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Abstract— Spherical robots are a robot format that is not
yet thoroughly studied for the application of mobile mapping.
However, in contrast to other forms, they provide some unique
advantages. For one, the spherical shell provides protection
against harsh environments, e.g., guarding the sensors and
actuators against dust and solid rock. This is particularly
useful in space applications. Furthermore, the inherent rotation
the robot uses for locomotion can be exploited to measure
in all directions without having the sensor itself actuated. A
reasonable estimation of the robot pose is required to exploit
this rotation in combination with sensor data to create a
consistent environment map. This raises the need for interpo-
lating instances for calculation-intensive slow algorithms such
as optical localization algorithms or as an initial estimate for
subsequent simultaneous localization and mapping (SLAM).
In such cases, inertial measurements from sensors such as
accelerometers and gyroscopes generate a pose estimate for
these interpolation steps.

The paper presents a pose estimation procedure based on
inertial measurements, that exploits the known dynamics of a
spherical robot. It emphasizes a low jitter to maintain constant
world measurements during standstill and avoids exponentially
growing error in position estimates. Evaluating the position and
orientation estimates with given ground truth frames shows that
we reduce the jitter in orientation and handle slip and partly
slide behavior better than other commonly used filters such as
the Madgwick filter.

I. INTRODUCTION

Spherical robots are a relatively narrow field of robotics.
Still, they could be useful in situations where the measure-
ment equipment needs to be protected against harsh envi-
ronments. As an example, the 2021 CDF study LunarCaves
by ESA about the feasibility of a spherical robot, called
DAEDALUS, for exploration of lunar-lava tubes [1] shows
the need for orientation and position estimation of spherical
robots with the limitations on resources common for space-
applications. Although a purely Inertial Measurement Unit
(IMU)-based estimation is not recommended for various
reasons, the lack of an absolute reference among others,
IMU-based pose estimation is used as part of an overall
multi-sensor-fusion-based estimation. IMUs are sensors with
higher refresh rates than Simultaneous Localization and
Mapping (SLAM) based algorithms, such as optical or Light
Detection and Ranging (LIDAR) SLAM. This makes them
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suitable for interpolating the more precise and absolute
position reference points of these slower algorithms. The
limited computational power of space-qualified CPUs further
imposes the need for good orientation estimation with-
out computational-intensive algorithms like Kalman filters.
Lastly, the geometry of a spherical robot opens the possibility
for the not often used position estimation by IMUs.

This paper introduces an IMU-based orientation and po-
sition algorithm for spherical robots with limited compu-
tational power and the need for real-time estimations. The
algorithm does not rely on one specific locomotion approach,
but it assumes a rotation of the IMU together with at least the
shell of the robot, if not the whole robot. The experiments
in this paper use the setup of the IMUs of the prototype
depicted in Figure 1, which is inspired by previous work
such as Daedalus [1]. Due to the lack of a locomotion system,
the sphere needs to be rolled externally. A Livox Mid-100
laser scanner was used for evaluation purposes. In addition
to analying the filtered output the evaluation will show and
discuss the resulting point clouds of this prototype with the
presented pose estimation.

II. ASSUMPTIONS AND PRELIMITATIONS

The presented approach works for any spherical robot with
IMUs that moves based on rotation. Nevertheless, it requires
multiple assumptions to be beneficial in comparison to ex-
isting approaches. Some of these arise from the fundamental
behavior of spherical robots and some more specific from
the DAEDALUS project. The approach becomes beneficial
given the following assumptions and requirements:

Fig. 1. Prototype to test the algorithm in an envisaged technical envi-
ronment. The main payload is the Livox Mid-100 laser-scanner. For pose-
estimation, three IMUs of the manufacturer Phidget are placed on the middle
plate and a Raspberry Pi 4 for the calculations. On the top are two batteries
and on the bottom one voltage stabilizer and breakout box of the laser-
scanner.



1. Real Time Operations: The operation of the robot
requires real time calculation of the pose. This implies the
usage of onboard computational power.

2. Limitation of Computational Power: Due to the need
for efficient code without massive bottleneck operations, such
as matrix inversion in the extended Kalman Filter, the code
must minimize the usage of non-basic operations.

3. Low Costs of Hardware: We assume biased and noisy
data in a non-negligible amount from the sensors.

4. Sphere Shape: The code relies heavily on the as-
sumption of a spherical shape with a constant radius. Ac-
cordingly, rotation on the ground leads to translation.

5. Slip and Sliding: We assume the sphere is affected by
both slip, i.e., the sphere rotates with no resulting translation,
and sliding, i.e., the sphere may translate without rotating in
a limited, non-permanent way. The limitation refers to the
assumption that sliding and slipping reduce the amount of
translation for a given rotation and vice versa, however, not
for complete absence.

6. Stability of Pose: For SLAM purposes using LI-
DARs, a stable but maybe minimal false pose is preferred
over a more exact but noisy and jumping position.

7. Further Processing of Pose: The approach should
avoid jumping values or abrupt changes of data if not
clearly indicated by the sensors. Suppose there is an internal
algorithmic change of behavior due to the change of state
from standing to rolling. This change shall not be represented
by an unnatural acceleration in the data.

8. Uncertainty of Iterative Position Integration: IMUs
deliver no absolute reference for a position as they do for
orientation in the form of a noisy but measurable gravity
vector. So without external or secondary sensors relying
on absolute waypoints, the position estimation will always
underlie the integration of errors.

9. Space Suitability: As the algorithm is considered to
be applied for space missions, the magnetometer data is not
considered in the algorithm, despite its positive impact on
orientation estimation on Earth.

10. Short Term Mobility: The approach is targeted at
a spherical robot for data collection with a laser scanner,
requiring standstill periods for scanning. In further extension,
the fusion of a pose estimation by the laser scanner will
be merged. Thus, the sphere is considered to move in
multiple short paths and not roll continuously for a long
perod. Relying on integration parts, the IMU-based algorithm
benefits from this assumption.

11. Non-reliability of locomotion commands: For
DAEDALUS, the same input of the locomotion controller
leads to heavily different behaviors depending on the pose of
the robot and the surface structure [1]. Also, the DAEDALUS
robot has two utterly different locomotion methods; there-
fore, we will not take locomotion itself, nor the controller
input or output into account for pose estimation.

We conclude that the generated data has to be a com-
promise between simple on-board filtration of data, while
still being usable for heavy calculation post-record, e.g. map
generation. It has to be easy to calculate and adapt to the

specific needs. Making assumptions about the dynamics of
the system, it must nevertheless deliver reliable estimates
which take physical behavior into account. It shall be real-
time capable and does not rely on delayed steps. The
resulting algorithm is restricted to spherical or cylindrical
robots. It is optimized for gathering laser data where noisy
pose estimates while standing deteriorate the map creation
process, and therefore, even if slightly false, a stable position
is preferred.

III. STATE OF THE ART

For pose estimation on embedded hardware, there are three
main algorithms.

A. Kalman Filter

The Kalman Filter or the more suitable Extended Kalman
Filter (EKF) use state prediction and correction based on
sensor data for orientation estimation [2]. For the defined
limitations, the Kalman Filter is not suitable. First, the EKF
requires a considerable amount of computational power,
mainly due to matrix inversion. For this, the needed calcula-
tions grow exponentially with input data. Further, the Kalman
Filter relies on input to a system to calculate an estimation
of the pose for the next iterative step. But, as described in
Section II, we cannot take the input to locomotion control
as a reference for pose estimation as the behavior is not
linear or even predictable without exact knowledge of the
surface. Therefore it is not possible to implement a physical
behavior of the system to the filter, as easily as it is for
other robotic applications. The Error State Extended Kalman
Filter, which works solely with IMU data [3], requires
substantial computational power. For the later introduced
position estimation for spherical robots, some calculations
are used for the orientation as well as for the position. After
all, if computational power is not limited, Kalman Filters
provide principally better results.

B. Madgwick Filter

The Madgwick filter is a widely used filter for orientation
estimation with IMUs [4]. It is efficient and easy to calculate
but does not consider the physics of the motion. It uses a
gradient descent algorithm. It nearly provides the sought-
after classification for the orientation. The behavior is shown
in comparison to the complementary filter in Figure 2.
Being optimized for movement the Madgwick filter has a
jittering behavior at the standstill of the IMU. This does not
meet the desired behavior as described in the prelimitations
Section (II). As we do not use a magnetometer, we cannot
use the gyro bias estimation of the Madgwick filter.

C. Complementary Filter

A complementary filter is a fundamental approach of
combining precise but not exact with non-precise but exact
data. Therefore it is widely used for combining noisy ac-
celerometer data with gravity as a reference with the precise
but drifting measurement of gyroscopes. The basic concept
is to have the main part of a value dominated by a gyroscope
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Fig. 2. Quaternion values of Madgwick filter and complementary filter
with default gains when IMU is at a standstill. The Madgwick filter has
clearly visible jitter, the complementary filter has not.

but, over time, a slow drift towards the measurement of the
accelerometer. E.g., for pitch, this results in

θn = (1 − α) · (θn−1 + ∆θgyro) + α · θacc, (1)

where α is the complementary gain. It determines how
much weight the accelerometer data gets and how fast the
value drifts towards the measurement of the accelerometer.
Therefore the gyroscope functions as high-pass and the
accelerometer as low-pass part of the basic complementary
filter [5]. A commonly used value for α is 0.02, meaning
every iteration, 2 percent of the new values come from
the accelerometer. This corresponds, with the used 125[Hz]
calculation, to frequency-border of the low and high-pass of
2.5[Hz] [6]. With α = 1 the result is the accelerometer data
and the gyroscope has no influence.
The complementary filter is best for orientation calculation
without position change as the accelerometer value relies on
calculating the gravity value. Acceleration in one direction
leads to a miscalculation of the gravitational vector and
therefore false orientation estimates. Simple orientation esti-
mations of quadrocopters often change the α gain to 0 while
moving to avoid the miscalculation of the gravity vector [7].

D. Position Estimation

Position estimation purely by IMU is not recommended
as the double integration of the accelerometer measurements
leads to exponential error summation [8]. Therefore there
are very few approaches targeting this way of position
calculation [9]. The very impressive work in [10] also uses
IMUs for 6D pose estimation. They follow a pre-specified
trajectory with a manipulator and manage to estimate its pose
within 10% of the ground truth. Given their application is
rather broad, they do not exploit known dynamics of the
system, which could be helpful for spherical robots.

Fig. 3. Diagram of the estimation.

IV. FILTER-CONCEPT

The pose estimation for spherical robots is a concept with
interconnected components. Both orientation and position
estimates are computed based on gyroscope and accelerom-
eter measurements, taking into account the limitations of the
system described in Section II. The generalized overview of
orientation and position estimation is shown in Figure 3.

A. Orientation

The orientation estimation is the combination of the
Madgwick and a complementary filter. The weaknesses and
strengths of both described in Section III are combined. The
general idea is to distinguish between motion and standstill.
In motion the Madgwick filter is used and without motion
the complementary filter. This approach of distinguishing the
evaluation algorithm depending on the state of motion of
a robot has been done before, like in [11]. The transition
needs to be in a differentiable way, as this is one of our
limitations. As both filters are applied with weights, this is
done by an allocation of a given gain towards one or the other
filter depending on the likelihood the sphere is moving or
standing still. Therefore, this requires an adapting mechanism
and an estimation of how likely the sphere is to rotate
and hence translate. Both filters share the same meaning
of the gain, describing the influence of the accelerometer
on the orientation. The Madgwick filter weight determines
how much influence the accelerometer measurement has on
the overall orientation, just in a different way than the com-
plementary filter. Thus the implementation of this approach
does not endanger the stability of the estimation due to
the change between two completely independent approaches.
The algorithm can shift the gain from one filter to the other in
a smooth way without jumping values or abruptly changing
behavior.



B. Position

As there is no absolute reference of position neither with
calculation by gyroscope nor by the accelerometer, the filter
can only try to improve the calculation of the velocity leading
to the change in position. The straightforward approach is to
double integrate the accelerometer, which leads to the earlier
described unwanted behavior of exponential error integration
and makes the position estimates completely unusable.

An alternative approach multiplies the rotation speed with
the known radius of the sphere and takes this as velocity,
integrating once. The more precise and less noisy data of
the gyroscope leads to usable position estimates. There is
no such extensive error integration, and more importantly:
no exponentially growing error with time. However, if the
sphere slips, this approach will predict the full translation.
Also, if there is translation but just slight rotation because
of sliding, it will predict too little translation. Furthermore,
integrating the rotation does not let us estimate vertical
movement. Thus, this approach neglects potential slip and
sliding (limitation 5) as well as vertical movement. Every
rotation will be predicted as translation in a given plane,
which is most likely parallel to the ground. For instance,
if the sphere rolls up an obstacle, the length of the path is
estimated to be the ground-plane.

Our algorithm combines both approaches of position es-
timation and limits all components according to the other
components. This implies a connection between translation
and rotation. Overall the extreme situation (full translation,
no rotation, or the other way round) will automatically lead
to wrong predictions, as there is no way to tell which of
the two approaches has at that moment more reliable data.
Therefore, the combination of both rather than only one is
chosen.

V. FILTER-IMPLEMENTATION

A. Orientation

The orientation is a symbiosis of the Madgwick filter and
complementary filter. The complementary filter is chosen
for no or slow motion, the Madgwick filter for fast mo-
tion. The Madgwick filter itself is untouched. The standard
complimentary filter works with Euler angles (roll, pitch,
yaw (RPY)) resulting from the direct integration of the
gyroscope while the Madgwick filter outputs quaternions.
Quaternions were designed under the premise of being
free from singularities, i.e., for a continuous change in
orientation, there exists a continuous change in quaternion
representation [12]. This is not the case for Euler angles,
as a transition of a 359-degree roll to a 0-degree roll has
no continuous value representation if limited to 360 degrees.
Updating the orientation for the complementary filter implies
a transition of each angle independently. Combining both
representations leads to contradicting updates from each filter
with respect to the other. Thus, the complementary filter is
adapted to work in quaternion representation. Hence, the
RPY-orientation is transformed to a quaternion, and then
a quaternion slerp is performed [13]. The quaternion slerp

utilizes the representation of two quaternions on a sphere.
The transition from one quaternion to the other is not done
directly but always over the surface of the sphere. This leads
to the same handling of quaternions as the Madgwick-filter
without endangering robustness due to using two different
quaternions with very different values representing nearly
the same position.

The transition between the two filters is done by shifting
a fixed factor among the α-gain of the complementary filter
and the gain factor of the Madgwick filter. As the common
values widely used for both values differ by one order of
magnitude, the gain shifted to the complementary filter is
divided by ten and the other way around. The values of
the gyroscope axes determine in which manner to shift the
overall gain to both filters. The defining values are the two
thresholds for using solely the complementary filter on the
one hand or a full Madgwick filter on the other hand. These
values have been determined empirically. Future work will
investigate improving those values by developing a suitable
heuristic for the thresholds. The transition between the full
complementary and the full Madgwick estimation, as is
required by the prelimitations, can be done by a function suit-
able for the specific scenario. This avoids large accelerations
of the orientation due to the rapid change from one algorithm
to another. In our experiments, when starting from standstill,
the incipient Madgwick filter has a more rapid impact on
the orientation values than the incipient complementary filter
when stopping rotation. Therefore the transition between α-
gain of the complementary filter and the Madgwick-gain was
chosen to have quadratic behavior. The value referred to as
autogain Θ indicates how much impact both employed filters
have on the orientation estimation. Therefore we calculate
factors from the gyroscope measurements and scale the
autogain with the maximum β (cf. equation 2 and 3). gk
represents the gyro measurement in the corresponding axis
k, in rad/s. Later on, these factors will again be used for
position estimation, namely to determine if the sphere rotates
or not. These factors are heuristically defined as:

fk =


0 gk ≤ 0.1

0.25 · (gx − 0.1)2 0.1 < gk < 2.1

1 gk ≥ 2.1

, (2)

β = max(fx, fy, fz). (3)

Then the Madgwick gain γ for a given autogain Θ is
calculated by

γ = Θ · β. (4)

The complementary filter gain α is calculated by

α = Θ · θ · (1 − β). (5)

Thus, the Madgwick gain has a maximum of Θ and α a
maximum of θ · Θ. This ratio θ can be adapted to specific
needs. We used θ = 0.1 as the ratio between the two often



used standard values γ = 0.2 and α = 0.02. Hence for
adapting the position estimation to a given robot, the function
for calculating the factors needs to be adapted in such a way
that it is a good indication for movement or standstill. The
ratio θ needs to be chosen in a way that the desired ratio
between Madgwick and complementary gain is reached. And
lastly, the autogain needs to be chosen to fit the specific
needs in terms of how strong both filters should be able
to influence the orientation. We used Θ = 0.2 to get the
described common values.

B. Position

The calculated orientation is directly used for position
calculation. With the orientation, a gravity vector is calcu-
lated, which, once normalized, represents the measurement
of the accelerometer in abstinence of movement. Let g =[
0 0 −1

]T
represent the gravity vector in the world frame

and the matrix R represent the current orientation of the
IMU, then

g′ =

g′xg′y
g′z

 = R ·

 0
0
−1

 (6)

describes the effect of gravity in the coordinate system of
the IMU. This gravity vector is then subtracted from the
accelerometer measurement. If there is no translation, the
subtraction should lead to

[
0 0 0

]T
meaning there is

no acceleration other than gravity. If there are non-zero
components, there is an acceleration in that direction. Given
the accelerometer measurement a this leads to the velocity
vector vxAcc

vyAcc
vzAcc

 =

∫ T

0

axay
az

−

g′xg′y
g′z

 dt. (7)

These values are now coupled to the rotation of both axes
other than their own. Therefore, the factors from the orien-
tation step, representing the likelihood of rotation, are used
as limiting factors:vxAccL

vyAccL
vzAccL

 =

vxAcc
vyAcc
vzAcc

 ·

max(fy, fz)
max(fx, fz)
max(fx, fy)

 . (8)

If one of the three factors is 1, this means there is a
translation in this direction. When there is no rotation, it
will set the velocity to 0. During fast motion, this allows
exponential error integration. This exponential error is taken
care of later on.

The rotation into the world frame is computed as:vxAccWorld
vyAccWorld
vzAccWorld

 = RT ·

vxAccL
vyAccL
vzAccL

 . (9)

The next step requires the velocity calculated by the rotation.
Therefore the rotations (direct values from the gyro) are
rotated into the world frame: ωxWorld

ωyWorld
(ωzWorld)

 = RT ·

gxgy
gz

 . (10)

The rotation around the world z-axis is not used to calculate
the velocity. Its effect on the position is considered when
determining the orientation in the world coordinate system.
ωzworld does not need to be computed as it has no influence
on the position.

The resulting velocities are calculated by multiplying the
circumference of the sphere:[
vxzGyroWorld
vyzGyroWorld

]
=

[
ωyWorld/(2π)
ωxWorld/(2π)

]
·2πr =

[
ωyWorld
ωxWorld

]
·r , (11)

where r is the radius of the sphere. As the gyro mea-
sures rad/s the value is divided by 2π. Note that the two-
dimensional velocities vxzGyroWorld and vzzGyroWorld do not
correspond to the velocity on the ground plane but may
consist of motion in z direction.

Next, the vxAccWorld and vyAccWorld are limited depending
on vxzGyroWorld and vyzGyroWorld. In our experiments, this was
120 percent of the gyro calculated velocity. This ensures no
exponential error integration when in motion. This is coupled
to the physical act of sliding. The higher the likelihood of
sliding, the higher the velocity should be compared to the
velocity based on rotation. This does not count for slipping,
as this implies the adaption of limitation of the velocity
by rotation by the velocity measured by the accelerometer.
But there is no need for a limitation as there is no double
integration with the rotation.
The last step for calculating the velocity is taking the velocity
in z-direction into account for the velocity by rotation. This
velocity in z is from the noisy double integration, as this is
the only indication for change of the z-axis. To avoid large
errors and unlimited double error integration, vzAccWorld is
limited to the mean of vxzGyroWorld and vyzGyroWorld. With the
Pythagorean theorem the velocity in x and y is calculated
accepting the velocity in z-direction, which cannot be derived
by the velocity from gyro:[

vxGyroWorld
vyGyroWorld

]
=

√v2xzGyroWorld − v2zAccWorld√
v2yzGyroWorld − v2zAccWorld

 . (12)

The last step to get the position is the integration of the
velocity:pxpy

pz

 =

∫ T

0

(1 − β)vxAccWorld + β · vxGyroWorld
(1 − β)vyAccWorld + β · vyGyroWorld

vzAccWorld

 dt.
(13)

Depending on the practical circumstances and quality of
measurement, the factor β determines whether the position
relies more on the accelerometer calculated velocity or the
gyro. There should always be a mixture of both if there is
slipping and sliding. β = 0.5 results in the mean of both
approaches.
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Fig. 4. Quaternion-values of the presented fusion of complementary and
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C. Time Complexity

Overall a pose estimation step consists only of operations
that are constant in time. Given that we use the fast inverse
square root algorithm [14] for normalization, the trigono-
metric functions are considered the remaining bottleneck.
Overall there are 14 trigonometric function calls (4×arctan,
4× sin, 4× cos, 1×arcsin, 1×arccos) and 5 divisions. The
IMU measurements are collected at 125 Hz and are processed
without problems on a raspberry pi. Hence no overwhelming
computational load is to be expected.

VI. EVALUATION

The proposed algorithm is evaluated by two sets of exper-
iments performed with three Phidgets 3/3/3 IMUs mounted
on a circular acrylic glass plate with a diameter of 29 cm.
For position experiments, the plate is put inside an acrylic
glass sphere with the same radius as the glass plate. First, the
fusion of Madgwick and complementary filter, here denoted
as Autogain, is compared to a Madgwick only estimate.
Second, the trajectory computation using both gyroscope and
accelerometer is evaluated.

A. Orientation

A first experiment is performed to show the overall per-
formance of the Autogain computation for the orientation.
The IMU was manually rotated in arbitrary directions, and
the orientation was plotted using the Madgwick filter and
the Autogain filter. As expected, the overall behavior of
the presented algorithm and the Madgwick filter is very
similar in the dynamic case, as shown in Figure 4. The more
expressive part is the change between motion and standstill,
as in motion, both filters use the same algorithm but differ
during standstill and slow motion. As described in Section
III, the Madgwick filter has a rather strong jitter during slow
movements and standstill. This is due to the (too) large steps
of gradient descent iterations. To compensate for this, one
needs to lower the gain, leading to more imprecise results
during movement, as large iteration steps are beneficial there.
Alternatively, one needs to increase calculation frequency,
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Fig. 5. Distance of the proposed and the Madgwick algorithm to the optical
tracking system, using the distance definition of [15].

which is in our scenarios limited by the hardware capabilities
of the IMU.

To evaluate specifically the change between slow motion
and standstill, a further experiment is performed. Figure 5
shows the distance to a precise external reference over a
short excerpt of the experiment with three phases of slow
motion and rotation at second 7, 9 and 11. For external
reference, we used a precise optical tracking system. The
definition and proposed calculation of the distance of 2
quaternions of [15] was used. It describes the direct angle
between two quaternions. The optical system matches the
overall orientation of both IMU-based algorithms quite well
and lacks the perturbations of the pure Madgwick filter.
The transformation of the orientation by the optical tracking
system and the IMU-based algorithms yield two unknown
transformations, the relative orientation of the coordinate
system of IMU to the optical coordinate system and how the
axes are interpreted on the tracked structure itself. Therefore,
the algorithm proposed in [16] was used to solve these two
unknown transformations on basis of the resulting data, to
match the orientations of optical and IMU-based data. As this
matching of the optical system happens on basis of one of the
two IMU orientation data-sets, the comparison of absolute
differences may be misleading, as the transformations were
matched on basis of the autogain filter. To stress the jitter
behavior of the Madgwick without relying on absolute orien-
tation, which will be part of further research, Figure 6 shows
the derivative of the distance. Here the change of direction
due to small oscillations and the smoother fusion algorithm
in comparison to the tracking is even more apparent.

B. Position

The primary evaluation for the position focuses on slip-
and slide-behavior. Here the plate with the IMU(s) is fixed
inside a sphere with a diameter of 29 cm and rolled along an
“L”-shaped track of one meter by one meter. Slip behavior
was manually provoked. Figure 7 shows the resulting trajec-
tories. Pure rotation integration leads to an enlarged “L” by



0 2 4 6 8 10 12

Time in s

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
C

h
a
n
g
e
 o

f 
d
is

ta
n
c
e
 i
n
 d

e
g
/s

Autogain 0.2

Madgwick 0.2

Fig. 6. Derivative of the distance of the proposed and the Madgwick
algorithm to the optical tracking system, using the distance definition of
[15].

-1 -0.5 0 0.5

x in m

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

y
 i
n
 m

1.13

1.47

1.52

0.93

Fusion-Algorithm

Only rotation integration

Fig. 7. Ground position (Z-axis, perpendicular to the ground) by integration
of rotation and the fusion algorithm. An L-shape with 1 m by 1 m was
performed with provoked slip (rotation without translation). For references
the boxes are manually set points with the distance in meter between these
points written on the lines connecting them. The rolling started in the upper
right corner and ended in the bottom left corner.

about 50 percent, as the manually provoked rotation is just
integrated and therefore interpreted as linear motion. The
fusion between the accelerometer and gyroscope interprets
an “L” with dimensions much closer to the original. The
estimation leaves room for improvement, as in one direction,
it misses the actual length about -10 percent, and in the other
direction overestimates it by 10 percent. But it shows the
overall capability of the algorithm to compensate for slip.

The same experiment was performed with added slide,
i.e., more translation than just the rotation produces. Here
the results shown in Figure 8 were not as reliably good as
with the slip experiment. This is due to the timing of the
acceleration. In order to recognize the acceleration as trans-
lation, the rotation needs to be above a certain threshold, as
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Fig. 8. Ground position (Z-axis, perpendicular to the ground) by integration
of rotation and the fusion algorithm. An L-shape with 1 m by 1 m was
performed with provoked slide(translation without rotation). For reference
the boxes are manually set points with the distance in meter between these
points written on the lines connecting them. The rolling started in the lower
right corner and ended in the upper left corner.

the algorithm does not allow any translation without rotation
at all. The translation is computed using the accelerometer
via double integration. Therefore the acceleration of the slide
movement needs to be at the same time as a minimal amount
of rotation. If the rotation starts after the sliding, the double
integration of the acceleration is suppressed. When the
rotation starts and the translation could be double integrated,
it is already zero as the velocity is constant. This can be
seen in Figure 8 where the one side of the L was interpreted
exactly as long as the pure integration, i.e., approx. 50 cm,
and therefore the slide was not recognized, and the other
part was correctly interpreted longer than just the integration
and with 1.02 m as long as the actual trajectory. This is to
be blamed on the execution of the experiment, as it was not
perfectly ensured only to start sliding with ongoing rotation,
which is hard to achieve when manually guiding a sphere.
However, the sliding behavior in a real environment could
be in both ways, too, so sliding while rolling and starting
sliding before rolling. With slip, this is not a problem, as,
by definition, the translation cannot begin before the rotation
when slipping. If so, it would be sliding. The experiments
for sliding did not reliably detect the slide event and, on
some occasions, interpreted the distance as shorter than just
the integration, as the acceleration of the linear motion was
missed. However, the deceleration of the sphere was still
recognized while rotation existed, and therefore, the sphere
miscalculated a couple of centimeters.

C. Impact on 3D mapping

One major design driver for the presented algorithm is
the suitability for spherical SLAM purposes. Therefore, a
pose estimate is preferred to be slightly wrong, if it is more
continuous, i.e. less noisy and with less jumping values, than
the exact pose has.



Fig. 9. Left: resulting 3D map using the presented algorithm for pose
filtering. Right: resulting 3D map using Madgwick + double integrator for
pose filtering. Both images were shot from the exact same point of view.
Both plots use the same LIDAR data and apply one of the simultaneously
generated pose estimations.

To test the impact of the filter on 3D mapping, we used the
prototype in Figure 1. After 2 s of initial standstill, the sphere
rolled approx. 4 m within 5 s in an indoor environment from
one corner of the room to the opposing one. We extracted
the laserscan data, as well as the filtered pose using the
presented algorithm. Without further pre- or post-processing,
the pose data is combined with the laserscan data to create
a 3D map. Figure 9 compares the result with another 3D
map, using the pose estimation by the Madgwick filter and
simple rotation integration on the same data. Therefore the
same laserscan data is mapped with different pose estimates.
The presented filter improves the resulting map compared
to the Madgwick/integrator approach. In particular, the walls
and the ceiling are more recognizable, which is favorable for
many SLAM algorithms. Another improvement is that points
were no longer sensed below the ground, i.e. the plane on
which the sphere was moving on. The more detailed part
of the map, as seen in the bottom left corner of the above
image of Figure 9, corresponds to the initial standstill. It
is more detailed than the rest of the map because of the
non-repeating flower-shaped scanning pattern, where point
density increases with time. Note that the same detailed part
is also present in the right image. However, it is out of view
(at the bottom right corner) as the Madgwick filter misses
the initial pose estimation by a lot.

D. Conclusion

This paper introduced an IMU-based pose estimation filter
based on the fusion of multiple already existing filters and
approaches. It is optimized for specific needs and circum-
stances of spherical robots with laser scanning tasks in a
space-suitable way. Needless to say, a lot of work remains
to be done. The fusion of complementary and Madgwick ori-
entation filter solves the shortcomings of the Madgwick filter
when at a standstill, particularly the jitter. A first qualitative
evaluation shows the functionality of the filter. In further
experiments, a quantitative orientation comparison with a
synchronized optical system needs to be performed. Also,
as further work, all puzzle pieces, this filter, a locomotion
system, a scanning system need to be combined to an overall
working prototype.

The presented position estimation shows the capability to

overcome the problem of the missing absolute reference of
IMUs partly. It mainly improves the measurements in the
ground plane with slip behavior present. Still, there is a need
for parameter tuning. Sliding was not all the time detected
reliably. Here a mechanism for a delayed rotation needs to
be investigated, that acceleration shortly before a rotation is
integrated and taken into account once rotation starts. The
approach for, at least roughly, indicating the change in the
z-direction, which is now done only by the accelerometer
values, shows no promising results nor usable results in
first qualitative experiments with rolling over obstacles and
therefore needs to be re-investigated.
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