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A B S T R A C T

Spherical robots are a format that has not been thoroughly explored for the application of mobile mapping. In
contrast to other designs, it provides some unique advantages. Among those is a spherical shell that protects
internal sensors and actuators from possible harsh environments, as well as an inherent rotation for locomotion
that enables measurements in all directions. Mobile mapping always requires a high-precise pose knowledge to
obtain consistent and correct environment maps. This is typically done by a combination of external reference
sensors such as Global Navigation Satellite System (GNSS) measurements and inertial measurements or by
coarsely estimating the pose using inertial measurement units (IMUs) and post processing the data by registering
the different measurements to each other. In indoor environments, the GNSS reference is not an option. Hence
many mobile mapping applications turn to the second option. An advantage of indoor environments is that
human-made environments usually have a certain structure, such as parallel and perpendicular planes. We pro-
pose a registration procedure that exploits this structure by minimizing the distance of measured points to a
corresponding plane. Further, we evaluate the procedure on a simulated dataset of an ideal corridor and on an
experimentally acquired dataset with different motion profiles. We show that we nearly reproduce the ground
truth for the simulated dataset and improve the average point-to-point distance to a reference scan in the
experimental dataset. The presented algorithms are required to work completely autonomously.
1. Introduction

Today's robots for mobile mapping come in all shapes and sizes. State
of the art for urban environments are laser scanners mounted to cars.
Smaller robotic systems are particularly used when cars no longer have
access. Examples for this are human operated systems such as Zebedee
(Bosse et al., 2012), a small Hokuyo 2D scanner on a spring, that is
carried through the environment, VILMA (Lehtola et al., 2016), a rolling
FARO scanner operating in profiler mode, RADLER (Borrmann et al.,
2020), a SICK 2D laser scanner mounted to a unicycle, or a backpack
mounted “personal laser scanning system” as in (Lauterbach et al., 2015)
or (Leica, 1067). Recently more and more autonomous systems gained
maturity. A stunning example is Boston Dynamics' quadruped “Spot” that
autonomously navigates and maps human environments (Boston Dy-
namics and Spot rob, 2021). Also, the mobile mapping approaches
implemented on the ANYmal platform such as (Fankhauser et al., 2018)
were very successful. Of all these formats, one has not been explored
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thoroughly in the scientific community: The spherical mobile mapping
robot. Yet this provides some very promising advantages over the other
formats. For one, the locomotion of a spherical robot inherently results in
rotation. That way, a sensor fixed inside the spherical structure will cover
the entire environment, given the required locomotion without the need
for additional actuators for the sensors. This requires a solution for the
spherical simultaneous localization and mapping (SLAM) problem, given
the six degrees of freedom of the robot. Secondly, a spherical shell that
encloses all sensors protects these from possible hazardous environ-
ments. For example, the shell stops any dust that deteriorates sensors or
actuators when settling at sensitive locations. In contrast to an usual
enclosing the shell can separate the sensors entirely from the environ-
ment without the need for a number of points-of-connection. A strict
requirement then is that the shell is very durable. This is particularly
useful for unknown or dangerous environments. E.g., old buildings that
are in danger of collapsing, narrow underground tunnels, construction
sites, or mining shafts. The spherical format is, in fact, also suited for
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Fig. 1. Illustration of the Hesse- and polygon projection distance. The point p (red) gets projected onto the infinitely extending global plane. Both the point projection
(green) and the global planes convex hull (blue) get projected into 2D space (grey). The Hesse distance, i.e. the shortest distance to the infinitely extending plane (red),
is shown as well as the minimum distance from the 3D point projection to the polygon (purple). (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 2. (Left) Point normals using the AKNN method with K ¼ 20 (number of nearest neighbors). (Middle) Result of the region growing, before applying the second
filter. (Right) Resulting clusters after applying the second filter, using Nc,min ¼ 300. In each image, one color represents a segment. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)
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space applications. In the DAEDALUS study (Rossi et al., 2021), such a
robot is proposed that is to be lowered into a lunar cave and create a 3D
map of the environment. The authors choose this format as the moon
regolith is known to damage instruments and other components. They
also present an approach to protect the shell from accumulating dust and
dirt. However, the spherical format also comes with some disadvantages.
Lidar sensors often have a minimum scan distance, resulting in a less
dense (or empty) point cloud when the scanner looks on the ground,
whereas density is higher when looking in other directions. The ground
itself is likely to be less populated with points, due to weak angles of
incidence while mapping it. Furthermore, relying on IMU based odom-
etry as a localization technique alone yields inaccurate and noisy pose
measurements. Therefore, a robust registration procedure is needed for
spherical robots, that is able to cope with vast differences is point cloud
2

density and high noise regarding pose measurements.
This paper proposes to use such a spherical robot for mobile mapping

man-made environments. In such environments, one advantage are
architectural shapes following standard conventions arising from tradi-
tion or utility. In particular, there are many flat surfaces such as walls,
floors, etc. that are sensed. Exploiting this fact yields more opportunities
for registration as point-to-plane correspondences can be used. The
proposed registration method minimizes the distances of each point to its
corresponding plane as an objective function.

The next sections introduce you to the state of the art SLAM algo-
rithms for spherical robots and plane based registration. We then present
our approach, which includes global plane extraction, point to plane
correspondences, and an optimized gradient descent that minimizes
point to plane distances. Furthermore, we show the results on simulated,



Fig. 3. Two simulated datasets of a long hallway of size 4 m�3 m � 100 m. Ideal noise free (left), noisy pose (N ϕ ¼ N ψ ðμ ¼ 0:0001;σ ¼ 0:00001Þ) and noisy range
measurements (N rðμ ¼ 0; σ ¼ 0:001Þ) (right). The normal distributions are define in such a way, that in the resulting dataset plane detection is still possible.
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as well on real world datasets.

2. State of the art

2.1. Spherical SLAM

While there exist camera-based approaches (Guo et al., 2020), to the
best of our knowledge, SLAM with spherical robots and laser scanners
was not done before. However, laser-based SLAM algorithms for motions
in six degrees of freedom (DoF) have been thoroughly studied. For out-
door environments (Nüchter et al., 2007) provides a first baseline.
Adding a heuristic for closed-loop detection and a global relaxation
Borrmann et al. yield highly precise maps of the scanned environment
(Borrmann et al., 2008). Thereby they reduce the position and orienta-
tion error of the scanning poses by orders of magnitude in the range of
centimeters and hundreds of a degree. Zhang et al. propose a real-time
solution to the SLAM problem in (Zhang and Singh, 2014). They ach-
ieve the performance at a lower computational load by dividing the
SLAM algorithm into two different algorithms: one performing odometry
at a high frequency but low fidelity and another running at a lower fre-
quency performing fine matching and registration of the point clouds.
More recently Dr€oschel et al. also propose an online method using a novel
combination of a hierarchical graph structure with local multi-resolution
maps to overcome problems due to sparse scans (Droeschel and Behnke,
2018). Another intriguing example is the NavVis VLX system (NavVis,
3

2021a). They perform real time SLAM on a mobile, wearable platform,
producing colored point clouds with high accuracy by combining it with
a camera system. However, this platform has to be moved by a human
operator. In particular, they are able to achieve one sigma of measure-
ments within 3 mm difference the measurements of a ground truth
terrestrial laser scan (NavVis, 2021b). They also employ artificial
markers that can be placed in the environment, which get recognized by
the camera system to further improve registration accuracy. Obviously,
this is not possible in inaccessible, or dangerous environments.

Since these approaches are based on point-to-point correspondences,
they require a rather high point density to achieve precise registration.
For low-cost LiDARs, this implies slow motion and long integration time.
2.2. Point cloud registration using plane based correspondences

The de-facto standard for many SLAM algorithms is the Iterative-
Closest-Point (ICP) algorithm (Besl and McKay, 1992) that employs
point-to-point correspondences using closest points, as the name sug-
gests. To overcome the requirements on point-density imposed by the
point-to-point correspondences instead other correspondences are used.
In human-made environments, planes are abundantly available and
hence provide an attractive base for correspondences.

Pathak et al. (2010) propose to reduce the complexity of the regis-
tration by using correspondences between planar patches instead of
points. They demonstrate the effectiveness of their approach even with



Fig. 4. Top: Initial sequence of the simulation of the ideal dataset showing the simulated motion of the robot.
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noisy data in cluttered environments. However, their approach is
designed for data acquired in stop-scan-go fashion and not for mobile
mapping applications. As they use a region growing procedure with
randomized initialization for detecting planar patches the distortions in
the data introduced by pose uncertainties are likely to effect the shape of
the planar patches and lead to faulty correspondences.

F€orster et al. use the planarity of human-made environment suc-
cessfully in (F€orstner and Khoshelham, 2017). They register point clouds
using plane-to-plane correspondences and include uncertainty measures
for the detected planes and the estimated motion. Thereby, they propose
a costly exact algorithm and cheaper approximations that yield
high-quality maps. Favre et al. (2021) use point-to-plane correspon-
dences after preprocessing the point clouds using plane-to-plane corre-
spondences to register two scans with each other successfully.

Both approaches use plane-to-plane correspondences to pre-register
the scans. However, for pre-registration the classical point-to-point
registration is also very effective. One advantage that point-to-point
correspondences have over plane-to-plane correspondences is that they
do not require a long stop in order to obtain enough points to detect
planes in each pose. For plane-to-plane correspondences, this is necessary
to gather enough data to measure planes in each scan robustly. In
particular this pause is needed when the field-of-view (FOV) is limited, as
the detected planes are thin slices of the true planes which are difficult to
find correct correspondences for. The resulting scan procedure is stop-
scan-and-go. In particular, for the application of a spherical robot this
standstill in each pose cannot be guaranteed or even approximated,
making continuous-time approaches using point-to-plane correspon-
dences the method of choice.

Lidar odometry and mapping (LOAM) (Zhang and Singh, 2014) is the
baseline-algorithm that provides a real-time and lowdrift solution based
on two parallel registration algorithms using planes and lines. Unfortu-
nately, it is not open-source anymore. LOAM livox extends the LOAM
framework to the rotating prism scanner with small FoV (Lin and Zhang,
2020). Zhou, Wang, and Kaess write that it also adopts the parallel
4

computing to achieve real-time global registration. Parallel computing
needs a powerful CPU, it may be not suitable for an embedded system
which has limited computational resources (Zhou et al., 2021). Thus,
they extend their smoothing and mapping to the LiDAR and planes case.
In their experiments they used a VLP-16 LiDAR to collect indoor datasets.

Further recent planar SLAM approaches include (Jung et al., 2015;
Grant et al., 2019; Geneva et al., 2018; Zhou et al., 2021; Wei et al.,
2021). While Wei et al. uses only the ground plane in outdoor experi-
ments. Indoors, Jung et al. used in 2015 several Hokuyo laser scanners
for their kinematic scanning system (Jung et al., 2015), while Grant used
a single Velodyne HDL-32E sensor with 32 rotating laser/receiver pairs
mounted on a backpack and walked through different environments
(Grant et al., 2019). The LIPS system (Geneva et al., 2018) employes a
so-called Closest Point Plane Representation with an Anchor Plane Fac-
tor. Random sample consensus (RANSAC) is used to find the planes. Their
system couples an eight channel Quanergy M8 LiDAR operating at 10Hz
with a Microstrain 3DM-GX3-25 IMU attached to the bottom of the
LiDAR operating at 500Hz.

In the following, we propose this combination of point-to-point based
pre-registration followed by a point-to-plane based optimization.

3. Registration algorithm

This section describes the presented algorithm. We first pre-register
all individual scans to align them in one global coordinate system.
Then, planes are extracted from this global scan model. The key to
improving map quality is to find a model for each individual scan, where
each point is correctly identified to belong to one of the globally
extracted planes. Then, each scan is optimized by finding a 6D pose-
transformation that minimizes the distance of each correspondence.
Note that all of this takes place on a reduced version of the scan, i.e. an
octree based reduction where each voxel is only allowed to have a certain
amount of points. This ensures a homogenous point density, which is
favourable for the error function. It also decreases runtime, while



Fig. 5. Data acquisition using floating sphere. Top: A sequence of orientations the sphere assumes during data acquisition. Bottom: Hardware setup of the sphere.

F. Arzberger et al. ISPRS Open Journal of Photogrammetry and Remote Sensing 1 (2021) 100004
preserving the planar features of the environment.
Consider a line scan as the smallest chunk of range data we obtain

from the scanner device driver. In the case of a SICK LMS1xx it is a line,
and in case of a Livox scanner it has a flower shape. More details are
provided in the following sections. We start with transforming each line
scan into the project coordinate system, which is defined by the pose of
the first acquired line scan. For map improvement, the individual scans
need to be registered to another. We propose an algorithm that consists of
multiple steps outlined in Algorithm 1. Based on ideas described in
(Elseberg et al., 2010) we first pre-register the scans and then further
improve the overall map by exploiting the fact that human-made envi-
ronments often consist of planes. We then find the planes in the
pre-registered point cloud and then optimize the poses associated with
the scans to minimize the distance of all points to their respective planes.

Algorithm 1. Registration algorithm for man-made environments
5

3.1. Pre-registration

For the plane extraction the linescans need to be transformed into the



Fig. 6. Top: Prototype used for data acquisition with the rolling sphere. The main payload is the Livox Mid-100 laser scanner. For pose-estimation, three IMUs of the
manufacturer Phidget are placed inside and a Raspberry Pi 4 for the calculations. On the top are two batteries, and on the bottom one voltage stabilizer and the
breakout box of the laser scanner. Below: Rendering of the simulated robot, a Livox laser scanner insider a spherical shell.
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project coordinate system. Various pre-registration methods are suitable
for this. The most simple method is to use the data from an intertial
measurement unit for a coarse alignment. Alternative solutions combine
multiple linescans into a metascan and perform registration methods
known from terrestrial laser scanning and distribute the error over the
trajectory (Stoyanov and Lilienthal, 2009; Bosse and Zlot, 2009) or use a
small number of iterations of continuous-time SLAM approaches such as
the one presented in (Elseberg et al., 2013). This yields maps that can be
used for plane registration and hence a point-to-plane correspondences
based registration.
3.2. Plane extraction

After having done the pre-registration, the scans are aligned well
enough to make statements about the potential planes in the environ-
ment. We extract planes only once from the global scan model, or a
portion of that global scan model. The first few line scans, e.g. the first
half of the global model, is sufficient for plane extration. This is because
within the initial movements of the robot system, pose error has not
accumulated for very long, resulting in a less dense, yet less distorted
representation of the environment. For mobile robots this yields a quite
consistent strategy for global plane extraction, since all the subsequent
scans (where pose error keeps accumulating) get matched with the initial
planar representation. However, especially for large datasets, it is
necessary to update the global plane model multiple times while estab-
lishing point to plane correspondences. Currently, this is not done, and is
one of the primary objectives for future works.

To find the planes in the environment, a Randomized Hough trans-
form (RHT) with an accumulator ball as described in (Borrmann et al.,
2011) is used as this method prefers dominant planes such as the building
structure over smaller planar surfaces. The RHT is combined with a
6

region growing approach, similar plane merging, and a flatness filter that
is based on principal component analysis (PCA). Once a plane is identi-
fied, we calculate the convex hull of that plane, representing the extent in
all directions. This way, large planar structures such as walls or the
ceiling get identified. Note that smaller, non-perpendicular planes such
as doors or cupboards potentially get identified, too, if they pass the PCA
filter.

In the next subsection, the Hesse-normal form of the plane is required.
For an ideal plane the orthogonal distance from the origin ρPk

is

computed via nPk �pi, where pi ¼ ½ xi yi zi �T is an arbitrary point on

the plane and nPk ¼
�
nxPk

nyPk
nzPk

�T is the normal vector of that plane.
To find this point, we use the convex hull, as it is defined by the points
that lie on the plane with the furthest distance to one another. We choose
the center point of the convex hull of the plane as aρk .
3.3. Point-to-plane correspondences

There are many ways of solving the segmentation problem of
assigning each point to a plane. They are often based on the RANSAC
method (Honti et al., 2018), (Gaspers et al., 2011) but also deep learning
approaches (Engelmann et al., 1810) have been successful. The quality of
the preregistration directly influences the quality of the plane detection
and therefore the quality of the final registration result. We assume small
enough errors in pre-registration to allow for plane detection. We employ
two distance models to represent the distance from a point to a plane, and
combine them with a local planar clustering (LPC) approach to establish
point-to-plane correspondences.

3.3.1. Distance models
The Hesse-normal form describes the distance from the i-th



Fig. 7. Evaluation of point distances before (left) and after (right) the plane-based registration on a simulated dataset. Lateral images always have the same orien-
tation. A maximal distance of 30 m is set, such that all points that display a higher distance value are excluded from the analysis. Both point-clouds were reduced
before evaluating point-to-point distances to the ground-truth. Further, the color-space maps all values with a distance greater than 1 m to the same color. The top two
columns show a heat map of distances, while the bottom shows the corresponding histogram. The color mapping is equivalent in both. An animation of the matching
process is given at https://youtu.be/hFx2uGkUdXw. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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transformed point T(pi) to infinitely extending, k-th plane in 3D vector
space

Di;k
h ¼ nPk �½TðpiÞ � aPk �; (1)

with normal nPk and supporting point aPk of the k-th plane. The distance

Di;k
h of the i-th point to the k-th plane reflects the length of the line

segment, constructed from the i-th point to its projection on the k-th
plane. Therefore, by definition the line segment is parallel to the normal
vector of the plane. Thus, the i-th points projection ~TðpiÞ onto the k-th
plane, which is required later, is easily calculated by shifting the point
against normal direction:
7

~TðpiÞ ¼ TðpiÞ � Di;k
h nPk (2)
The simplicity of the Hesse distance is at contrast with its inability to
take the extent of the plane into account. Therefore, a second distance
model is introduced: the polygon projection distance (PPD). The convex
hull represents the extend of a plane by forming a polygon with the outer
most points that are assigned to a given plane. It is able to represent the
expansion of the plane in all directions, and thus is utilized as a distance
model. To find the PPD, first a corresponding point gets projected onto
the infinitely extending plane representation given by the Hesse form, i.e.
~TðpkÞ is found from eq. (2) (green point in Fig. 1). Then, the 3D polygon,
i.e. the points that make up the convex hull, as well as the corresponding
3D point projection, are projected again into a 2D vector space, using the

https://youtu.be/hFx2uGkUdXw


Fig. 8. The point cloud acquired by the floating sphere before (left) and after (right) applying the plane based registration. View from the interior (top) and a birds-eye
view (bottom). Parameters used for optimization: ϵH ¼ 50, ϵP ¼ 200, ϵα ¼ π

4, K ¼ 20 for AKNN, dgrowth ¼ 50, Ncmin ¼ 200, α0 ¼ [0.01,0.01,0.01,0,0,0]τ, i ¼ 8, k ¼ 100.
An animation of the registration process is given at https://youtu.be//ov5Xjgyl9wA.
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maximal component of the normal vector of the plane. E.g. in Fig. 1, the
blue planes normal vector has its mayor component in z-direction (up-
wards), thus the projection polygon distance is calculated in the xy-plane.
Using the maximum of the absolute magnitude of the normal vector
ensures that the most sensible 2D projection is used for every direction.
Sunday et al. (Sunday, 2021) presents an optimal algorithm to check
whether the point projection lies inside the polygon in 2D. If the point is
inside the polygon, its PPD is set to zero. If, however, the point is outside
the polygon, the shortest distance to the polygon is calculated by looking
at the minimum distance of the i-th point to each line segment, making up
the convex hull of the k-th plane in 3D. Let the polygon Pk be made up of
line segments sm,j. The line segment sm,j consists of the points pm and pj.
The line segment is parameterized by

sm;jðtÞ ¼ pm þ t ��pj � pm
�
; (3)

where t 2 ½0;1�. We set up a distance function, which measures the dis-
tance from the query point pi to an arbitrary point on the line segment.

dm;jðtÞ¼ ksm;jðtÞ� pik (4)

It is now possible to find the shortest distance to the line segment by
finding the argument of the function that minimizes this distance.
Therefore, we set

∂

∂t
dm;jðtÞ2¼! 0; (5)

resulting in

t0 ¼
�
pj � pm

� �ðpi � pmÞ�
pj � pm

�2 : (6)

Note the possibility of t0 62 ½0;1�. In that case, the projection of the
point pi onto the line given by eq. (3) is not between pj and pm. Instead, its
8

projection onto the line falls outside of the segment. By constraining t0 we
get

t̂ ¼ minðmaxðt0; 0Þ; 1 Þ; (7)

which is the argument that gives the shortest distance to the line
segment, when inserted to eq. (4). We find the PPD from the point pi to
the polygon Pk by calculating the minimum shortest distance over all line
segments that make up the polygon.

3.3.2. Local planar clustering
The presented algorithm employs LPC on each individual line scan.

The idea is to find planar features utilizing an optimized approximate k
nearest neighbor (AKNN) search for normal calculation as in (Beis and
Lowe, 1997). Thus, normals are calculated for every point in the
respective line scan. Then, the local normal model is combined with a
region growing approach. The region growing is implemented by storing
the k-nearest neighbors in a queue, which represents the iteration order
of the clustering algorithm. A region grows if one of these neighbors has a
distance shorter then a threshold dgrowth and additionally has a similar
normal. We define similarity of two normals via the angle between them,
which is:

αðn1;n2Þ ¼ arccosðn1 �n2Þ: (8)

However, the smallest angle between two normal vectors is

α̂ðn1;n2Þ ¼

8>>>>><
>>>>>:

2π � αðn1;n2Þ if αðn1;n2Þ > 3
2
π

αðn1; n2Þ � π if αðn1;n2Þ > π

π � αðn1;n2Þ if αðn1;n2Þ > π
2

; (9)

because the opposing normals �n1 and �n2 always have to be

https://youtu.be//ov5Xjgyl9wA


Fig. 9. The point cloud acquired by the rolling sphere before (left) and after (right) applying the plane based registration. View from the interior (top) and a birds-eye
view (bottom). Parameters used for optimization: ϵH ¼ 200, ϵP ¼ 300, ϵα ¼ π

4, K ¼ 200 for AKNN, dgrowth ¼ 50, Ncmin ¼ 800, α0 ¼ [0.001,0.001,0.001,1,0,1]τ, i ¼ 1500,
k ¼ 1. An animation of the registration process is given at https://youtu.be/Mkil0vLk8f8.

Table 1
Comparison of point-distances in the uncorrected and corrected simulated
dataset.

P90 P95 P98

Uncorrected 372.1 cm 553.4 cm 827.9 cm
Corrected 35.9 cm 64.1 cm 122.8 cm
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considered, since they correspond to the same plane. We say that two
normals are similar if the angle α̂ from eq. (9) is smaller than a threshold
ϵα.

Planar areas like walls are therefore connected in one large cluster,
while non-feature parts, i.e. non-planar or detached parts of the scan will
have their own, smaller cluster. Finally the clusters are filtered in two
steps. First, to combine clusters that are similar, i.e. have a short distance
(dgrowth) to each other and similar mean normals (similarity defined as
before). Second, to filter out all clusters that contain non-feature points.
Since all the non-feature points belong to small clusters, the presented
algorihtm does this by putting a minimum threshold Nc,min on the cluster
9

size. Fig. 2 shows this concept on the real world dataset described later in
section 5.

Point-to-Plane correspondences are now established. The distance
models (Hesse and PPD) are utilized to check whether a cluster overlaps
with any of the global planes, i.e. any point in the cluster has a Hesse
distance smaller than some threshold ϵH and a PPD smaller than some
additional threshold ϵP, to the global plane. We observe the noise level
around the expected planes by the naked eye. Then we set the thresholds
accordingly. For each overlap, we find the smallest angle between the
corresponding cluster normal and the global plane normal, according to
eq. (9). Finally, a correspondence is established between all points in the
cluster and the global plane, if the minimum angle between their normals
is smaller than ϵα.
3.4. Optimization

Assuming we now know the Hesse-normal form of all planes and all
assigned points to these planes, we register the points to have a minimal
distance to their respective planes. The transformation T(pi) of each point

https://youtu.be/Mkil0vLk8f8
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pi with respect to a 6 DoF motion is described in homogeneous co-
ordinates using the roll-pitch-yaw (ϕ �ϑ� ψ) Tait-Brian angles as in
(Diebel, 2006). Transforming the result back from homogeneous co-
ordinates and using Ca and Sa to denote the cosine and sine of the angle in
the subscript, and ta denoting the translation along the axis in the
subscript yields:

TðpiÞ ¼
2
4 xiCϑCψ � yiCϑSψ þ ziSϑ þ tx
xiðCϕSψ þ CψSϕSϑÞ þ yiðCϕCψ � SϕSϑSψ Þ � ziCϑSϕ þ ty
xiðSϕSψ � CϕCψSϑÞ þ yiðCψSϕ þ CϕSϑSψ Þ þ ziCϕCϑ þ tz

3
5 (10)

From this we define the function D(ϕ, ϑ, ψ , tx, ty, tz, pi) that computes
the distance of a point pi to its corresponding plane Pk. Omitting the
arguments of the function for simplicity:

D ¼ TðpiÞ �nPk

¼ nxPk
ðxiCϑCψ � yiCϑSψ þ ziSϑ þ txÞ
þnyPk

�
xiðCϕSψ þ CψSϕSϑÞ

þ yiðCϕCψ � SϕSϑSψ Þ � ziCϑSϕ þ ty
�

þnzPk

�
xiðSϕSψ � CϕCψSϑÞ

þ yiðCψSϕ þ CϕSϑSψ Þ þ ziCϕCϑ þ tz
�

�ρPk

(11)

This distance function is what we want to minimize for all points and
their respective planes. Hence the error function E is chosen as the square
of the L2-norm of the distance:

E ¼
X
8Pk

X
pi2Pk

����D�ϕ;ϑ;ψ ; tx; ty; tz;pi

�����2
2

(12)

Its gradient follows then immediately:

rE ¼ P
8Pk

P
pi2Pk

�
∂

∂ϕ
E ∂

∂ϑE
∂

∂ψ E
∂

∂tx
E ∂

∂ty
E ∂

∂tz
E
�T

(13)

⇒ rE ¼ P
8Pk

P
pi2Pk

2DðΠ;piÞ
�rEϕ rEϑ rEψ nxPk

nyPk
nzPk

�T
(14)

Where

rEϕ ¼ nyPk

�
xi½�SϕSψ þ CϕCψSϑ�

þ yi½�SϕCψ � CϕSϑSψ � � ziCϕCϑ

�
þnzPk

�
xi½CϕSψ þ CϕCψSϑ�

þ yi½CϕCψ � SϕSϑSψ � � ziSϕCϑ

�
; (15)

rEϑ ¼ nxPk
ð�xiSϑCψ þ yiSϑSψ þ ziCϑÞ

þnyPk
ðxiCψSϕCϑ � yiSϕCϑSψ þ ziSϑSϕÞ

þnzPi
ð�xiCϕCψCϑ þ yiCϕCϑSψ � ziCϕÞ

; (16)

rEψ ¼ nxPk
ð � xiCϑSψ � yiCϑCψ Þ þ nyPk

�
xi½CϕCψ � SϕSϑSψ �

þ yi½�CϕSψ � SϕSθCψ �
�

þnzPk

�
xi½SϕCψ þ CϕSψSθ�

þ yi½�SψSϕ þ CϕSϑCψ �
�

(17)

and Π ¼ �
ϕ ϑ ψ tx ty tz

�T .
As the gradient is well-defined we minimize the error function with

any gradient based method. The commonly used, well-known stochastic
gradient descent (SDG) algorithm computes

Πkþ1 ¼ Πk � αrE (18)

where α is the learning rate. To accelerate convergence and to improve
the found solution further modifications are made.

Since we have vastly different effects on the error function by each
dimension, the first consideration for improving the SDG is the following:
10
Typically, changes in orientation, i.e., the first three elements of the
gradient vector ∂

∂ϕ E,
∂

∂ϑ E, and
∂

∂ψ E, have much more impact on the error

function than a change in position. This is intuitively explained since
translating the scan makes the error grow linearly for all points. How-
ever, when rotating the scan, points with a larger distance to the robot are
moved drastically, leading to a higher sensibility on the error function.
For this reason, the α applied on orientation has to be much smaller than
the α applied on the position. It becomes obvious that α needs to be
extended into vector form, α, therefore weighting each dimension
differently.

Another consideration to speed up SDG is to adaptively recalculate α
for each iteration. We employ and modify ADADELTA as a technique to
do so, which is described in detail in (Zeiler, 2012). The main idea is the
following: It extends the SDG algorithm by two terms. First, an expo-
nentially decaying average of past gradients Gk, which is recursively
defined as

Gkþ1 ¼ ζGk þ ð1� ζÞrE2 (19)

and second, an exponentially decaying average of past changes Xk, which
is defined as

Xkþ1 ¼ ζXk þ ð1� ζÞαrE2 (20)

where ζ � 1 is a decay constant, typically close to 1. The root mean
squared (RMS) of these quantities are

RMS½G�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gk þ ϵnum

p
(21)

and

RMS½X�k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk þ ϵnum

p
(22)

where ϵnum> 0 is a very small constant, typically close to 0 (Note: this is a
different threshold as the one used in section 3.3). It will prevent dividing
by zero in the recalculation of α, which is as follows:

αk ¼ RMS½X�k�1

RMS½G�k
(23)

For our particular application, ADADELTA behaves a little too
aggressively. Despite giving a good measure on how to adapt α, the al-
gorithm sometimes overshoots, and does not converge. Therefore, we
employ another scaling factor, typically not found in ADADELTA,
extending eq. (23) to:

αk ¼ α0 �RMS½X�k�1

RMS½G�k
(24)

where α0 holds the scaling factors for each dimension.
Finally, the SDG model is improved using eq. (24) and extends to

Πkþ1 ¼ Πk � α0
RMS½X�k�1

RMS½G�k
� rE (25)

Using this algorithm once after finding correspondences from points
to planes leads to convergence to a local minimum, which is often not an
optimal solution. Even if we increase the number of iterations dramati-
cally, no better solution than the local minimum is found. That is unless
you consider updating the correspondence model after i iterations of
gradient descent. Re-assigning point-to-plane correspondences this way k
times, with a large enough k, leads to an optimal solution after maximum
n ¼ k ⋅ i iterations of gradient descent.
3.5. Further optimizations of the algorithm

The algorithm was extended by two further optimizations, which are
helpful in different scenarios.
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Firstly, we introduce the possibility to choose a lock on some di-
mensions from being optimized by setting the corresponding αi to zero.
Although 6D optimization generally works, reducing the optimization
space is particularly useful if the source of error in the system is known
and a model exists. That way, e.g., as we expect a spherical robot to move
on a plane the position along the axis perpendicular to the plane is
constant and should not be used for optimization.

Secondly, we employ a sequential iteration, where the scans are
processed one after another. This is especially useful for mobile systems,
where pose errors accumulate due to increasing tracking uncertainties.
The assumption is that the error in one scan is also present in the
following scan, plus some unknown new error. We eliminate the error
from scan m which is also present in scan m þ 1 by applying the pose
change from scan m, Πn,m �Π0,m after n gradient descent iterations, to
scan m þ 1, before restarting gradient descent.

To quantify the quality of the proposed registration method, it is
tested on simulated and real-world data.

4. Simulation

For the simulated data, we implemented a noisy world-robot-sensor
model. The simulated sensor is modeled after a Livox-Mid100 (Livox,
2021) laser scanner with customizable noise level on the range mea-
surements inside a robot with different motion capabilities, subject to
noise in its pose estimation. This yields scan results similar to the ones
obtained in the real world.

4.1. Simulated sensor

The Livox-Mid100 laser scanner consists of three Mid40 scanners
arranged to provide an overall field-of-view of 98.4� (horizontal) by
38.4� (vertical). It provides a rate of 300.000 points/s with a range
precision of 2 cm up to 20 m range (Livox, 2021). A particular advantage
of the Livox laser scanners is their unique scanning pattern. The scanners
use two motorized, so-called Risley prisms to steer the beam deflectance.
For the specific ratio of rotation speeds used in the Livox scanners, the
beam traces out a non-repetitive, flower-shaped scanning pattern
(ThorLabs). Since the pattern is non-repetitive, the point density in-
creases with integration time, enabling denser measurements.

4.2. Range noise model

Most real laser scanners are subjected to range measurement noise
that is proportional to the measured range. Therefore the simulated
sensors are as well. To achieve this, we sample a noise percentage nP from
some normal distribution Nðμ; σ2Þ. The resulting range r given the true
range rt is then

r ¼ rtð1þ nPÞ (26)

For each measurement ray the noise percentage is sampled
independently.

4.3. Pose estimation noise model

Regarding the pose measurement, one cannot simply add white noise
to the current pose estimate as this does not capture the integration error,
which is common among inertial measurement units (IMU). Therefore
we assume a disturbance torque about the two axes that lie in the ground
plane. This is equivalent to a case where a slightly shifted ground plane or
an unbalanced locomotion system of the robot is present.

Accordingly, a spherical robot that is assumed to be translating
exactly along one axis by rotating about one other axis at an angular
velocity ω experiences random disturbance torques at each time instant
that accelerate the rotation of the sphere about the respective axes. This
additional motion is determined by integrating the disturbance torques,
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which are sampled from some normal distribution nφ; nψ 2 N ðμ; σ2Þ
each. The pose update after a discrete time step Δt in the simulation is
therefore given by:

2
6666664

ϕ
ϑ
ψ
x
y
z

3
7777775

kþ1

¼

2
6666664

ϕ
ϑ
ψ
x
y
z

3
7777775

k

þ

2
6666664

1
0
0
0
0
R

3
7777775
ωΔt þ Δt

Xk

i¼0

2
6666664

nϕ½i�Δt
0

nψ ½i�Δt
nϕ½i�ΔtR

0
nψ ½i�ΔtR

3
7777775

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Difference in

angular velocity

(27)

where Δt is generally chosen as some small value (e.g. 1 ms).
Assuming intended locomotion along the z-axis and unintended

locomotion along the x-axis where R is the sphere radius. No upwards
movement is possible since the robot moves on a flat ground, hence the
entry is zero.

4.4. Simulated datasets

Fig. 3 shows a noise-free trajectory through a simulated environment
and a trajectory with noisy sensors while Fig. 4 shows a rendering of the
simulation sequence. In the noise-free case, the trajectory slightly bends
in the direction of disturbance torque sideways while also varying in
velocity in the intended direction of travel. In the noisy case, the ideal
straight trajectory is assumed. Hence the planes enclosing the room are
sensed multiple times. In particular, we see that the trajectory of the
robot leads through one of the sensed planes. Also, the further the sensed
points are, the noisier they appear, which is consistent with the larger
influence of the pose error at higher distances.

5. Experimental setup

We also tested our algorithm on two real-world datasets that adhere
to different motion profiles and laser scanner types with different scan-
ning patterns.

The first dataset is collected by a line scanner, in particular a SICK
LMS141 industrial scanner, inside a sphere of a diameter of 20 cm that
lies on a floating desk, which is air-pressurized, such that the sphere is
hovering. On this floating desk, the sphere can rotate freely about all axis
while being fixed in position. Hence, in this experiment the optimization
space can be reduced to a rotation. Further, without the motion, the 2D
laser cannot obtain a 3D model from the environment, thus requiring
registration. The sphere is equipped with a low-cost IMU, i.e., a Phidg-
etSpatial Precision 3/3/3, to estimate the orientation, a battery pack and
a raspberry pie for processing. This IMU provides a precision of 76.3 μg in
linear acceleration, 0.02◦ s�1 in angular velocity about the x and y axis,
and 0.013◦ s�1 in angular velocity about the z axis (Phidget, 2021). Fig. 5
shows the experimental setup. The left column of Fig. 8 shows the
pre-registered resulting point cloud. We see that the point cloud is rather
noisy, and in particular, the walls are sensed multiple times, hence
appearing very blurry.

The second datasets is collected by a 3D scanner, namely the LIVOX
MID 100, which is the same sensor the simulation uses. We put the laser
scanner into an acrylic glass spherical shell together with three IMUs
(same specifications as in the first dataset) and manually roll it with a
slow, constant motion in a home indoor environment. Thus, this time
nearly all six degrees of freedom are used for optimization. We exclude a
translation in the global up- or downwards direction as the sphere rolls
on the ground surface, without possibility for up- or downwards motion-
Fig. 6 shows the prototype. The left column of Fig. 9 shows the pre-
registered point cloud, applying only the transformation defined by the
recorded poses. Although the robot has been moved carefully, you see
that pose error accumulates in such a way that the same wall is sensed
multiple times.
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6. Results

6.1. Simulated results

The plane-based registration is applied to the simulated dataset with
noisy pose and range measurements (cf. Fig. 3) without further pro-
cessing. Assuming this represents a coarsely pre-registered 3D point
cloud, the distances to the ground truth were evaluated before and after
the plane-based registration. Fig. 7 shows the different point-to-point
distances.

Before the registration, the corridor is only represented acceptably in
the front part. The further into the corridor, i.e., the longer the robot
accumulates errors, the more imprecise the data becomes. Finally, we see
that many points exceed the threshold of 1 m and thus being mapped to
the same color value. After registration, we see that, qualitatively, the
ideal corridor was nearly restored from the noisy data. In particular a
very large portion of points (90%) have distances of less than 35.9 cm.
Table 1 shows the comparison of further percentiles of both datasets.

Further, the square and straight shape of the corridor is restored well,
and especially the large amount of points with an errors of greater than
1 m is removed. Any such errors tend to occur at the back and the front of
the corridor where the measured range is the largest hence has the largest
contribution of the range error.

6.2. Floating sphere results

Fig. 8 shows the results obtained before and after employing the plane
based registration on the dataset acquired by the floating sphere. The pre-
registration is obtained by determining the orientation of the sphere via
Madgwick filtered (Madgwick, 2010) IMU measurements. To increase
the number of possible point-to-plane correspondences we combine
twenty temporally successive scans into one meta-scan, which is then
globally registered. We always use the scan at the median index as a
reference coordinate system. This does not only speed up convergence
due to the proportional effect on the error function but also decreases the
risk of transforming a single line scan incorrectly. Transformations like
these happen in particular for a small collection of points as outliers have
more influence.

After the registration, the walls of the room are significantly more
prominent in the point cloud. In particular, the noise in the top left corner
of the top view (cf. Fig. 8) has been visibly reduced. Further, the devia-
tion of points around the walls is notably smaller as the points are moved
on the plane.

6.3. Rolling sphere results

Fig. 9 shows the results obtained before and after employing the
presented algorithm on the dataset, acquired by the prototype in Fig. 6.
We again combine twenty temporally successive scans into one meta-
scan, using the scan at the median index as a reference coordinate sys-
tem, which is then globally registered. We used the first seven of these
meta-scans, corresponding to the first full rotation of the sphere, to
extract global planes. All subsequent meta-scans are then matched
against the initial global plane model. We use both optimizations from
section 3.5, introducing a global up/down lock for gradient descent and
applying sequential iteration to eliminate accumulating pose error.

After the registration, the walls of the environment are no longer
ambiguous, since all the subsequent scans are matched with the initial
plane representation. When considering the resulting path, it looks dis-
torted. This is because for some scans, especially empty ones where the
sensor points to the ground, no planar features got matched with the
global plane model, thus their pose is not optimized. Improving the path
quality is an objective for future works.
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7. Conclusion

In this paper, we proposed an approach to mobile mapping using a
spherical robot. Given that a spherical robot inherently rotates for loco-
motion, we use this movement to also rotate a laser scanner, that
consequently measures the robots entire environment. We propose to
post-process the acquire data using a novel registration method for man
made environments that exploits the structure of those environments. In
human-made environments straight planes are abundantly available,
hence we employ point-to-plane correspondences to improve a pre-
registered 3D point cloud. We have evaluated the procedure on a simu-
lated dataset and on two experimentally acquired datasets with different
laser scanners and motion profiles. In this evaluation, we have shown
that the procedure improves all datasets and yields maps that better
resemble human-made, structures. In particular, the qualitative structure
of the environments is reconstructed well. In the resulting maps, the
parallel walls are clearly improved. The simulation results show that the
algorithm has the potential to improve the map quality based on point-
distances by approximately a factor of ten.

Right now, not all steps in the procedure are autonomous, in partic-
ular the parameter tuning. In the future, one goal is to increase the au-
tonomy of the system. One approach is to introduce soft-locks for the
optimization dimensions. I.e., instead of locking some dimensions
entirely from being used for optimization, they are weighted based on the
dynamics of the system that encode which noise source is more likely.

The biggest issue with the presented algorithm currently is that the
global plane model is established only once at initialization, but never
updated afterwards. Utilizing the local planar clustering (LPC) of the
individual line scans for updating the global plane model step by step is
currently the primary objective of future studies. One idea is to calculate
the convex hulls of the LPC, and combine them with the global planes
sequentially. Therefore, we expect to increase robustness and autonomy
of the registration procedure.

Furthermore, more experimental evaluation is required, hence we
will test our rolling and scanning spheres on a rail system to achieve
repeatable trajectories.
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