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Abstract

This paper describes a novel, laser-based approach for tracking the pose of a high-speed mobile robot. The algorithm is
outstanding in terms of accuracy and computation time. The efficiency is achieved by a closed-form solution for the matching of
two laser scans, the use of natural scan features and fast linear filters. The implemented algorithm is evaluated with the high-speed
robot Kurt3D (4 m/s), and compared to standard scan matching methods in indoor and outdoor environments.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In order to fulfill user specified tasks, autonomous mobile robots have to be able to determine their pose (position
and orientation) while moving — a precise and stable self-localization is one of the most important requirements to act
purposefully in any environment. In earlier publications we proposed methods for solving 6D-SLAM (simultaneous
localization and mapping) based on 3D laser range data[1,2]. These algorithms depend on a sufficiently correct
pose estimation of the vehicle. Under certain restrictions, e.g., driving with low velocity and on non-slippery ground
like carpet, the robot odometry provides such an estimation. However, in general situations, especially when driving
with high speed, a more reliable and accurate pose tracking technique is needed. Furthermore, high computation
speed of a tracking method is not only essential when driving with high velocities. Regardless of the velocity, it also
enables the further application of computationally expensive algorithms while driving, minimizing the resources
needed for the localization task.
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For an application on flat ground, the posep of a robot is denoted by a triplep = (x, y, θ), with position (x, y)
and orientationθ. Standard robotic approaches often use dead reckoning, e.g., odometry (counting wheel rotations),
to estimate their position. But wheels slip, especially when driving with high speed, and miscalculation occurs.1

These errors accumulate over time, and the robot’s position estimate becomes increasingly inaccurate. One method
to improve localization is to track the pose with an on-board laser range finder. There are, in principle, two different
approaches to determine the robot’s pose:

• Relative: Given an arbitrary initial pose, e.g.,p0 = (0,0,0), the robot’s current pose relative top0 is incrementally
updated when the robot is moving. For this purpose, consecutively acquired sensor data, e.g., laser scan data,
are compared. LetS be thecurrentscan andR the referencescan, e.g., a scan acquired previous toS. If both
scans have been acquired from different robot poses, a transformation that mapsS ontoR is calculated that
corresponds to the movement of the robot between the scans.

• Absolute: Instead of tracking the pose incrementally, the position and orientation of the robot within an a priori
given, assumable exact map or a known area with distinguishable active or passive landmarks is calculated.

In the following, we mainly consider relative localization techniques, i.e., so-calledpose trackingalgorithms,
since they do not impose any limitation to already mapped environments. Nevertheless, the paper concludes with
a demonstration of the algorithm’s ability to be used for absolute localization as well. The aim of relative pose
tracking is not directly to build an accurate 2D map, but rather to ensure a stable and fast localization, regardless
of the robot’s speed and without any restrictions of the covered distance. This aim reflects the underlying idea that
localization, the preliminary stage of SLAM, is not an end in itself, but the fundament of further algorithms, e.g., the
building of three-dimensional environmental maps with a 3D sensor and solving 6D-SLAM[1,2]. The localization
algorithm has to be computationally efficient and should not restrict the operational area or the speed of the mobile
robot. Hence, subsequent algorithms for improving the calculated map, like cycle detection and correction[3] or
global relaxation[4], are not considered here.

The implemented algorithm is evaluated with the high-speed robot Kurt3D (Fig. 1), equipped with the AIS 3D
laser scanner that is adjusted horizontally while driving and used for localization purpose[2]. Kurt3D is a mobile
robot platform with a size of 45 cm× 33 cm× 26 cm (length× width× height) and a weight of 15.6 kg. Equipped
with the 3D laser range finder the height increases to 47 cm and weight increases to 22.6 kg. Kurt3D’s maximum
velocity is 5.2 m/s (autonomously controlled 4.0 m/s), with a maximal acceleration of 1.9 m/s2. Two 90 W motors
are used to power the six wheels, whereas the front and rear wheels have no tread pattern to enhance rotating.
Kurt3D operates for about 4 h with one battery (28 NiMH cells, capacity: 4500 mAh) charge. The core of the robot
is a Pentium-III-800 MHz with 384 MB RAM, running Linux. An embedded 16-bit CMOS microcontroller is used
to control the motor The implemented robot control that enables the robot to drive safely so fast will be presented
in [5]. This paper is organized as follows. After presenting the state of the art in robot localization, we continue a
description of the implemented tracking algorithm. The next section demonstrates results of real world experiments
in (static and dynamic) indoor and outdoor scenarios. Section5 concludes.

1.1. State of the art

Relative localization algorithms based on proximity sensors are distinguishable by the manner of computing
the pose change between two sensor inputs acquired at two different poses. We concentrate on methods using a
laser range finder, since it has significant, critical advantages in accuracy and processing speed compared to sonar
[6], stereo-camera[7] and omnidirectional vision[8]. State of the art are algorithms comparing two scans directly
(point-wise scan matching)[9] or utilizing special representations of the scanned data, e.g., histograms[10,11],

1 A video is available at:http://www.ais.fhg.de/ARC/kurt3D/HAYAI/videos/localizationskidding.divx.avi.

http://www.ais.fhg.de/ARC/kurt3D/HAYAI/videos/localization_skidding.divx.avi
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Fig. 1. The mobile robot Kurt3D, equipped with AIS 3D laser scanner.

features like extracted lines[12] or landmarks[13,14]. The latter ones are further distinguished by the type of
landmarks, i.e., natural or artificial. In contrast to natural ones, artificial landmarks are, by definition, placed in the
environment for simplifying the location task, being either active or passive.

The main drawbacks of current approaches are precision and computation cost, both in practical implemen-
tations as well as from a theoretical point of view, preventing a stable self-localization of a robot driving with
high-speed (e.g., 4 m/s), especially when operating in non-restricted domains.2 Problems arise from the itera-
tive way of calculating an optimal match between two scans, preventing theoretically efficient computations,
and from algorithms with complexities exponential inO(nk), k > 1, with n the number of distance values of
a scan. To match two scans, usually an error function is defined, implementing a metric on scan matches as
an evaluation of the matching. Minimizing the error is a typical optimization problem with well-known prob-
lems. Generally, gradient descent methods are implemented, transforming the second scan such that the dis-
tance is reduced. Iteration leads to a local minimum of the error function. There are several algorithms that,
in addition, compute the transformation within each epoch in an iterative way, employing a second level of
iterations.

In this paper, we describe a method for computing the optimal transformation in aclosed-formmanner, eliminating
any iteration. For evaluating the proposed algorithm, comparisons to three main scan matching methods, in the
implementations of Gutmann[15], are done:

• IDC: Matching of raw data points of both scans. Instead of an elaborated feature detection, points are assigned
according to their distance or angle[16].

2 A video is available at:http://www.ais.fhg.de/ARC/kurt3D/HAYAI/videos/kurt3dcorridor.divx.avi.

http://www.ais.fhg.de/ARC/kurt3D/HAYAI/videos/kurt3d_corridor.divx.avi
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• Cox: Data points from one scan are matched against lines, prior extracted from the other scan[17].
• Hist: Angle- andxy-histograms are calculated from both scans and compared based on a cross correlation function

[18].

2. Scan matching with HAYAI

This section describes the newly developed algorithm HAYAI (high-speed and yet accurate indoor/
outdoor tracking). The matching algorithm, used for pose tracking of the robot, is based on the following
scheme:

(1) Detect features within scanR, yielding feature setM (model set). Likewise, extract feature setD (data set)
from scanS.

(2) Search for pairwise corresponding features from both sets, resulting in two subsetsM̌ ⊆ M andĎ ⊆ D.
(3) Compute the pose shift
p = (
x,
y,
θ)T as the optimal transformation for mappingĎ ontoM̌.
(4) Update the robot’s posepn→


p
pn+1 according to formula(1).

(5) Save the current scan as new reference scanR← S.

Within this relatively conventional scheme, the contributions of HAYAI lie in fast filtering and extraction of natural
features in laser scans (step 1) and a closed-form solution for computing the pose shift (step 3).

Given a posepn = (xn, yn, θn) and a transformation
p = (
x,
y,
θ), the transitionpn→

p

pn+1 is calculated

as follows:
xn+1

yn+1

θn+1


 =



xn

yn

θn


+


 cosθn sinθn 0

− sinθn cosθn 0

0 0 1





x
y

θ


 . (1)

The following subsections describe the implemented data filtering techniques, extraction and matching of the used
features as well as the mathematical background and practical matters of calculating the optimal transformation
between two scans.

2.1. Data filtering

Scanning is noisy and small errors may occur, namely Gaussian noise and so-called salt and pepper noise. The
latter one arises for example at edges where the laser beam of the scanner hits two surfaces, resulting in a mean
and erroneous data value. Furthermore reflections, e.g., at glass surfaces, lead to suspicious data. We propose two
fast filtering methods to modify the data in order to enhance the quality of each scan, typically containing 181 data
points. The data reduction, used for reducing Gaussian noise, works as follows. The scanner emits the laser beams
in a spherical way, such that the data points close to the source are more dense. Multiple data points located close
together are joined into one point. The number of these so-calledreduced pointsis one order of magnitude smaller
than the original one. A median filter removes the outliers by replacing a data point with the median value of the
n surrounding points (here:n = 7, covering an angle of 6◦) [19]. The neighbor points are determined according
to their number within the scan, since the laser scanner provides the data sorted in a counter-clockwise direction.
The median value is calculated with regard to the Euclidean distance of the data points to the point of origin. In
order to remove salt and pepper noise but leave the remaining data untouched, the filtering algorithm replaces a data
point with the corresponding median value if and only if the Euclidean distance between both is larger than a fixed
thresholdδ (seeFig. 2, with δ = 200 cm).
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Fig. 2. Median filter (left polar, right Cartesian coordinates). Top: application of a standard median filter eliminates outliers, but also modifies
the correct signal. Bottom: result of the extended median filter.

2.2. Extraction and matching of features

As described above, the scan matching algorithm computes a transformation
p such that aset of features,
extracted from the first scan, is mapped optimally to a feature set of the second scan. In order to be usable for a pose
tracking algorithm, features have to fulfill two requirements:

• They have to beinvariantwith respect to rotation and translation.
• They have to beefficientlycomputable in order to satisfy real-time constraints.

Using the inherent order of the scan data allows the application of linear filters to be applied for a fast and
reliable feature detection. The described algorithm choosesextreme valuesin the polar representation of a scan as
natural landmarks. These extreme values correlate to corners and jump edges in Cartesian space. The usage of polar
coordinates implicates a reduction by one dimension, since all operations deployed for feature extraction are fast
linear filters, operating on the sequence of distance values (ri)i∈N of a scanS = ((φi, ri))i=1,...,N .

Given a one-dimensional filterΨ = [ψ−1, ψ0, ψ+1], the filtered valuerΨi of a scan pointri (i = 1, . . . , N − 1)
is defined asrΨi =

∑1
k=−1ψk · ri+k. For feature detection, the scan signal is filtered as follows.Fig. 3 illustrates

the effects of the used filters.

(1) Sharpen the data in order to emphasize the significant parts of the scan, i.e., the extreme values, without
modifying the residual scan, by applying a sharpen filter of the formΨ1 = [−1,4,−1].
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Fig. 3. Result of different filters used for feature extraction.

(2) Compute the derivation signal by using a gradient filterΨ2 = [−1/2,0,1/2].
(3) Smooth the gradient signal to simplify the detection of zero crossings with a soften filterΨ3 = [1,1,1].
(4) Feature points correspond to zero-crossings in the gradient signal iff their respective distancesri are smaller

than a thresholdrmax (here 800 cm), since the scanner’s precision decreases with increasing distance.

After generating the sets of featuresM,D from both scans, a matching between both sets has to be calculated.
Instead of solving the hard optimization problem of searching for an optimal match, we use a heuristic approach,
utilizing inherent knowledge about the problem of matching features, e.g., the fact that the features’ topology cannot
change fundamentally from one scan to the following. The basic aim is to build a matrix of possible matching pairs,
based on an error function defining the distance between two pointsmi, dj, with mi = (mxi ,m

y
i )

T in Cartesian,

respectively, (mφi ,m
r
i )

T in polar coordinates,dj analogously:

dist(mi, dj) =
√
ω1(mφi − dφj )2+ ω2(mri − drj)2+

√
ω3(mxi − dxj )2+ ω4(myi − dyj )2+Θ(mi, dj)

with constants (ωk)k∈{1,...,4}, implementing a weighting between the polar and Cartesian distances. The functionΘ

inhibits matchings between two features of different types:

Θ(mi, dj) =
{

0, Γ (mi) = Γ (dj),

∞ else

with Γ a classification function,Γ : (M ∪D) �→ {maximum, minimum, inflection point}.
The resulting matrix denoting corresponding features is simplified until the matching is non-ambiguous. SeeFig.

4 for a matching of two scans.

2.3. Pose calculation

Given two sets of featuresM = {mi|mi ∈ R
2, i = 1, . . . , Nm} andD = {di|di ∈ R

2, i = 1, . . . , Nd}, the calcu-
lation of the optimal transformation for mappingD ontoM is a generic optimization problem. Intuitively, we are
searching for a rotationR
θ by the angle
θ and a translation
t = (
x,
y)T such that the differences between
points from the reference and the corresponding points from the current scan, transformed with
p = (
x,
y,
θ),
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Fig. 4. Matching of features (left polar, right Cartesian coordinates). Top: detected features in both scans. Matched features are connected by a
line. Bottom: the second scan is transformed based on the calculated rotation and translation.

are minimized. This results in a minimization of the error function

E(R
θ,
t) =
Nm∑
i=1

Nd∑
j=1

wi,j‖mi − (R
θdj +
t)‖2 (2)

with weightswi,j = 1 iff featuremi corresponds todj, and 0 otherwise.
Let M̌ = {m̌i}i=1,...,N ⊆ M andĎ = {ďi}i=1,...,N ⊆ D be sets ofmatchedfeatures, withm̌i ∼ ďi ∀i ∈ 1, . . . , N.

Correspondence between two points,m̌i ∼ ďi means that both data points denote the same point in the real scene.
Therewith, the error functionE simplifies to

E(1)(R
θ,
t) =
N∑
i=1

‖m̌i − (R
θďi +
t)‖2. (3)

Let M̂, D̂ be variants ofM̌, Ď so that each point is shifted by the centroid of the respective set:

M̂ = {m̂i = m̌i − čm|i = 1, . . . , N}, D̂ = {d̂i = ďi − čd |i = 1, . . . , N}
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with the centroids defined as

čm = 1

N

N∑
i=1

m̌i, čd = 1

N

N∑
i=1

ďi.

Substitution into formula(3) leads to

E(1)(R
θ,
t) =
N∑
i=1

‖m̂i −R
θd̂i − (
t − čm +R
θ čd)︸ ︷︷ ︸
=
t̃

‖2

=
N∑
i=1

‖m̂i −R
θd̂i‖2 (4a)

− 2
t̃ ·
N∑
i=1

(m̂i −R
θd̂i) (4b)

+
N∑
i=1

‖
t̃‖2. (4c)

The second term(4a)is zero since the measurements refer to the centroids:

N∑
i=1

(m̂i −R
θd̂i) =
N∑
i=1

(m̌i − čm −R
θďi +R
θ čd) =
N∑
i=1

(
m̌i − 1

N

N∑
k=1

m̌k −R
θďi + 1

N

N∑
k=1

R
θďk

)

=
N∑
i=1

m̌i − 1

N

N∑
k=1

N∑
i=1

m̌k︸ ︷︷ ︸
=∑N

i=1 m̌i

−
N∑
i=1

R
θďi + 1

N

N∑
k=1

N∑
i=1

R
θďk︸ ︷︷ ︸
=∑N

i=1 R
θ ďi

= 0.

The third term(4c) is minimal at
t̃ = 0, i.e.,
t = čd −R
θ čd . Therefore,E(1) is minimal iff E(2) is, withE(2)

depending only on the rotation[20]:

E(2)(R
θ,
t) =
N∑
i=1

‖m̂i − (R
θd̂i)‖2 =
N∑
i=1

‖mi‖2− 2
N∑
i=1

m̂i ·R
θd̂i︸ ︷︷ ︸
rotation term

+
N∑
i=1

‖R
θd̂i‖2︸ ︷︷ ︸
=∑N

i=1 ‖d̂i‖2

. (5)

Since rotations are length preserving, in particular‖R
θd̂j‖2 ≡ ‖d̂j‖2, to minimize(5) it is sufficient to calculate
the maximum of

E(3)(R
θ) =
N∑
i=1

m̂i ·R
θd̂i.
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In order to maximizeE(3), we compute a solution for (∂/∂
θ)E(3) = 0:

N∑
i=1

(− sin
θ(m̂xi · d̂xi + m̂yi · d̂yi )− cos
θ(m̂xi · d̂yi + m̂yi · d̂xi )) = 0.

The rotation is calculated as


θ = arctan

(∑N
i=1(m̂xi · d̂xi + m̂yi · d̂yi )∑N
i=1(m̂yi · d̂xi − m̂xi · d̂yi )

)
. (6)

With given rotation
θ, the translation is calculated as follows:(

x


y

)
︸ ︷︷ ︸
=
t

=
(
čxm

č
y
m

)
−
(

cos
θ sin
θ

− sin
θ cos
θ

)
︸ ︷︷ ︸

=R
θ

·
(
čxd

č
y

d

)
. (7)

2.4. Dealing with featureless environments

Driving in environments with no or few features is a challenge for every feature-based tracking algorithm. For
calculating a transformation
p between two scans as described, at leasttwofeatures∈ R

2 are needed, since the four
coordinates are sufficient to determine the three degrees of freedom (translation inx- andy-direction, rotationθ);
this theoretical result stays valid in practical experiments. However, the following situations where it is impossible
to find two corresponding features may occur:

(1) The two scans are too diverse to be matched. Naturally, every relative localization algorithm is depending on
an adequate overlap of two successive sensor inputs. In practice, however, this theoretical problem proved to
be non-existent for the proposed algorithm. Since the mobile robot platform Kurt3D that was used to evaluate
HAYAI drives with a maximum speed of 4.0 m/s, the scanner’s frequency is 75 Hz, and the implemented
algorithm reaches an average frequency of 2300 Hz on the robot’s on-board computer (Pentium-III-800 MHz),
it is guaranteed thateveryacquired scan is processed. Hence, the maximal difference between two scans
is
t = 6.43 cm (forward translation), respectively,
θ = 25.58◦ (rotation on the spot with maximal angular
velocity). Various experiments in miscellaneous environments showed that the algorithm is capable of matching
reliably much larger differences.

(2) It is not possible to detect a sufficient number of matchable features in the scans. This general problem of every
feature-based scan matching technique may occur either if there are too few objects within the scanner’s range,
or the scenery is unsuitable to detect features. The first case is very unlikely, since the range of laser scanners is
generally sufficiently high (in case of the model deployed here, 32 m), and the features used in this algorithm
do exist frequently in a real world application. An example of the second case is an office environment, when
the robot is turning at the end of a corridor and is directly facing a corner, detecting this corner as a sole feature.
The probability of encountering such a situation is very low due to the type of detected features, but has to be
considered in order to guarantee a stable localization technique. The following sections describe ways to cope
with this exceptional case.

2.4.1. Rotation estimation with angle histograms
As a general solution for coping with featureless environments, we calculate a rotation estimation between two

scansS,R based on angle histograms[18,11]if the number of features is smaller than 2. Regarding theNsingle data
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points of a scan as vectors makes it possible to associate each data point with an angle, i.e.,α(i) of point i = (xi, yi)
is defined as the angle betweenx-axis and the vector fromi to i+ 1, with

α(i) = arctan

(
xi+1− xi
yi+1− yi

)
.

Discretizing and plotting the angles against their frequency leads to a histogram as a characteristic of the scan that is
invariant with regards to rotation, that is, a turning of the robot results in a translational displacement of the circular
angle histogram (Fig. 5, right). Likewise, the shift between two histograms extracted from two different scans are
used to calculate the rotation
θ of the robot between taking these scans. More precisely, given two histograms
H,G, the angle
θ is computed by
θ = arg maxiKi(H,G). The error functionKi is used as a measurement of the
similarity of the two scans. Weiß et al. suggest the use of a cross correlation function[18],

Ki(H,G) =
N∑
j=1

H(j) · G((j + i) mod(n+ 1)).

In practice, Gaussian noise of the sensor leads to small variances of the scanned data points that in turn imposes
significant differences of the calculated angles. Therefore, we apply the reduction filter as described in Section
2.1 first, resulting in a much clearer histogram.Fig. 5 shows the results of both methods, as well as a histogram
calculation based on lines extracted from the scan. For a description of the real-time capable line filter, see[21].

2.4.2. Dead reckoning information
Fig. 6shows the result of tracking the robot in a corridor, purely based on the scan matching algorithms. Though

being considerably more precise than the reference methods, a problem occurs at the left end of the corridor, when
the robot enters and turns in an area with very few features. While turning, the corner is detected as a sole feature, and
the rotation is calculated by angle histograms as described above. Since every single histogram based scan matching
induces a small error due to the implicit discretization, these errors can accumulate to a noticeable rotational error.

Minimizing the erroneous impact of the discretized angles is done by fusing the calculated pose change with
odometry data by an extended Kalman filter (EKF)[22]. Due to the fact that both inputs are stochastically inde-
pendent, the fusion leads to an improved trajectory (Fig. 6). In contrast to the empirically determined and fixed
odometry covariance matrix, the corresponding HAYAI covariance matrix is computed for every scan matching
individually. The calculation is done analogously to the heuristic formula proposed by Lu for evaluating an ICP
based method and takes into account the number of data points used for the matching[23]. Thereby, the trajectory
computed by HAYAI is unaltered in general situations, the odometry data is merely used for improving situations
with few features. In fact, most of our experiments have been done without any fusion with odometry data.

Let M̌ = {m̌i|i = 1, . . . , N}, Ď = {ďi|i = 1, . . . , N} be two sets of matched feature points and
p = (
t =
(
tx,
ty),
θ) the computed transformation. The scan matching’s covariance matrix�H can be estimated as
�H ≈ s2(ATA)−1, with

A =




A1

...

AN


 , Ai =

(
1 0 −yi
0 1 xi

)
,

(
xi

yi

)
= 1

2
(m̌i − (R
θ(ďi)+
t)), C = (ATA)−1ATB,

B =




m̌1− (R
θ(ď1)+
t)
...

m̌N − (R
θ(ďN )+
t)


 , s2 = (B −AC)T(B −AC)

2N − 3
.
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Fig. 5. Angle histograms. Left: due to data noise, the histogram degenerates. Middle: application of a reduction filter leads to clearer histograms.
Right: using a line extraction filter results in clear, singular peaks.

2.4.3. Mastering corners
Using angle histograms for a rotation estimation solves primary problems with missing features in general

settings, as long as there are some planar surfaces within the scanner’s range in order to detect significant peaks in
surface orientations in the environment. However, in practical applications, scans with only one feature normally
occur when maneuvering near a corner, e.g., at the end of a corridor, facing the corner directly. Such situations can
be mastered by a different and computationally cheaper approach.

Let S = (si)i∈N be the current scan,sj ∈ S the detected single feature point. In this given situation, the ap-
plication of a line filter yields at least two line segmentsL = (LS,LE) of sufficient length, adjacent tosj. Let
LS be the point nearer tosj. Defining a further feature point that lies onL within a given distanceµ from sj,
i.e., sk = sj + µ(LE − LS)/‖LE − LS‖ results in an extension of the feature set (Fig. 7). Applying the same
method to the reference scanR yields a setM of matched features with size|M| ≥ 2 such that the unaltered ap-
plication of HAYAI is possible, without the need of a prior rotation estimation.Fig. 8 shows the result of a pose
tracking utilizing the described procedure. Without, the algorithm computes the trajectory presented inFig. 6, in-
ducing a rotational error when turning within the featureless area on the left side; see the next section for further
explanations.

This principle of feature point generation is extensible for dealing with other kinds of featureless environments
by defining further virtual landmarks in well-defined distances to previously extracted features, utilizing knowledge
about the shape of the demanding environment (e.g., circular arcs).
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Fig. 6. Fusion of scan matching and odometry data. Top: comparison between odometry and HAYAI without the extension described in Section
2.4.3. Notice the rotational error induced by angle histograms that are occasionally utilized within thefeature-poor area. Bottom: Kalman
filtering of both input signals.

Fig. 7. Generation of feature points, lying on extracted lines within defined distances from the extracted feature.

3. Results

The described tracking algorithm has been tested in various indoor and outdoor environments. This paragraph
demonstrates results of localization in different static and dynamic scenarios.

3.1. Indoor tracking

Fig. 9shows the result of a 160 m cyclic drive in the office corridor of the Fraunhofer Institute AIS. The map was
generated from 12,727 scans, gaged during the drive, and is the direct result of the scan matching algorithm,without



K. Lingemann et al. / Robotics and Autonomous Systems 51 (2005) 275–296 287

Fig. 8. Result of the pose tracking while driving in a 30 m long corridor (path: 3 m×28 m, with 2◦ × 180◦ rotation at the respective end of the
corridor, the starting position is marked with a circle). Plotted are the different trajectories computed by the described method as well as by the
three reference scan matching algorithms (compareFig. 14for semi-ground-truth).

fusion with odometry, and without additional corrective algorithms like global relaxation or explicit correction of
cycles, in order to illustrate the quality of the localization. InFig. 9(bottom) the calculated trajectory is presented, as
well as the results of other standard scan matching algorithms and the robot’s odometry. Apparently, the reference
algorithms are incapable of processing each incoming scan, since small errors in the calculations accumulate in such
a way that the resulting trajectories are useless. Artificial off-line reduction of the scanner’s frequency to 10 Hz,
i.e., taking about every 7th scan only, improves the result of the comparative algorithms, but is no general solution,
since this procedure fails at higher speed of the robot: With increasing velocity, the distance between two acquired
scans increases as well, and soon becomes too large for a reliable matching.

Besides accuracy, another important criterion to evaluate the quality of a localization method is computation
time. A slow algorithm imposes a hard restriction on the robot’s velocity, or leads to periodical loss of acquired
scans if they cannot be processed in real time. Skipping scans means to deal with larger pose changes between
successive scans — if the robot drives fast enough, the scan matching will become unreliable due to a too small
overlap, the pose will be highly incorrect or lost completely. Furthermore, even slower moving robots profit from
a fast, efficient algorithm, since it enables the on-board computer to carry out other, computationally expensive
tasks, besides the robot localization.Table 1compares the times needed to calculate the trajectories from the indoor
experiment described above, measured on a Pentium-III-800 MHz.

3.2. Outdoor tracking

Outdoor localization is particularly demanding for an algorithm, since it has to deal with highly irregular and
non-static environments, where even small changes in the pose lead to significant changes in the corresponding
scans[24,25]. For example, scans of plants result in varying output due to many jump edges and reflections on

Table 1
Speed comparison of scan matching algorithms: time (s) needed to calculate the trajectories fromFig. 9(bottom left) (160 m, 12,727 scans)

HAYAI 5 .41
Cox 30.86
Hist 213.26
IDC 47.09
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Fig. 9. Result of a 160 m closed-loop drive, inside an office building. Top: the resulting map, based on the scan matching algorithm only,without
fusion with odometry or application of additional corrective algorithms. Bottom left: trajectories, calculated by different algorithms, based on
all 12,727 scans (75 scans per second). Bottom right: artificial off-line reduction to 10 Hz enables the reference algorithms to improve their
calculation.

moving leaves and branches. Other outdoor capable localization methods typically depend on some kind of absolute
information, like an a priori map of the environment, active beacons or GPS data. Contrary to the reference scan
matching algorithms, HAYAI proved to be able to localize the robot even in a clearly unstructured environment
(Fig. 10), as long as the ground itself is roughly even so that there are no significant changes of the robot’s pitch and
roll angles.Fig. 10does naturally not include ground-truth information, but provides a visual criterion to evaluate
the trajectory’s quality instead.

As an example for a practical application of the described localization method in combination with an overlying
algorithm,Fig. 11demonstrates a typical result of an autonomous three-dimensional model generation, suitable for
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Fig. 10. Localization during a 84 m cyclic outdoor drive. Top left: map generated from 6903 scans, with calculated, exact, final trajectory
(Kalman-filtered with odometry). Bottom left: calculated trajectories from HAYAI, other scan matching algorithms, and odometry. Right: photos
of the scene.

indoor and outdoor environments. The robot is localized with HAYAI while driving between scan points. In discrete
distances, the robot stops and acquires a 3D scan (duration: 6.8 s for 361× 256 data points). These 3D scans are
registered into one consistent model with the 6D-SLAM algorithm described in[1,2].3

3.3. Dynamic environments

In practice, the described algorithm proved to be robust even in dynamic environments, like scenarios with
people walking by. Due to the scanner’s high clock rate of 75 Hz, the environment does not change significantly
between two scans. In addition, the use of abstracted features instead of whole scans and an accurate calculation
of corresponding features yields an inherent robustness, since data points that appear suddenly and do not match
correctly with the previous scan features are ignored.Fig. 12 shows a typical example of such an experiment.
A comparison between the ground-truth map and the plotted scans shows that the accuracy of the localization
is still very high and more precise than the reference algorithms’ results even in strictly static scenarios (com-
pareFig. 8). An explicit detection of dynamic objects as described in[26,27] was not necessary for a stable
tracking.

3 A video of a virtual flight through the scene can be found at:http://www.ais.fhg.de/ARC/kurt3D/HAYAI/videos/localizationoutdoor.divx.avi.

http://www.ais.fhg.de/ARC/kurt3D/HAYAI/videos/localization_outdoor.divx.avi
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Fig. 11. Outdoor 3D model generation. Localization with HAYAI while driving serves as an essential initial pose estimation for the scan
registration, carried out with a 6D-SLAM algorithm. The figure shows four different views of the final 3D model (the calculated trajectory is
plotted as a line), as well as a photo of the real scene.

Fig. 12. Left: pose tracking in dynamic environments. The red plotted map serves as ground-truth, the calculated trajectory is based on scan
matching only, without fusion with odometry. Green arrows mark scan data of dynamic objects (people walking around). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

4. Absolute localization

Designed as a method forrelative localization, the described algorithm is inherently independent of an a priori
given map. However, if global, absolute information in the form of a model of the environment is available, HAYAI
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is capable of utilizing it successfully for re-localizing the robot within the map. This way, relative localization’s
intrinsic problem of error accumulation is solved. The described scan matching algorithm can be used without any
changes. This section describes the explicit procedure for absolute localization and concludes with a comparison
between results computed by HAYAI as well as the three reference algorithms mentioned above, when utilized in
the same manner. Consequentially, comparison with algorithms that inherently depend on a mandatory prior map
[28,29] is omitted.

The pose is tracked as described above. In addition, each calculated pose change is simultaneously applied
to a virtual pose of the robot within the map. That is, given an initial absolute pose, the robot’s trajectory is
traced both locally, relative to the starting pose, and globally, inside the map. At discrete steps, depending on
the distance, a scan is simulated at the virtual pose. Scan simulation is done by generating virtual rays at dis-
crete angles (here: 1◦ steps for an apex angle of 180◦), coming from a source at the specified pose of the
scanner within a map given as line model. The first intersection between such a ray and a map line is re-
turned as a scan data point iff the Euclidean distance between source and point is smaller than a given threshold
(e.g., 8 m).

Differences between the real and simulated scans are due to accumulated errors and sensor noise. This comparison
is done with HAYAI as well, the virtual pose is corrected by the calculated transformation. Thereafter, the real world
pose is corrected based on Eq.(8). Let pMn be the current pose within the map,pM0 = (xM0 , y

M
0 , θ

M
0 ) the initial

Fig. 13. Evaluation of the scan matching’s limits, by the example of an office corridor. Given a fixed rotation, here
θreal ∈ {−90◦,−85◦,5◦,70◦},
the calculation errore =

√
(
xreal−
x)2 + (
yreal−
y)2 + |
θreal−
θ| is plotted between each two scans with a real transformation of

preal= (
xreal,
yreal,
θreal) and a calculated transformation ofp = (
x,
y,
θ).
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Fig. 14. Re-localization in a given map. Scan matching between real and simulated scans enables a precise absolute localization. Comparison
between scan points — transformed by the computed respective pose — and the ground-truth map visualizes the precision of the trajectory
calculated by HAYAI. The zoomed view highlights the exact match as well as data noise.

absolute pose, and a rotation matrixRθ,

Rθ =


 cosθ sinθ 0

− sinθ cosθ 0

0 0 1


 .

Then, the current posepn is corrected by

pn = R−1
θM0

pMn −R−1
θM0

pM0 . (8)

Naturally, the quality of a map-based localization depends on the correctness of the initial absolute posepM0 .
However, the described algorithm is capable of correcting uncertainties inpM0 up to a certain degree: Initially,
before moving the robot, a scan comparison betweenpM0 andp0, e.g., the first real world laser scan, should ideally
result in a zero transformation
p = (0,0,0). Any other calculation result denotes an error in the initial absolute
pose and is used to adjust it,pM0 →


p
pM0 . Fig. 13demonstrates that in a standard environment, adjustments in the

magnitude of±80 cm and±70◦ are possible.4 In fact, these are the same differences that two scans may differ from
each other in order to be matched correctly when tracking the pose locally.

Fig. 14 shows the trajectory calculated with HAYAI when utilized for absolute localization. To evaluate the
trajectory, each acquired scan is plotted into a common coordinate system, transformed by the respective pose.
Comparison between scan data and the a priori map shows the correctness of the computed pose.Figs. 15–17
demonstrate the reference algorithms’ results,Table 2presents the times needed by all four algorithms. It is noticeable
that only the IDC algorithm, in spite of its unsatisfactory result at relative localization (seeFig. 8), leads — given
enough time — to a result nearly as good as HAYAI. This result suggests that the IDC algorithm is in principle suitable
for tracking the robot in this kind of environment, but has significant problems with the accumulation of small errors
that occur at each and every scan matching. This problems is normally reduced by utilizing external information,
like a map or odometry information. However, even in case of absolute localization, accuracy and calculation speed
of HAYAI are superior. The other two algorithms proved to be unsuitable for the setting demonstrated in this section.

Re-localizing in a consistent, static model solves the inherent problem of any relative localization technique, e.g.,
boundless error accumulation, at the expense of restricting the robot to already mapped environments. Furthermore,
a new potential source of disturbance is induced by discrepancies between map and reality. However, practical
experiments show that with an adequately correct map, HAYAI achieves a stable, highly precise and still very fast
localization.

4 Hence, the algorithm is in principle able to locate a robot driving with a velocity of 60 m/s, being limited by the laser scanner’s speed; if the
scan data could be acquired as fast as HAYAI can process them, i.e. at a rate of 2300 Hz, a theoretical velocity of 1.7 km/s would be manageable
in the given setting, on a Pentium-III-800 MHz.
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Fig. 15. Re-localization in a given map. Trajectory calculated by IDC.

Fig. 16. Re-localization in a given map. Trajectory calculated by Hist.

Fig. 17. Re-localization in a given map. Trajectory calculated by Cox.

Table 2
Speed comparison of scan matching algorithms, utilized forabsolutelocalization: time (s) needed for computing the trajectories fromFigs.
14–16(84 m, 2844 scans), including time for scan simulation

HAYAI 10 .38
Cox 79.91
Hist 338.29
IDC 101.61
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5. Conclusion

Mobile robots depend on a stable and reliable self-localization. The described, newly developed localization
algorithm, based on pairwise scan matching, is capable of tracking a robot’s trajectory in indoor as well as outdoor
environments, driving with a speed of up to 4 m/s. Furthermore, given a map of the environment, the algorithm can
be used for stable absolute localization as well. Comparison with three state of the art scan matching algorithms
showed the outstanding performance of the proposed method in terms of precision and computation speed. HAYAI
is able to process scans with up to 2300 Hz on a moderate laptop (Pentium-III-800 MHz) — if only the scanner
supplied the data so fast. In reality, the scanner provides the data with 75 Hz, that is one scan every 5.3 cm at a
speed of 4 m/s. The scan matching algorithm HAYAI is based on matching features that are naturally given in
any standard operational environment and are extracted efficiently in the order ofO(n), given scans ofn points.
The method is not restricted to polygonal environments, independent from structural alteration of the surrounding
like beacons or artificial landmarks, and proved to be stable even in dynamic environments. The presented method
succeeded in providing our 6D-SLAM algorithm[1,2] with a required pose estimation and enables the system to
build three-dimensional indoor and outdoor maps.
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