection system we preprocess the
images to enhance the simple vertical and horizontal features.
In addition to this, diagonal features and rotated integral
images are used. To recognize different balls we learned
Classification and Regression Trees.

The rest of the paper is structured as follows: First we
describe the robot platform Kurt3D. Section III presents the
learning algorithm. Results are given in section IV and section
V concludes the paper.

II. THE AUTONOMOUS MOBILE ROBOT KURT3D

A. The Kurt Robot Platform

Kurt3D (Fig. 1) is a mobile robot platform with a size of
45 cm (length) × 33 cm (width) × 26 cm (height) and a
weight of 15.6 kg, for which both indoor as well as outdoor
models exist. Equipped with the 3D laser range finder, the
height increases to 47 cm and the weight increases to 22.6 kg.1

Kurt3D’s maximum velocity is 5.2 m/s (autonomously con-
trolled: 4.0 m/s). Two 90W motors are used to power the 4
wheels. Kurt3D operates for about 4 hours with one battery
(28 NiMH cells, capacity: 4500 mAh) charge. The core of
the robot is an Inter-Centrino-1400 MHz with 768 MB RAM
and a Linux operating system. An embedded 16-Bit CMOS
microcontroller is used to control the motor.

1Videos of the exploration with the autonomous mobile robot can be found
at: http://www.ais.fraunhofer.de/ARC/kurt3D/index.html



Fig. 1. Left: The pan-tilt camera system. Right: The autonomous
mobile robot Kurt3D (outdoor version) equipped with the AIS 3D
laser range finder and two pan-tilt cameras.

B. The Camera System

The camera system (Fig. 1, left) consists of two Logitech
Quickcam 4000 Pro USB webcams. They are equipped with a
manual focus lens and the resolution is limited to 640 × 480
pixels with 7 fps as the maximum frame rate. To cover the
whole area in front of the robot the webcam is mounted on
a pan-tilt unit which is based on 2 servo drives (Volz Micro-
Maxx), one for the horizontal axis and the other for the vertical
axis. Each axis can be rotated by ±45◦. Due to the high-grade
servo drives, an excellent repeat accuracy in positioning is
guaranteed.

The webcams are powered over the USB interface and the
servo drives are fed by the same batteries as the 3D laser range
finder servo.

III. LEARNING A SPHERE CLASSIFIER

Recently, Viola and Jones have proposed a boosted cascade
of simple classifiers for fast face detection [17]. Inspired by
these ideas, we detect objects, e.g., balls, in camera images.

A. Color Invariance using Linear Image Filters

The problem with recognizing general shapes, such as balls,
as in our particular case, is the number of possibilities in the
visual appearance of a ball. A ball can take on any color, size
and may have any pattern on its surface. In order to generalize
the concept of a ball, the initial goal was the elimination of any
color information in the data images representing the balls.

In this paper, we have achieved this using linear image filters
to detect the edges in the image, followed by a threshold to
eliminate noise data, which would then be given as input to
the classifier, which in turn handles differences in size, pattern,
lighting, etc.

The most common edge detection techniques used are
gradient and Laplacian operators. For this paper, we have
experimented with multiple gradient filters, as well as a
Laplacian filter, which we implemented ourselves, according
to the algorithm described in [3]. The technique of the gradient
operator is defined as follows:

A =




a11 a12 a13 . . .
a21 a22 a23 . . .
a31 a32 a33 . . .

...
...

...
. . .




B =




b11 b12 b13 . . .
b21 b22 b23 . . .
b31 b32 b33 . . .

...
...

...
. . .




V =




v11 v12 v13

v21 v22 v23

v31 v32 v33


 H =




h11 h12 h13

h21 h22 h23

h31 h32 h33




vi,j =
i+1∑

x=i−1

j+1∑

y=j−1

v factor ∗ ax,y ∗ vx,y

hi,j =
i+1∑

x=i−1

j+1∑

y=j−1

h factor ∗ ax,y ∗ hx,y (1)

bi,j =
√

(v2
i,j + h2

i,j) ∗ edge intensity

where A represents the matrix of pixels in the input image,
B the output image and V and H the 3 × 3 vertical and
horizontal masks that are moved over the image pixels starting
at the top left corner, through to the bottom right. A number
of parameters need to be adjusted for each filter instance, such
as the edge intensity, which defines how “thick” the output
edges should be, and h factor and v factor to emphasize
the differentiation in each direction (horizontal or vertical,
respectively).

In our approach, we used a Sobel filter, with V and H
defined below, edge intensity = 4.0 and both v factor and
h factor equal to 1.

V =



−1 0 1
−2 0 2
−1 0 1


 H =



−1 −2 −1
0 0 0
−1 −2 −1




Two techniques were attempted in terms of filtering and
thresholding:
• Converting the image into gray scale mode and then ap-

plying the filtering algorithm, followed by the threshold.
• Applying the filter to the colored image and then using

a threshold to include any pixel in any of the 3 color
channels that crossed the threshold value in the output
image.

The difference in results is shown in Fig. 2. A typical output
of the Sobel filter is shown in Fig. 3.

This edge detection and thresholding technique is applied to
all images used as input to the training of the Haar classifier.
The training process itself is illustrated in the following
subsections.



Fig. 2. Left: A Sobel filter applied to a gray scale image. Right: Sobel filter
applied to a colored image and then thresholded.

Fig. 3. Typical output of the Sobel filter

B. Feature Detection using Integral Images

There are many motivations for using features rather than
pixels directly. For mobile robots, a critical motivation is that
feature based systems operate much faster than pixel based
systems [17]. The features used here have the same structure
as the Haar basis functions, i.e. step functions introduced by
Alfred Haar to define wavelets [6]. They are also used in [8],
[9], [10], [17]. Fig. 4 (left) shows the eleven basis features,
i.e. edge, line, diagonal and center surround features. The base
resolution of the object detector is 30×30 pixels, thus, the set
of possible features in this area is very large (642592 features,
see [9] for calculation details). A single feature is effectively
computed on input images using integral images [17], also
known as summed area tables [8], [9]. An integral image I is
an intermediate representation for the image and contains the
sum of gray scale pixel values of image N with height y and
width x, i.e.,

I(x, y) =
x∑

x′=0

y∑

y′=0

N(x′, y′).

The integral image is computed recursively, by the formulas:
I(x, y) = I(x, y − 1) + I(x− 1, y) + N(x, y)− I(x− 1, y −
1) with I(−1, y) = I(x,−1) = I(−1,−1) = 0, therefore
requiring only one scan over the input data. This intermediate
representation I(x, y) allows the computation of a rectangle
feature value at (x, y) with height and width (h,w) using four
references (see Figure 4 (top right)):

F (x, y, h, w) = I(x, y) + I(x + w, y + h)−
I(x, y + h)− I(x + w, y).

For the computation of the rotated features, Lienhart et. al.
introduced rotated summed area tables in 2002 that contain
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Fig. 4. Left: Edge, line, diagonal and center surround features are used for
classification. Right: Computation of feature values in the shaded region is
based on the four upper rectangles.

the sum of the pixels of the rectangle rotated by 45◦ with the
bottom-most corner at (x, y) and extending till the boundaries
of the image (see Figure 4 (bottom right)) [9]:

Ir(x, y) =
x∑

x′=0

x−|x′−y|∑

y′=0

N(x′, y′).

The rotated integral image Ir is computed recursively, i.e.,
Ir(x, y) = Ir(x − 1, y − 1) + Ir(x + 1, y − 1) + −Ir(x, y −
1)+N(x, y)+N(x, y−1) using the start values Ir(−1, y) =
Ir(x,−1) = Ir(x,−2) = Ir(−1,−1) = Ir(−1,−2) = 0.
Four table lookups are required to compute the pixel sum of
any rotated rectangle with the formula:

Fr(x, y, h, w) = Ir(x + w − h, y + w + h− 1) +
Ir(x, y − 1)− Ir(x− h, y + h− 1)−
Ir(x + w, y + w − 1).

Since the features are compositions of rectangles, they are
computed with several lookups and subtractions weighted with
the area of the black and white rectangles.

To detect a feature, a threshold is required. This threshold is
automatically determined during a fitting process, such that a
minimum number of examples are misclassified. Furthermore,
the return values (α, β) of the feature are determined, such
that the error on the examples is minimized. The examples
are given in a set of images that are classified as positive or
negative samples. The set is also used in the learning phase
that is briefly described next.

C. Learning Classification Functions

1) Classification and Regression Trees: For all 642592
possible features a Classification and Regression Tree (CART)
is created. CART analysis is a form of binary recursive
partitioning. Each node is split into two child nodes, in which
case the original node is called a parent node. The term
recursive refers to the fact that the binary partitioning process
is applied over and over to reach a given number of splits (4
in this case). In order to find the best possible split features,
we compute all possible splits, as well as all possible return
values to be used in a split node. The program seeks to
maximize the average “purity” of the two child nodes using
the misclassification error measure [12]. Figure 5 (left) shows
a simple feature classifier and a simple CART (right).



thr. = 0.0008941

−0.5598 0.8981

(b)(a)

0.4825 −0.8826

0.898 −0.6285

−0.8388
thr. = 0.006154

thr. = −0.007196 thr. = −0.00319

thr. = 0.03673

Fig. 5. Left: A simple feature classifier. Right: A Classification and
Regression Tree with 4 splits. According to the specific filter applied to the
image input section x, the output of the tree, h(x) is calculated, depending
on the threshold values.

2) Gentle Ada Boost for CARTs: The Gentle Ada Boost
Algorithm is a variant of the powerful boosting learning
technique [4]. It is used to select a set of simple CARTs to
achieve a given detection and error rate. In the following, a
detection is referred to as a hit and an error as a false alarm.
The various Ada Boost algorithms differ in the update scheme
of the weights. According to Lienhart et al. the Gentle Ada
Boost Algorithm is the most successful learning procedure
tested for face detection applications [9], [8].

The learning is based on N weighted training examples
(x1, y1), . . . , (xN , yN ), where xi are the images and yi ∈
{−1, 1}, i ∈ {1, . . . , N} the classified output. At the begin-
ning of the learning phase the weights wi are initialized with
wi = 1/N . The following three steps are repeated to select
simple CARTs until a given detection rate d is reached:

1) Every simple classifier, i.e., a CART, is fit to the data.
Hereby the error e is calculated with respect to the
weights wi.

2) The best CART ht is chosen for the classification
function. The counter t is incremented.

3) The weights are updated with wi := wi · e−yiht(xi) and
renormalized.

The final output of the classifier is sign(
∑T

t=1 ht(x)) > 0,
with h(x) the weighted return value of the CART. Next, a
cascade based on these classifiers is built.

D. The Cascade of Classifiers

The performance of a single classifier is not suitable for
object classification, since it produces a high hit rate, e.g.,
0.999, but also a high error rate, e.g., 0.5. Nevertheless, the
hit rate is much higher than the error rate. To construct an
overall good classifier, several classifiers are arranged in a
cascade, i.e., a degenerated decision tree. In every stage of
the cascade, a decision is made whether the image contains
the object or not. This computation reduces both rates. Since
the hit rate is close to one, their multiplication results also in a
value close to one, while the multiplication of the smaller error
rates approaches zero. Furthermore, this speeds up the whole
classification process. Figure 6 shows an example cascade of
classifiers for detecting balls in 2D images, whose results are
given in Table I.

An overall effective cascade is learned by a simple iterative
method. For every stage the classification function h(x) is
learned, until the required hit rate is reached. The process
continues with the next stage using the correct classified
positive and the currently misclassified negative examples. The

Fig. 7. Top left: RoboCup football arena. Top right: Uniform background.
Bottom left: RoboCup Rescue arena. Bottom right: Complex images.

number of CARTs used in each classifier may increase with
additional stages.

IV. BALL DETECTION AND RESULTS

Although the process of generating the cascade of classifiers
is relatively time-consuming, it produces quite promising
results. The first three stages of a learned cascade are shown
in Fig. 6. The cascade was tested systematically using four
categories of input data (see Fig. 7):

1) RoboCup football arena
2) Uniform background
3) Rescue robotics arena
4) Complex scenes

The idea behind this categorization was to be able to determine
exactly where the strengths and weaknesses of the technique
lie. The algorithm is to be applied to football-playing robots
participating in RoboCup to detect footballs, the innovation
being the independence of color and surface pattern of the
ball. The first test to be passed was therefore detecting the
three different balls in the RoboCup arena. The algorithm not
only works well in the arena, but with any images with a
uniform background behind the footballs. This is shown by
the next test set. To test our method to its limits we tested
it both with images taken in the RoboCup Rescue arena, as
well as other more complex images, with all sorts of noise and
distracting objects. For each image category we ran the test
with 25 pictures, including 15 of each ball, making a total of
100 images and a total of 180 balls (60 each). The detection
speed averaged at 300msec per image. A sample of the test
images in each category is shown in Fig. 7; the results of the
experiments run on two different cascades are given in Tables
I and II. The tables reveal how many red, white or yellow
balls were correctly classified or not detected, as well as the
number of false positives in each image category. The first
cascade was learned with a total of 1000 images, where the
second used a mere 570 input images.
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Fig. 6. The first three stages of a cascade of classifiers to detect a ball. Every stage contains several simple classifier trees that use Haar-like features with
a threshold and return values of

P
h(x).

Correct Not Detected False Pos.
red 13 2

RoboCup wht 5 26/45 10 19/45 4
yel 8 7
red 13 2

Uniform wht 13 39/45 2 6/45 0
yel 13 2
red 2 13

Rescue wht 2 5/45 13 40/45 10
yel 1 14
red 0 15

Complex wht 0 0/45 15 45/45 9
yel 0 15
red 28/60 32/60

Total wht 20/60 40/60 23
yel 22/60 38/60

TABLE I
SIMPLE TRAINING DATA

Correct Not Detected False Pos.
red 14 1

RoboCup wht 11 37/45 4 8/45 5
yel 12 3
red 15 0

Uniform wht 14 42/45 1 3/45 4
yel 13 2
red 5 10

Rescue wht 5 20/45 10 25/45 21
yel 10 5
red 5 10

Complex wht 2 9/45 13 36/45 24
yel 2 13
red 39/60 21/60

Total wht 32/60 28/60 54
yel 37/60 23/60

TABLE II
COMPLEX TRAINING DATA

Actual detected images are shown in Fig. 8 for all four
categories, for both cascades, where the balls detected by the
simple cascade only are marked by blue boxes, those detected
by the complex cascade by green boxes and those detected by
both by red boxes.

The two classifiers used in the experiments differ only in
the data used for training. For the first classifier (Table I)

Fig. 8. Sample input images of each of the four categories (From top
to bottom: RoboCup, uniform background, RoboCup Rescue and complex
scenes) and the corresponding results of the two classifiers.

relatively simple images were used for training, where the
images contained no background noise. The idea behind this
approach was to make sure that the classifier would only use



Fig. 9. Left: Input images including round objects. Right: False detections
in filtered images.

information about the ball itself and that complex data would
only be confusing and would eliminate all useful information
about the ball shape. For the second classifier (Table II)
a wider range of training data was used, including images
with different lighting, in different surroundings (similar to
the complex images used for testing), etc. The difference in
performance is quite clear from the detected images (Fig. 8).

It can also be observed from the results that we will al-
ways face the difficulty of false positives when differentiating
between footballs and any other round objects. Examples of
such false positives are shown in Fig. 9.

V. CONCLUSIONS

The Gentle Ada Boost algorithm uses Classification and
Regression trees (CARTs) with four splits to construct a
cascade of classifiers to detect Haar-like features in integral
images. To ensure the color-invariance of the input images,
they are first preprocessed by applying an edge detection
Sobel filter to each of the images and passing them through a
threshold to rid them of all their color information. This has
proven to be a relatively successful technique to be used by
the autonomous mobile robot Kurt3D to detect footballs.

It has been found that there are quite a few parameters
that need to be adjusted to get satisfactory results from the
algorithms, such as the filtering algorithm used, its parameters,
the number of splits in the CART, the number of training
images used, and above all, the selection of training images.
The aim of this paper was not to discuss the details of all these
parameters, but the most important ones have been mentioned,
and their influence on the results shown.

Although the results may not seem very positive, what we
are concerned with is how it will perform in the RoboCup
environment. In this case, the reliability of the algorithm seems
to be sufficient. Even if the ball is not detected in one in every
5 pictures, for example, the robot will still be able to follow
it quite confidently.

There still remains a lot of room for improvement, though,

especially concerning the false detection of all round objects
(see Fig. 9), as well as undetected footballs with lots of
background noise, or partially visible footballs. This could be
achieved by combining our approach with other techniques
or by integrating 3D images to include depth information.
Another idea is to use attention algorithms - assuming the
color of the football is previously known - to define regions
of interest in order in which to search for balls in order to
eliminate false positives. It is planned to work on this in the
near future.
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[13] H. Surmann, A. Nüchter, and J. Hertzberg. An autonomous mobile
robot with a 3d laser range finder for 3d exploration and digitalization
of indoor environments. Journal Robotics and Autonomous Systems, 45,
December 2003.
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