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Abstract

In this paper, we present an implementation and publish an open source library for binary correspondence search (BICOS), an

efficient method for accurate 3D reconstruction from structured light stereo imagery. Starting with two stacks of stereo-rectified

images of a scene illuminated by a statistical light pattern the proposed method solves the problem of a pixelwise correspondence

search. Our GPU-accelerated implementation reduces the latency of disparity computation using 7MP images on modern hardware

down to 20 milliseconds. Based on the algorithm introduced by Dietrich et al. (2019), we extend their approach by increasing

the descriptor size while augmenting postprocessing to increase its applicability on other types of pattern projections. Lastly, we

provide benchmarks and example reconstructions using a stereo camera setup combined with an off-the-shelf projector to validate the

algorithm’s performance. While many state-of-the-art single-shot stereo implementations are included in common computer vision

libraries, high performance multi-shot methods are not broadly available. By publishing this method as a freely available library,

in both a CUDA and CPU implementation, we hope for others to quickly gain traction in this field. The source code with build

instructions and command-line tooling is available at https://github.com/JMUWRobotics/libBICOS under the GNU LGPLv3.

1. Introduction

STEREO vision using cameras is a cost-effective and versatile

way of 3D reconstruction. A common solution here are

single-shot stereo vision methods, where only a single, rectified

and synchronized pair of input images is used to compute the

depth of a scene. However, the accuracy of those single-shot

approaches is limited. Especially badly lit, unstructured or oth-

erwise uncooperative scenes cause errors in these measurements

in the best case and render 3D reconstruction impossible in the

worst case. A solution to this problem are active stereo vision

systems, where a statistical light pattern is projected into the

scene. This makes it possible to work in environments with little

to no light, while adding structure to structureless areas, lifting

the requirement on the scene’s cooperativeness.

Projecting changing light patterns opens up the field of multi-

shot stereo vision, since the change of a object point’s projected

pixel intensity can be recorded over time to be matched in the

second view of the scene. Unfortunately, computing the disparity

map from two stacks of high resolution images proves to be a

computationally expensive process, limiting the applicability of

this approach. With increasing camera resolution and framerate,

typical methods based on computationally expensive correlations

of temporal intensity vectors for disparity computation quickly

become unapplicable in real-time scenarios.

Still, correlation-based methods provide accurate correspon-

dence results. Ideally, the amount of pixels to be processed by

correlation is reduced to a number that is smaller than the initial

O(HW 2), with image height H and width W . This stems from

the fact that for pixelwise matching, every pixel in the reference

image (H × W ) requires searching on its epipolar line in the

match image (W ). BInary COrrespondence Search (BICOS)
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Figure 1. Overview of the inputs and outputs of libBICOS. Left:

two stacks of rectified multi-shot structured light stereo images as

input. Right: computed disparity map as output, colorized.

implements such a preprocessing, by reducing the correlation

problem of intensity values to one of comparing binary vectors.

This paper’s main contributions are:

• A thorough description of the implementation details of the

BICOS algorithm.

• Extensions and modifications to the original approach of

Dietrich et al. (2019) to improve applicability for different

measurement setups.

• An accuracy evaluation of an example stereo vision setup

using reference shapes and additional free-form scans.

• The proposed implementation’s publication as a freely-

available library.



2. Related Work

Narrow baseline stereo vision can generally be considered a

well-understood problem of computer- and machine vision. Re-

garding single shot approaches, Semi-global Matching (SGM)

of Hirschmüller (2008) is a widely used baseline. Via initial pix-

elwise cost aggregation of matching costs over vertical, oblique

and horizontal paths and subsequent disparity computation by

cost-minimization, it is able to create dense disparity maps

from single shot stereo images. For cost computation, differ-

ent possibilities exist: Hirschmüller (2008) proposes the usage

of mutual information (Kim et al., 2003). However, publicly

available implementations use other metrics: The implementa-

tion libSGM (fixstars Development Team, 2024) uses the cen-

sus transform (Zabih and Woodfill, 1994), while the variant

in OpenCV (OpenCV Development Team, 2024) employs a

sample-insensitive metric (Birchfield and Tomasi, 1998).

Latest works achieving state-of-the-art single-shot stereo per-

formance on challenges like ETH3D (Schops et al., 2017) and

KITTI (Geiger et al., 2012) use learned methods utilizing com-

plex neural network architectures. Li et al. (2022) use feature

extraction networks to compute the correlation of features along

an input image pyramid, while Li et al. (2024) do both monocular

and binocular disparity estimation, to refine an initial disparity

estimate using local structure information based on normal maps,

followed by upsampling of the disparity result to the original

input resolution. Work of Min and Jeon (2024) using a U-net

transformer (Ronneberger et al., 2015) shows that learned meth-

ods are able to output a confidence map of the resulting estimated

disparity map, for helping decision based applications like au-

tonomous driving or robotics. However, learned approaches on

depth estimation from stereo imagery rely on large amounts of

training data, which is mainly sourced from synthetically gener-

ated datasets. Thus, it is not clear whether or not those methods

are reliable enough for high-accuracy 3D reconstruction.

Instead of optimizing the matching process of passive stereo

imagery, higher accuracy is achieved by combining light pattern

projection and matching algorithms adapted to the respective

projection. One approach is to project laser lines into the scene

to either match points on these lines in both cameras (Liu et

al., 2024), or to only have one camera with a calibrated projec-

tor (Bleier and Nüchter, 2017). Others project light patterns:

either speckles or point patterns (Gu et al., 2020; Schaffer et

al., 2010, 2011; Zhong et al., 2019), or vertical fringes (Heist

et al., 2016; Scharstein and Szeliski, 2003; Zhang et al., 2018)

that are easily set up by placing a goes-before-optics (GOBO)

wheel in-between a high power light source and a lens system.

These varying light patterns lead to multi-shot approaches where

a time-series of left and right views are used for correspondence

search (Dietrich et al., 2019; Heist et al., 2015). Lastly, if measur-

ing latency is not critical, entirely coded patterns help matching

correspondences by assigning a unique code to each pixel (Batlle

et al., 1998; Salvi et al., 2004; Young et al., 2007).

3. Algorithm

In this section, we show the algorithm’s methodology behind

each step shown in Figure 2. Starting with two stacks of images

Ii, the descriptor images are computed as Ĩi. These are then

exhaustively matched as the raw disparity D̃. Then, D̃ and Ii

are combined to produce the resulting filtered disparity D.

I0 Ĩ0

Ĩ1I1

D̃ D

Figure 2. Flowchart of the matching process. Stacks of images Ii.

Descriptor images Ĩi. Raw disparity D̃. Disparity D.

3.1 Descriptor Transform

Initially, we start with two stacks Ii of n images each, from

both reference and match camera. To be able to preprocess

these stacks via binary correspondence search, we first need to

compute descriptors Ĩi from these stacks.

Given a stack of images, a pixelwise termporal block is defined

as the vector of intensities It over time of a pixel p at top-left

centered sensor coordinates (x, y). Then, the bits of the binary

descriptor at p get set according to Dietrich et al. (2019) by

comparing the intensities It at different time points, visualized

in Figure 3. This yields:

• n− 1 comparisons of neighboring pairs It, It+1,

• n comparisons against the mean intensity Ī ,

• n− 2 comparisons of non-neighboring pairs It, It+2,

• n2
− 5n+ 6 comparisons of non-overlapping pairsums.

The last bits are generated from comparing each pairsum to

every other pairsum, such that pairsums don’t overlap in their

summands. The number of bits generated from this last part is

quadratic in n, thus, they have a large influence on the resulting

descriptor. Because of this, we also implement a ‘limited’ variant

for our evaluation, where only neighboring, non-overlapping

pairsums are compared, as shown in Figure 3. This yields n− 4
bits.

While Dietrich et al. (2019) limit descriptor size to a maximum

of 64 bits, we increase this limit to 128 bits since modern com-

pilers support it via __uint128_t. In practice, we dynamically

truncate the integer width to either 32 or 64 bits, if the input

image stack size allows for it.

3.2 Exhaustive Epipolar Correspondence Search

Given two descriptor images Ĩi, we now exhaustively search for

correspondences on epipolar lines. Assuming ideal stereo recti-

fication, we compare a descriptor in Ĩ0 against every descriptor

in the corresponding row in Ĩ1.

As a matching cost, we follow Dietrich et al. (2019) to compute

the bitwise hamming distance, defined as the number of bits that

differ between both descriptors:

Cham(p, d) =
∑

j

Ĩ0(p, j)⊕ Ĩ1(q, j) , (1)

over j bits in both descriptors, where q = (x − d, y). Modern

processor architectures are able to reduce this expression to just

two intstructions: xor and popcount, given that our descriptors
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Figure 3. Principle of the binary descriptor generation. Given a sequence t0...n of intensities It of a single pixel, the binary descriptor is

composed of different comparisons of these intensities, pairsums, or the mean intensity Ī .

can be easily represented as unsigned integers. The disparity at

p is then determined as:

d(p) = argmin
d

Cham(p, d) . (2)

A high number of pixels per image row may cause multiple,

local minima to exist. To address this, only disparities where a

global mimimum is found on the epipolar line are accepted.

This contrasts Dietrich et al. (2019), where they choose to do

a reverse-search along the epipolar line in the reference image.

We empirically found our way to be more efficient, since for

each search of a descriptor at p in Ĩ0, only the epipolar line of

Ĩ1 needs to be cached in memory.

3.3 Crosscorrelation- and Variancefilter

The resulting raw disparity map D̃ still contains many outliers;

to obtain a usable result, additional postprocessing is necessary

to finally obtain D. For this step, we use the normalized cross

correlation:

NXC(p, d) =
Cov [I0(p), I1(q)]

√

Var [I0(p)] ·Var [I1(q)]
, (3)

where we skip normalizing by n for brevity:

Cov [I0(p), I1(q)] =
∑

t∈n

[

I0(p, t)− Ī0(p)
] [

I1(q, t)− Ī1(q)
]

,

(4)

Var [I(p)] =
∑

t∈n

[

I(p, t)− Ī(p)
]

. (5)

Given a raw correspondence d̃ at p, we now test the actual pixel

intensities in the stacks I for correlation. For this, we introduce

a configurable threshold θNXC ∈ (0, 1), and invalidate each raw

disparity where the computed NXC < θNXC. Note that we do

not compute this correlation for each intensity vector on the

epipolar line, only for existing raw correspondences of D̃ where

some disparities with non-global minima of Cham have been

removed. Thus, this step is in worst case O(HW ).

Adding onto the correlation-filter which was proposed by Di-

etrich et al. (2019), we introduce an additional variance-based

filter. This is motivated by the fact that depending on the stereo

setup and its projected light pattern, not every pixel in I may

vary sufficiently for correlation-based methods to yield good

results. Especially in cases where it is not possible to cover the

whole field of view of the camera system with a varying light

pattern, pixels either don’t change their intensity entirely or only

based on noise, which produces many, well correlated outliers.

(See input stereo pairs of Figures 1 and 12 for an example where

not every pixel is covered by structured light.) By introducing a

second configurable parameter θVar, we allow to filter for the ma-

jority of coarse outliers caused by non-ideal setups by discarding

disparities where Var [I] < θVar, for either I0,1. Since comput-

ing variances is required for cross-correlation, we do not need to

add another step to our filtering process. In contrast to Dietrich

et al. (2019), we do not apply additional median-filtering on the

resulting disparity map D since with a higher descriptor size

and proposed modifications very few outliers remain. Different

filtering strategies can still be applied as a postprocessing step

to improve the 3D reconstruction results.

3.4 Subpixel-Interpolation

Lastly, to refine our disparity map, we implement subpixel-

interpolation as proposed by Dietrich et al. (2019) as follows.

Given a raw disparity d̃, a second-degree polynomial Ĩ1(z, t) =
a(t) · z2 + b(t) · z + c(t) is fit through the spatial neighborhood

q ± 1 on the epipolar line of the match pixel, with:





a(t)
b(t)
c(t)



 =
1

2





1 −2 1
−1 0 1
0 2 0









I1(q − 1, t)
I1(q, t)

I1(q + 1, t)



 , (6)

such that a maximum NXC on that curve with z ∈ [−1, 1] can

be compared against the filters of previous section. In practice,

we use a discretized, configurable pixel stepsize σp ∈ (0, 0.5].



Figure 4. Experimental stereo camera system with mounted

projector.

Figure 5. Projected light patterns. Left: varying binary noise

similar to static noise from analog television. Right: fringes

where inter-fringe distance and fringe width vary over time.

4. Experiments

For our experiments, we employ the stereo camera system shown

in Figure 4, comprised of two synchronized 7MP ORX-10G-

71S7C-C cameras from Teledyne mounted with a baseline of

approximately 38 cm. Instead of a GOBO-projector as used

by the original authors, we use an unsynchronized aftermarket

projector that projects either a binary noise pattern, similar to

the static noise in analog television, or a fringe pattern; both

are shown in Figure 5. The stereo setup is calibrated with 80

image-pairs of a ChArUco-pattern using the method of Zhang

(2000).

4.1 Scans of Known Artefacts

To give a reference on the achievable accuracy with our imple-

mentation, the scans are evaluated on a reference plane, sphere

and dumbbell (Figure 6), using either binary noise or fringe

projection, based on the error metrics defined in the industry

standards (VDI/VDE-Gesellschaft Mess- und Automatisierung-

stechnik, 2012). Note that this evaluation does not include typi-

cal postprocessing present in commercial 3D sensors. That is:

scans of the artifacts are acquired by computing the pointcloud

from a single depth map of our BICOS implementation, without

multi-scan fusion or median filtering. We only remove outliers

based on a 6σ rule, where points exceeding 6 standard deviations

are considered as outliers, and the respective fit is recomputed.

Figure 6. Spherical scanning artefacts. Left: reference sphere

with diameter of 145 mm. Right: SLA-printed dumbbell with

60 mm diameter spheres, spaced 220 mm apart.
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Figure 7. Plane flatness error of fringe (dashed) and binary noise

(solid) pattern projections, with both a parallel (green) and angled

(blue) reference plane. Using the 6σ rule, we exclude a maximum

of 6.47‰ points for the case of parallel plane and fringe

projection.
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Figure 8. Sphere probing errors of fringe (dashed) and binary

noise (solid) pattern projections, with size (black) and form (red)

errors. The 6σ rule excludes 7.68‰ points on form

measurements with fringe projection. No points are excluded for

size measurements.

4.1.1 Plane Flatness Error The flatness error is shown in

Figure 7, over a measurement volume of 0.5-1.7 m. It is com-

puted from the thickness of a best-fit plane, which in turn is

the result of a least-squares fit. Two plane-configurations are

measured: one where the plane is perpendicular to the scanner’s

main optical axis (fronto-parallel), another where it is angled at

approximately 45°. At small distances, flatness-errors as low as

1-2 mm are observed.

4.1.2 Sphere Probing Error Consisting of two metrics, we

compute the least-squares fit of a variable-radius sphere, its

thickness (form) and size-deviation from a known radius over

the same measurement range as in our evaluation of the plane

flatness error. The results in Figure 8 show that size-errors are in

the sub-millimeter range, and form-errors are in the low millime-

ters from 2 mm to 5 mm in the case of binary noise projection.

Both plane flatness and sphere probing errors show that for this

measurement setup more accurate results are achieved by using

binary noise projection.

4.1.3 Sphere Spacing Error Lastly, we measure a dumbbell

of two spheres with known distance. By fitting two, fixed-radii

spheres, we compute the length error shown in Figure 9. Over a
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Figure 9. Sphere spacing error of fringe (dashed, blue) and binary

noise (solid, orange) projections. For fringe projections, 6.54‰

points are outside of 6σ. Errorbars indicate 1 standard error of the

mean, over different poses of the dumbbell, at the respective

measurement distances.

larger measurement range than in previous measurements, length

errors do not exceed 0.5 mm. Only the standard error of the mean

increases at a larger distance of 2.3 m.

4.2 Free-Form Scans

Secondly, we record images using binary noise projection of a

free-form scene ‘Adam & Eve’ and a garden gnome, at a distance

of 1 m and 30 cm respectively.

4.2.1 Adam & Eve A 3D reconstruction of the scene is

shown in Figure 16. To show the difference between both de-

scriptor variants, top of Figure 16 displays the meaningful differ-

ence between 12 and 33 images as black points, such that black

points in this scan are points present in the scan with 12 images

but missing when using 33 images. Thus, these black points are

effectively outliers that are removed by increasing the sequence

size. The rest of both scans is practically identical.

4.2.2 Garden Gnome Similarly, Figure 13 shows outliers

removed by changing variants and increasing the sequence size.

Given a ground-truth scan of the garden gnome which was cre-

ated using a FARO ScanArm, we align our scan and show that

cloud-to-cloud distances don’t exceed 0.75 mm.

4.3 Performance Benchmarks

Since we implement the algorithm in CUDA, a very low recon-

struction latency is achieved. We benchmark the latency of dis-

parity computation over three configurable parameters: temporal

block size n, subpixel stepsize σp and single/double computa-

tional precision. The dataset for our benchmarks consists of the

same 7MP images taken to compute the reconstruction of Figure

16. Our implementation does have other configurable parame-

ters; however, they do not influence reconstruction latency as

much as the following.

4.3.1 Temporal Blocksize It is clear that processing more

images increases latency. However, we can see in Figure 10

that truncating the descriptor – or in other words: the size of

the unsigned integer – significantly speeds up the reconstruction.

With full descriptors and six images per camera, we achieve a

latency as low as 12.3 ms. Note that our variant with limited

descriptors can use 32-bit descriptors with up to 9 images, 64-

bit with 17 and 128-bit with 33 images. The limited 128-bit

descriptors with 33 images are only marginally slower than

full descriptors with 12 images. The remaining parameters of

benchmarks in Figure 10 are: θNXC = 0.95, θVar = 1.0, with

no subpixel interpolation.

Figure 10. Latency of libBICOS using full descriptors over

increasing temporal block sizes, on both Nvidia RTX 3090 and

4090. Jumps in latency are caused by increases in descriptorsize,

where up to 6 images per stack fit into 32-bit descriptors, 8 into

64-bit and 12 into 128-bit.

Figure 11. Latency of libBICOS using full descriptors over

subpixel stepsize σp, with either double or single computational

precision. Dotted lines indicate latency without subpixel

interpolation.

4.3.2 Subpixel Step The second significant influence on la-

tency is subpixel interpolation, since the amount of computations

increases with a lower σp. Figure 11 shows how the latency rises

with lower values of σp, when run on a RTX 4090. Since we are

working with floating-point thresholds, we may not necessarily

require the precision of full 64-bit floating point. Therefore, we

enable reducing the computational precision to 32-bit floating

point. This effectively halves the latency, with little influence on

reconstruction quality. This way, subpixel interpolation with a

stepsize of σp = 0.25 only adds 5 ms to the matching process.

In this case, we perform benchmarks with full descriptors and

n = 12 as well as θNXC = 0.95, θVar = 1.0.

4.4 Comparison against libSGM

Comparing libBICOS against libSGM (fixstars Development

Team, 2024) as a performant implementation of a single-shot

3D-reconstruction algorithm, we note the following: running

on a single pair of 7MP input images, libSGM uses 14GB of

VRAM while taking 37 ms on a RTX 4090 to compute a dis-

parity map. However, this particular implementation limits the

disparity search range to a maximum of 256 pixels, which will

result in any true correspondences with a disparity higher than

that to be represented as a wrong match somewhere else in the

disparity map. Therefore, it is not well suited for real-time stereo

reconstruction on high-resolution images. In contrast, libBICOS

required a maximum of 3.2GB of VRAM during our bench-

marks, while not having any constraints on disparity search



Figure 12. The garden gnome reference object. Left: overview of

the gnome placed on a chair. Right: input stereo image pair

(enhanced contrast for display).

Figure 13. Computed point cloud of the gnome using the same

settings as those of Figure 16, colored by depth. Outliers not

present in the scan with 33 images are colored in black.

range. Still, libBICOS requires multi-shot structured light, while

libSGM is applicable to single-shot stereo reconstruction.

5. Conclusion

This work presented an implementation for binary correspon-

dence search (BICOS) for stereo reconstruction. By implement-

ing this algorithm using the CUDA framework, we were able

to achieve a disparity computation latency on 7 megapixel in-

put images of less than 1/10th of a second. We extended the

already proposed algorithm of Dietrich et al. (2019) by a vari-

able descriptor size of 32-, 64- or 128-bit. Moreover, by adding

a variance-threshold on the temporal intensity block the algo-

rithm’s flexibility is improved. With its increased flexibility, our

implementation is applicable to different kinds of statistical struc-

tured light projection, lifting the requirement on sophisticated,

customized projector and stereo camera setups. Additionally,

we enforce unique descriptor matches between left and right im-

ages by formulating a epipolar-line-wise global minimum ham-

ming distance constraint. Experiments using a medium-baseline

stereo vision setup and different types of light pattern projection

showed that millimeter accuracy is achievable at close range

with small baselines. By publicly making our implementation

available at https://github.com/JMUWRobotics/libBICOS

under the GNU Lesser General Public License (LGPLv3), we

hope to enable other researchers as well as industry to easily

pick up on structured light, multi-shot stereo vision for 3D re-

construction.
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Figure 14. Segmented gnome after aligning it to a ground truth

point cloud using the ICP algorithm, colored by cloud-to-cloud

distance, with scalebar in millimeters.
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Figure 15. Absolute frequencies of binned cloud-to-cloud

distances between scanned gnome and ground truth of Figure 14.
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Tünnermann, A., Notni, G., 2016. High-speed three-dimensional

shape measurement using GOBO projection. Optics and Lasers

in Engineering, 87, 90–96.

Hirschmüller, H., 2008. Stereo Processing by Semi-Global

Matching and Mutual Information. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 30(2), 328–341.

Kim, J. et al., 2003. Visual correspondence using energy mini-

mization and mutual information. Proceedings Ninth IEEE In-

ternational Conference on Computer Vision, IEEE, 1033–1040.

Li, J., Wang, P., Xiong, P., Cai, T., Yan, Z., Yang, L., Liu, J.,

Fan, H., Liu, S., 2022. Practical Stereo Matching via Cascaded

Recurrent Network With Adaptive Correlation. Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 16263–16272.

Li, K., Wang, L., Zhang, Y., Xue, K., Zhou, S., Guo, Y., 2024.

LoS: Local Structure-Guided Stereo Matching. Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 19746–19756.

Liu, Y., Ou, P., Xu, X., Sun, J., 2024. Multi-line structured

light binocular vision stereo matching method via coarse-to-fine

spatial geometric constraints. Optics & Laser Technology, 176,

110950–110957.

Min, J., Jeon, Y., 2024. Confidence Aware Stereo Matching for

Realistic Cluttered Scenario. 2024 IEEE International Confer-

ence on Image Processing, 3491–3497.

OpenCV Development Team, 2024. OpenCV: Open Source

Computer Vision Library, Version 4.10.0. GitHub. https://

github.com/opencv/opencv (18 October 2024).

Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolu-

tional Networks for Biomedical Image Segmentation. Medical

Image Computing and Computer-Assisted Intervention, Springer,

234–241.

Salvi, J., Pages, J., Batlle, J., 2004. Pattern codification strategies

in structured light systems. Pattern recognition, 37(4), 827–849.

Schaffer, M., Grosse, M., Harendt, B., Kowarschik, R., 2011.

High-speed three-dimensional shape measurements of objects

with laser speckles and acousto-optical deflection. Optics Letters,

36(16), 3097–3099.

Schaffer, M., Grosse, M., Kowarschik, R., 2010. High-speed

pattern projection for three-dimensional shape measurement

using laser speckles. Applied Optics, 49(18), 3622–3629.

Scharstein, D., Szeliski, R., 2003. High-accuracy stereo depth

maps using structured light. 2003 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, 2003.

Proceedings., 1, I–I.

Schops, T., Schonberger, J. L., Galliani, S., Sattler, T., Schindler,

K., Pollefeys, M., Geiger, A., 2017. A Multi-View Stereo Bench-

mark With High-Resolution Images and Multi-Camera Videos.

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition.

VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik,

2012. Optische 3-D-Messysteme - Bildgebende Systeme mit
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