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a b s t r a c t 

Heat and excessive solar radiation can produce abiotic stresses during apple maturation, resulting fruit quality. 

Therefore, the monitoring of temperature on fruit surface (FST) over the growing period can allow to identify 

thresholds, above of which several physiological disorders such as sunburn may occur in apple. 

The current approaches neglect spatial variation of FST and have reduced repeatability, resulting in unreliable 

predictions. In this study, LiDAR laser scanning and thermal imaging were employed to detect the temperature 

on fruit surface by means of 3D point cloud. A process for calibrating the two sensors based on an active board 

target and producing a 3D thermal point cloud was suggested. After calibration, the sensor system was utilised 

to scan the fruit trees, while temperature values assigned in the corresponding 3D point cloud were based on the 

extrinsic calibration. Whereas a fruit detection algorithm was performed to segment the FST from each apple. 

• The approach allows the calibration of LiDAR laser scanner with thermal camera in order to produce a 3D 

thermal point cloud. 
• The method can be applied in apple trees for segmenting FST in 3D. Whereas the approach can be utilised to 

predict several physiological disorders including sunburn on fruit surface. 
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Specifications table 

Subject Area: Agricultural and Biological Sciences 

More specific subject area: Horticultural Technology 

3D point cloud analysis 

Machine vision 

Method name: An approach for monitoring fruit temperature in 3D 

Name and reference of original 

method: 

The computational methods are inspired by the literature 

and primarily: 

• Borrmann, D., Nüchter, A., Dakulovi ́c, M., Maurovi ́c, I., 

Petrovi ́c, I., Osmankovi ́c, D., & Velagi ́c, J. (2014). A mobile 

robot based system for fully automated thermal 3D 

mapping. Advanced Engineering Informatics, 28 (4), 

425–440. 10.1016/J.AEI.2014.06.002 
• Tsoulias, Nikos, Dimitrios S. Paraforos, George 

Xanthopoulos, and Manuela Zude-Sasse. "Apple shape 

detection based on geometric and radiometric features 

using a LiDAR laser scanner." Remote Sensing 12, no. 15 

(2020): 2481. 10.3390/rs12152481 

Resource availability: Python code ( www.python.org ) was written and a Python 

code script file has been created. 

Introduction 

Excess solar radiation, elevated temperatures and low relative humidity are the main cause of 

abiotic stress on the fruit skin in orchards. In apples ( Malus x domestica Borkh.), such field conditions

suppress anthocyanin accumulation resulting in low pigmentation on fruit surface [ 42 ]. Enhanced

temperatures on apple surface postpones starch degradation and consequently the conversion into 

sugars, especially in high altitudes [32] . Similar conditions can enhance respiration rate or reduce

net photosynthesis, which in turn influences fruit growth rate at cell division stage [ 6 , 26 ], producing

apples of smaller size [31] . Whereas, after fruit set, high temperatures (35 °C) have also been related

with decreased firmness levels at harvest stage [ 40 ]. 

Several physiological disorders can occur in the exposed surface of apples including sunburn, 

compromising fruit quality, storability and enhancing food waste. Longer periods of solar radiation 

and high temperatures are susceptible to appear, over the growing season of apples, due to climate

change increasing yield losses. Recent reports mentioned annual yield losses up to 10 % in the US

and New Zealand [ 22 , 33 ], 40 % in Australia [20] , and from 10 to 50 % in south Africa [29] , in apple

orchards. Fruit skin temperature (FST) can be utilised as a reliable indicator to identify types of

sunburn symptoms in apples [23] . Schrader et al. [24] found that when FST reaches around 52 °C for

longer than 10 min the epidermal cells exposed directly to the sun die, destroying the photosynthetic

mechanism of the fruit. The combination of high ultraviolet radiation and FST (46-49 °C) results

in browning sunburn, discoloring the exposed peel due to chlorophyll degradation, and producing 

different levels of bronzing in the flesh [21] . Furthermore, shaded fruit skin suddenly exposed to

moderate temperatures ( < 31 °C) may result in photooxidative stress [9] . However, the surface

Incidence and severity of the damage depend on a complex interplay of these factors together with

the biochemical, physiological, and morphological condition of the apple, all of which are a function

of the phenological stage, cultivar and adaptation to meteorological conditions. The monitoring of FST 

over the season structural characteristics in apple trees provides decisive knowledge for management 

within the orchard. 

Contact methods for measuring FST include pushing the sensory bulb of a thermometer under the

peel of the apple and inserting thermocouples on the fruit surface. However, the latter techniques

wound the fruit surface, decreasing the repetitiveness of the measurement [18] . Whereas, the spatial

variation of temperature on the fruit surface is neglected since the measurement takes place at

one location. However, non-destructive techniques for measuring the FST have gradually gained 

a substantial advancement by the implementation of numerous two-dimensional machine vision 

systems in agriculture, using color or spectral information combined with thermal imaging. However, 

http://10.1016/J.AEI.2014.06.002
http://10.3390/rs12152481
http://www.python.org
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ruit localization and segmentation, for the monitoring of FST, based only on thermal information

ay be biased or fail due to similar temperature [11] . Chandel et al., [8] coupled an RGB camera

ith a thermal module to model FST, revealing a coefficient of determination (R 

2 ) up to 0.90

ith the FST derived from the micro-climate sensor. A similar system was developed using colour

nformation to obtain apple size and infra-red images for estimating FST in real time [25] . However,

ruit segmentation based on captured images are susceptible to light variations and may be biased

ue to equal colour or shading condition of fruit, leaves and woody parts [ 17 , 37 ]. 

Three-dimensional (3D) vision systems received attention in horticulture, allowing to overcome the

imitations of 2D imaging methods [14] . Hence, the shape of apple trees can be described using high

esolution 3D point cloud data that can be acquired either directly from cameras such as RGB-depth

10] or using photogrammetric techniques with spectral [ 5 , 16 ] and RGB cameras [ 12 , 15 ]. However, also

n the 3D analysis, the variation of light shading conditions within the canopy reduces the quality of

he 3D point cloud acquired from camera systems [30] . The 3D point cloud and radiometric data

an be generated from light detection and ranging (LiDAR) sensors, which operate based on time-

f-flight principle (ToF). An active laser diode emits a laser beam and reflected photons describe the

bject surface, overcoming the effects of varying light conditions. The sensor is typically mounted on

errestrial platforms and operates parallel to the tree rows scanning the canopy surfaces from both

ides, analysing each tree even in large-sized areas such as landscape and forests. Several studies

n fruit production used LiDAR data to monitor tree geometry such as the canopy volume over tree

rowing period [ 7 , 41 ]. By means of this data, the spatio-temporal development of leaf area and woody

arts were monitored trees within two seasons, utilising geometric and radiometric features [ 39 ].

hereas, fruit detection approaches were proposed for segmenting shape and size in apples [13] .

espite the potential of 3D data in plant phenotyping, information on tree or fruit temperature is not

resent by default, while methods have been proposed and investigated in the field of architecture

 3 , 19 ] and robotics [ 1 , 4 ]. Recently, a terrestrial LiDAR laser scanner was coupled with a thermal

amera for reconstructing the 3D thermal point cloud in avocados [34] . Individual trees scanned from

est and east side to acquire leaf temperature, revealing an ± 5 °C mean bias error compared with

anual readings from both sides due to asynchronicity of LiDAR data with camera pixels. However,

he scope of the conducted studies has been limited to small-scale validation concept. No study has

een reported yet to observe the suitability of thermal - LiDAR 3D sensing for estimating FST in field

onditions, an essential step for modeling FST and improve sunburn management strategies. 

The present study aimed to (i) develop a robust method for merging 3D LiDAR data with thermal

mages, (ii) evaluate the data fusion under laboratory and field conditions using a metal tree target

nd (iii) the segmentation of apple fruit surface temperature from 3D thermal tree point clouds. 

aterials and methods 

ite description 

The experiment was conducted in the Leibniz Institute of Agricultural Engineering and Bioeconomy

ATB) experimental station located in Marquardt, Germany (Latitude: 52.466274 ° N, Longitude:

2.57291 ° E). The orchard is located on an 8% slope with southeast orientation. The orchard is planted

ith trees of Malus × domestica Borkh. ‘Gala’ and ‘JonaPrince’, and pollinator trees ‘Red Idared’

ach on M9 rootstock with 0.95 m distance between trees, trained as slender spindle, which form

he majority of apple trees in world-wide production, with an average tree height of 2.5 m. Trees are

upported by horizontally parallel wires. 

nstrumentation 

A rigid aluminium frame carrying the sensors ( Fig. 1 a) is mounted on a rigid linear tooth-

elt conveyor system (Module 115/42, IEF Werner, Germany) of 0.8 m length, employing a servo

ositioning controller (LV-servoTEC S2, IEF Werner, Germany) ( Fig. 1 b), to perform intrinsic and

xtrinsic calibration using an active pattern with clearly defined heat sources ( m = 30). The linear

onveyor moved at 20 mm s −1 ( ± 0.05 mm accuracy) forward speed. A mobile 2D LiDAR sensor
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Fig. 1. Representation of (a) the sensor-frame system; mounted on (b) linear tooth-belt and (c) circular conveyor system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(LMS-511, Sick AG, Waldkirch, Germany) was mounted vertically on the metal frame at 0.7 m above

the ground level. The LiDAR sensor configured with a 0.1667 ° angular resolution, 25 Hz scanning

frequency, a scanning angle of 180 and a wavelength of 905 nm. Additionally, a thermal camera

(A655sc, FLIR Systems Inc., MA, USA) placed at 0.2 m distance above the laser scanner. The camera

has a spatial resolution of 640 × 480 pixels at 50 Hz, with a spectral range from 7.5 to14 μm,

an operational temperature range from −40 °C to 150 °C and a thermal resolution < 0.05 °C. A lens

(T198065, FLIR Systems Inc., MA, USA) with a focal length of 6.5 mm (diagonal 80 o ) is attached

to the camera. The calibration was carried out in a room with no windows, controlled ventilation

and temperature (15 °C). The LiDAR and the thermal camera were connected via Ethernet to a laptop

with software developed in LabVIEW (version NXG 5.1, National Instruments, Texas, USA) for data 

acquisition. The positioning controller of the linear conveyor connected to the same computer with a

RS-232 serial port using the S2 Commander software (version 4.1.4201.1.1, IEF Werner, Germany) for 

configuration and operation. 

After calibration, the phenotype sensing system was mounted on a circular conveyor platform, 

established in the experimental apple orchard (TechGarden), employing an electrical engine working 

with 50 Hz (DRN71, SEW Eurodrive, Germany) and stainless-steel chain with mechanical suspensions 

for varying plant sensors ( Fig 1 c). A real time kinematic global navigation satellite system (AgGPS 542,

Trimble, Sunnyvale, CA, USA) is used to geo-reference the data and an inertial measurement unit (MTi-

G-710, XSENS, Enschede, Netherlands) to acquire orientation information are arranged on the sensor 

frame. The root mean square error (RMSE) of orientation noted at 0.25 ° for roll ( ϕ), pitch ( θ ) and yaw

( ψ). Furthermore, an RTK-GNSS (AgGPS 542, Trimble, Sunnyvale, CA, USA) used for georeferencing

each individual scanning profile of the 3D point cloud. The horizontal and vertical accuracy of the

RTK-GNSS is ± 25 mm + 2 ppm and ± 37 mm + 2 ppm, respectively. The IMU is placed 0.3 m aside

from the LiDAR sensor, while the receiver antenna of RTK-GNSS is mounted 0.6 m abive the laser

scanner ( Fig. 1 ). This phenotyping platform was established in a single row of the experimental apple

orchard in 2020. The platform enables the automated monitoring of 109 trees in one row of 84 m

length. 

Data pre-processing 

The accurate projection of thermal information on the 3D point cloud requires calibration of the

sensor frame system. More specifically, the process consists of two parts: (i) the intrinsic calibration

of the thermal camera for determining camera matrix and distortion parameters, and (ii) the extrinsic

calibration between camera and LiDAR coordinate system to define rotation and translation. The 

calibration tool chain is written in Python 3.8 (Python Software Foundation) and uses the OpenCV
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Fig. 2. Lightbulb blob calibration pattern, (a) front view with dimensions and (b) back view with handles. 
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ibrary (Bradski & Kaehler, 2008) for image processing and Open3D [ 36 ] for point cloud processing.

he following sections describe the methodology behind the calibration tool chain. 

ntrinsic calibration 

The intrinsic calibration of a thermal camera is typically estimated by detecting geometric features

rom patterns in the image, such as corners from chessboard patterns of known dimensions. However,

hessboard patterns are not suitable for calibrating thermal cameras, since even when passively

eated, the temperature difference between black and white areas is not sufficient to be identified as

istinct corners. Therefore, as suggested in [2] , an actively heated lightbulb pattern was constructed

 Fig. 2 a,b). The pattern consisted of a wooden board (500 × 600 mm), containing 30 ( m ) 12V

ightbulbs of 4 mm diameter, arranged in a 5 × 6 grid with a distance of 100 mm. 

The lightblubs appeared as blobs in thermal images, therefore, the OpenCVs SimpleBlobDetector

Bradski, G., & Kaehler, A. 20 0 0) algorithm was used to obtain their respectivecoordinates. The latter

as based on the region of connected points, which determined by colour thresholding, grouping

nd size of detected blobs. More specifically, the source images were converted to several binary

mages, thresholding was applied, starting with minThreshold , ending with maxThreshold in tresholdStep

ncrements. The segmented white pixels were grouped and, their overall shape and size is estimated,

hile the grouped pixels across all thresholded images were combined for calculating the center and

adius for each individual blob. Moreover, the size of the blobs ( minArea, maxArea ) was configured.

hree sets of parameters were empirically determined and are further noted as sensitivity ( s) . 

The intrinsic parameters of the thermal camera, namely the focal length in x) and y ( f || y )
irection, the camera center ( c x , c y ) as well as radial ( k 1 , k 2 , k 3 and tangential ( p 1 , p 2 ) distortion were

etermined using [35] . The relationship of a 3D real world point O = ( X, Y, Z ) T and its 2D projection

 = ( x, y ) T on the sensor plane is defined by (
x 

y 

)
= 

(
f x X + Z c x 
f y Y + Z c y 

)
(1)

Expressing ( Eq. (1 )) with homogeneous coordinates yields ( 

x 

y 

1 

) 

= 

[ 

f x 0 c x 
0 f y c y 
0 0 1 

] ( 

X 

Y 

Z 

) 

(2)
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Fig. 3. Flow chart of blob detection process for one image. T stands for different temperature ranges, s is the sensitivity of the 

blob detector and n is the number of detected blobs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with 

A = 

[ 

f x 0 c x 
0 f y c y 
0 0 1 

] 

(3) 

as the camera matrix. The distorted image points ( x d , y d ) 
T are calculated as (

x d 
y d 

)
= 

(
x 
(
1 + k 1 r 

2 + k 2 r 
4 + k 3 r 

6 
)

+ 2 p 1 xy + p 2 
(
r 2 + 2 x 2 

)
y 
(
1 + k 1 r 

2 + k 2 r 
4 + k 3 r 

6 
)

+ p 1 
(
r 2 + 2 y 2 

)
+ 2 p 2 xy 

)
(4) 

with r = 

√ 

x 2 + y 2 . 

For a calibration pattern of known dimensions with a set of m lightbulb features, n images were

captured and the reprojection error of the detected features minimised as 

n ∑ 

i =1 

m ∑ 

j=1 

∥∥o i j − ˆ o 
(
A, D, R i , t i , O j 

)∥∥2 
(5) 

where o i j are the coordinates of feature j in image i and ˆ o ( A, D, R i , t i , O j ) is the projection of the

corresponding 3D point O j with the distortion coefficients D , camera matrix A and the rotation matrix

R i and translation vector t i as the relation between the camera and world coordinate system. 

The process of detecting the blobs in an image is visualised in Fig. 3 . The image was initially

scaled to its temperature range ( T , consisting of the minimum and maximum temperature found, and

converted to 8 bit to make the blobs more visible. The aforementioned blob detector was configured

with a sensitivity s and applied to the image. If the total number of blobs was found, the blob

detection deemed successful, otherwise the SimpleBlobDetector reconfigured and applied again. In 

the case that three different sensitivities do not yield a successful result, the image was rescaled

decreasing the temperature range by 5 degrees and repeating the blob detection. Whereas, if after

4 different temperature ranges, each of which has been analysed with the 3 sensitivity settings, the

required number of blobs is not found, then the image is deemed a failure. 

This process compensates for the rather wide opening angle of the lens, which leads to a big

variety of pattern positions to cover the whole frame as well as recording the pattern at an angle

and the desired focus point. For example, enhanced blob size is perpendicular to image plane, while

decreased blob size can depict high incident angle. The sensitivity parameters that have been utilised
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Table 1 

Sensitivity parameters used for SimpleBlobDetector. 

Sensitivity minThreshold maxThreshold thresholdStep minArea maxArea 

1 20 220 15 1 60 

2 30 220 15 3 80 

3 50 220 20 5 100 

Fig. 4. The effect of different temperature ranges of the 8-bit conversion of the image. (a) T = [20 °C, 60 °C], (b) T = [25 °C, 

60 °C], (c) T = [30 °C, 60 °C], (d) T = [35 °C, 60 °C]. 

Fig. 5. The effect of the three different sensitivity settings on the same image scaled to the temperature range T = [20 °C, 60 °C]. 

(a) sensitivity s = 1, (b) sensitivity s = 2, (c) sensitivity s = 3. 
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F

E
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s  

p  
n this work, for the specific thermal camera and calibration pattern, are listed in Table 1 . The different

emperature ranged as well as the effect of different sensitivity settings was visualised in Fig. 4 and

ig. 5 , respectively. 

xtrinsic calibration 

To get a 3D point cloud and a corresponding thermal image from the 2D LiDAR sensor and thermal

amera, were mounted on the linear conveyor as shown in Fig. 1 b. The conveyor is moving the

ensor setup with a constant velocity perpendicular to the LiDAR scanning plane, thus yielding a 3D

oint cloud. Similar to ( Eq. (2 )), the relation of a point in LiDAR coordinates L = ( X , Y , Z ) T and the
L L L 
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Fig. 6. Processing of point cloud: (a) box crop to remove walls, floor and ceiling, (b) plane detection, (c) downsampled data 

with local coordinate system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

corresponding image point o = ( x, y ) T defined by ( 

x 

y 

1 

) 

= A 

[ 

1 0 0 0 

0 1 0 0 

0 0 1 0 

] [
R t 

0 0 0 0 

]⎛ ⎜ ⎝ 

X L 
Y L 
Z L 
1 

⎞ ⎟ ⎠ 

, (6) 

with A being the camera matrix from ( Eq. (3 )), R the rotation and t the translation between the

coordinate system of the thermal camera and LiDAR laser scanner. The latter variables are known

as the extrinsic parameters, determined based on the relation of 2D image features (o) to their

corresponding 3D LiDAR coordinates ( L ), which referred as feature pairs. For such set of point cloud

and thermal image with m distinct feature pairs ( o i , L i ) 
m 

i =1 
, rotation R and translation t between camera

and LiDAR coordinate system are obtained by minimising 

m ∑ 

i =1 

∥∥o j − ˆ o 
(
A, D, R, t, L j 

)∥∥2 
, (7) 

with o i as the pixel coordinates of blob i , L j as the corresponding 3D point in LiDAR coordinates, A

and D as camera matrix and the distortion coefficients described in Eq. (3 ), ( (4) ) and ˆ o ( A, D, R, t, L j )

as the projection of L j onto the image plane. 

To extract the 3D LiDAR coordinates ( L ) of the features from the point cloud, a processing pipeline

was applied ( Fig. 6 ). More specifically, the point cloud was cropped with an axis aligned bounding

box to remove ceiling, floor, and walls ( Fig. 6 Error: Reference source not found, a). This was done to

ensure, that the biggest remaining plane in the point cloud is the calibration pattern itself. Moreover,

the Open3Ds plane detection was applied to detect the prominent plane in the point cloud, using the

random sample consensus algorithm (RANSAC) [ 36 ] ( Fig. 6 , b, white points), and all remaining points

were removed ( Fig. 6 , b, red points). For the point cloud of the prominent plane, the bounding box

was calculated, and the dimensions were checked to ensure, that they match with the size of the

actual calibration pattern and all filtered points were removed. 

A principal component analysis on the voxel downsampled data ( Fig. 4 , c) was performed to

calculate the eigenvectors and corresponding eigenvalues. The eigenvectors and the centroid of the 

point cloud provided an initial estimation of the orientation and position of the calibration pattern

( T initial and its local coordinate system relative to the laser scanner ( Fig. 4 , c). To optimise this

calculation, a point cloud of the calibration pattern was synthetically sampled to serve as a perfect

model , was roughly aligned with the subsampled point cloud using T initial . Registering the model to

the data using the iterative closest point (ICP) algorithm yields a correction transformation T corr . The

concatenation of T initial and T corr from the ICP algorithm provided the final transformation T f inal of the 

pattern relative to the scanner ( Eq. (8 )) 

T f inal = 

[
R t 

0 0 0 0 

]
= T initial ∗ T corr (8) 
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Fig. 7. Lightbulb position determination. 
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hen T f inal was specified based on the geometry of the calibration pattern (cf. Fig. 2 ), the position of

he lightbulbs in LiDAR coordinates ( L ) was determined ( Fig. 7 ). Since the calibration pattern is fixed

elative to both sensors, Eq. (7) gives the desired orientation and translation between both sensors. 

For the extrinsic calibration, a dataset consisting of 21 scans for different calibration pattern

ositions within the scanning area was recorded. Of those 21 scans, 6 could not be processed properly

ith all 6 scans having a section of the calibration pattern cut off due to bad placement within

he scanning area. For each valid scan, the extrinsic parameters were determined according to the

forementioned pipeline ( Fig. 3 ). Each set of parameters was then used to calculate the RMSE of the

eprojection of all valid datasets according to 

rmse = 

√ ∑ N 
i =1 

∑ M 

j=1 

∥∥∥m ′ i, j − m 

2 
i, j 

∥∥∥
N ∗ M 

, (9)

ith N being the number of valid scans, M being the number of points per scan, m ′ i, j being the jth

oint of scan i projected onto the image plane and m i, j being the jth point of scan i of the calibration

attern. 

ata Fusion 

When all intrinsic and extrinsic parameters determined, temperature values from the thermal

mage were assigned to the corresponding 3D points. All points in the point cloud were projected

n the image plane ( Fig. 7 ). If the projected point lied within the image plane, the corresponding

emperature value was assigned. Whereas, if the point was outside the plane, a value outside the

emperature range of the dataset, in this case -10 °C, was assigned. This ensured that points outside

f the field of view of the thermal camera were not omitted. 

egmenting apple temperature 

After calibration, the phenotype system was mounted on the circular conveyor in order to scan the

ruit trees from both sides. The temperature values assigned in the corresponding 3D point cloud were

ased on the extrinsic calibration. According to Tsoulias et al., [27] rigid translations and rotations

ere applied on each point of the 3D point cloud, while alignment of pairing tree sides was carried

ut using ICP. The bivariate point density histogram was proposed to estimate the stem position of
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each tree (n = 20), while a cylindrical boundary was projected around the estimated stem positions

to segment each individual tree. 

For defining the position and shape of apples, the geometric feature of curvature (C) was calculated

for each point of each 3D tree point cloud using the k-nearest neighbors algorithm [28] . For this

purpose, the local neighborhood of points P i = [ x i , y i , z i ] was analysed in 3D coordinates. The total

number (N) of P i within each tree’s cloud was used to estimate the mean of all nearest neighbors 

˜ P = 

1 

N 

N ∑ 

i =1 

( P i ) (10) 

After mean centering, each P i with 

˜ P value per nearest neighbor’s set and decomposition of 

covariance matrix. The latter was decomposed based on the singular value decomposition, producing 

the eigenvalues ( λ1 , λ2 , λ3 ), which were classified according to decreasing percentage of explained

variance in the data. The eigenvalues were scaled between 0 and 100, allowing the comparison of

different clusters. More specifically, the values closer to 100, the higher the likelihood for shape

of points to be curved. The probability density function was performed to define the thresholds of

curvature (C th ) and LiDAR’s backscattered reflectance (R th ) defining the range of apple points in terms

of C and backscattered reflectance (C A and R A ). The points that fulfilled the criteria of C th ≤ C A ,

and R th ≤ R A were segmented and categorised as apples. This allowed to define the temperature

values on the surface of apples by means of LiDAR (FST LiDAR ). The temperature on fruit surface was

manually measured (FST Manual ) (n = 285) with an infrared thermometer (Microscanner D501, Exergen, 

Watertown, USA) and compared with the correspondent averaged FST LiDAR . The detected apples were

categorised, in west and east, based on their position on the tree side. 

Evaluation 

A metal tree frame with dimensions 2 m × 0.30 m × 0.05 m was constructed to assess the

measuring uncertainty of the phenotypic system in terms of temperature ( Fig. 8 ). Five bars with 0.30

m distance from each other were placed horizontally on each side of a metal trunk. Sphere targets

of 60 mm (n = 3) and 80 mm (n = 12) size were applied to assess the temperature derived by

the phenotypic platform. The spheres were coated with white barium sulphate (BaSO 4 , CAS Number:

7727-43-7, Merck, Germany) and blackened urethane (S black, Avian Technologies, New London, NH, 

USA) for acquiring the minimum (S W 

) and maximum (S B ) T LiDAR on the sphere surface. The phenotypic

system was utilised to scan the metal frame indoors and outdoors in the orchard, and an infrared

thermometer to manually acquire the temperature on the sphere surface (T Manual ). 

Descriptive statistics were applied to all datasets capturing minimum (min), maximum (max), 

mean, standard deviation (SD). A regression analysis was performed to quantify linear relationships 

between the manual measurements and the detected temperature by means of LiDAR, and RMSE, 

mean bias error (MBE). Descriptive statistics were carried out by Matlab (v.R2018b, Mathworks Inc., 

Natick, MA, USA). 

Results 

Intrinsic calibration 

Sample images for the intrinsic calibration process are visible in Fig. 9 . The raw thermal image

(left) is scaled to a temperature range (middle) and the blobs are detected and sorted (right) according

to the visible color scheme from red to violet. For our dataset of 140 images, 10 images were

discarded, with all 10 having at least one of the blobs missing due to poor alignment of the pattern

while recording the images. The root mean squared error (RMSE) of the reprojection yielded 0.33. 
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Fig. 8. Representation of the metal tree frame of known distances with sphere targets. 

Fig. 9. (a): Raw Thermal Image, (b): Scaled to Temperature Range, (c): Detected and Sorted Blobs. 
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Fig. 10. Root Mean Square Error (RMSE) of Extrinsic Calibration per Scan. The RMSE yielded by averaging all parameters 

elementwise is shown as a line in grey, the Minimum RMSE is shown as a line in yellow. 

Fig. 11. Point cloud of the calibration pattern. 
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Fig. 12. The resulting thermal point cloud of the (a) metal tree indoors and (b) outdoors. 
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The calculated RMSE was shown in Fig. 10 . Calculating the mean of all extrinsic parameters

lement-wise yielded an RMSE of 1.82 (grey line), thus it was decided to further use the parameter

et with the lowest RMSE (Nr. 6, 1.25). 

ata fusion 

An example of a point cloud of the calibration pattern, containing LiDAR and temperature

nformation was depicted in Fig. 8 . Temperature values were scaled from 15 to 55 °C. The center

f blobs showed a mean T LiDAR of 46.3 °C with an SD 2.93 °C, while a less pronounced mean T LiDAR of

1.41 °C the 3.03 °C was found in the rest points of the calibration pattern Fig. 11 . 

valuation 

The values of T LiDAR on the white (S w 

) and black (S B ) surfaces appeared above 19.54 °C and below

9.84, respectively ( Table 2 ). The temperature difference between the spheres was marginally differed,

ince no passive heat was applied, and the ambient temperature of the room remained at 19 °C. The

 LiDAR was related to the T Manual , revealing an adjacent coefficient of determination (R 

2 
adj ) of 0.95

MSE = 0.02 °C in S B and 0.94 with and 0.01 °C in S W 

. Generally, high measuring uncertainty was

oticed on spheres, when the metal construction placed in field conditions ( Fig. 12 b), particularly in

he black coated spheres. The minimum and maximum T LiDAR showed 1.5 °C difference on the surface

f S B . 

The methodology was applied in the orchard with a total number of 285 apples, 130 days after full

loom. The temperature varied in the 3D point cloud of the trees ( Fig. 13 a). Tree organs, found above 2

, revealed reduced T LiDAR not exceeding 18.2 °C. Moreover, the T LiDAR on stem points showed a mean
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Table 2 

Results of LiDAR detected temperature (T LiDAR ) of spheres on the metal tree indoors and outdoors (n = 15), regarding 

maximum (max) [ °C], minimum (min) [ °C], standard deviation (SD) [ °C], mean bias error (MBE) [ °C], root mean square 

error (RMSE) [ °C], and adjusted coefficient of determination (R 2 adj ). 

min max mean [ °C] SD MBE RMSE R 2 adj 

Indoors S B 19.72 19.84 19.69 0.08 0.02 0.02 0.95 

S W 

19.54 19.82 19.84 0.07 0.01 0.01 0.94 

Outdoors S B 20.81 22.31 22.20 0.67 -0.03 0.11 0.97 

S W 

19.18 19.63 19.39 0.18 0.01 0.04 0.95 

Fig. 13. Representation of (a) 3D thermal point cloud and (b) segmented temperature on fruit surface (FST LiDAR ) [ °C] in sampled 

trees measured with at DAFB 120 . 

 

 

 

 

 

value of 20.6 °C with 0.65 °C standard deviation. After the application of fruit detection algorithm,

the shape from 272 with an 89.7% F1 score was detected. The FST LiDAR ranged between 16 and 22 °C
( Fig. 13 b). 

The FST Manual was related with FST LiDAR of apples in the west and east side of the trees, resulting

in an R 

2 
adj of 0.91 and 0.99 with an RMSE of 0.25 and 0.01, respectively. The fruit located in the east

side of tree developed an enhanced average FST LiDAR (18.8 ± 0.75 °C), while a less pronounced value
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Fig. 14. Scatter plot and marginal box-Whisker plot of the segmented temperature on fruit surface (FST LiDAR ) and of fruit height, 

categorised based on the west (W) and east side (E) of the tree. The standard deviation is represented by lower and upper edges 

of the box, the dash in each box indicates the average. 
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18.3 ± 0.61 °C) was observed in the west side ( Fig. 14 ). In parallel, apples from both sides depicted

 similar range in terms of height. 

Overall, the monitoring system demonstrated great potential for monitoring FSTLiDAR in apples.

oreover, the enhanced field of view of LiDAR laser scanner can determine the FST, which derive from

he entire 3D tree profile, allowing to model fruit temperature and improve decision making in the

rchard. The frequent acquisition of FSTLiDAR can be utilised as control measures to detect damaged

ruit on the tree, increasing fruit storability and reducing food waste. The acquired FST information

ould be utilized, in future, for predicting various abiotic stresses (e.g. sunburn) and comprehending

ts effect on soluble solid content in relation with the position of the fruit in the tree canopy. The

escribed methodology with specific customization, based on sensor availability, could be utilised for

eat-stress monitoring in other perennial specialty crops. 

onclusions 

The developed methodology was able to register the thermal images on LiDAR 3D point cloud

ith the lowest RMSE of 1.2 MSE/pixel. Application of the metal construction allowed the evaluation

f the extrinsic calibration, presenting a highest 0.02 °C RMSE with 0.95 R 

2 
adj in the lab, and 0.11 °C

MSE with 0.97 under field conditions. It also provided meaningful information about the FST LiDAR on

pples, which correlated strongly with the FST Manual (R 

2 
adj = 0.99) in the east side of the tree. The

alues of apples in the east side of tree showed enhanced FST LiDAR values compared to the west side.

n summary, the phenotypic system was able to detect the temperature on apple surface, a result that

an be utilised in the monitoring and prevention of fruit sunburn. 
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