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Indirect Point Cloud Registration:
Aligning Distance Fields using a

Pseudo Third Point Set
Yijun Yuan and Andreas Nüchter

Abstract—In recent years, implicit functions have drawn atten-
tion in the field of 3D reconstruction and have successfully been
applied with Deep Learning. However, for incremental recon-
struction, implicit function-based registrations have been rarely
explored. Inspired by the high precision of deep learning global
feature registration, we propose to combine this with distance
fields. We generalize the algorithm to a non-Deep Learning
setting while retaining the accuracy. Our algorithm is more
accurate than conventional models while, without any training, it
achieves a competitive performance and faster speed, compared
to Deep Learning-based registration models. The implementation
is available on github1 for the research community.

Index Terms—Localization; Mapping; SLAM

I. INTRODUCTION

DURING the fast development of artificial intelligence,
perception always has been playing an important role

as it is the most fundamental component for other tasks. In
the field of perception, 3D laser scanners producing 3D point
clouds are the most direct and accurate tools to perceive the
geometry of the environment of a robotic system. Reconstruc-
tion, detection, tracking, etc., are typical tasks of a perception
system.

3D reconstruction, with its high potential for commercial
applications, has recently received a lot of attention. Major
contributions in this field include methods using Truncated
Signed Distance Field (TSDF) based algorithms [1]. By using
continuous implicit functions, shapes can be represented in
arbitrary resolution with high quality. To build reconstruc-
tions incrementally, frame-to-frame pose transformations are
required. Here, the Point Cloud Registration (PCR) algorithm
plays an important role. The performance of the feature
extraction and association strongly affects the performance of
the registration algorithm [2].

For the 3D reconstruction application, the point-to-implicit
technique is commonly used because it shows high utility
for its capability to seamlessly couple registration into the
reconstruction framework [3]. By minimizing the total energy
of one point cloud on the field of a given point cloud, the
transformation is optimized. However, this class of registration
requires to iteratively fit one point cloud in the distance
field of the other, which is in-efficient. The seminal work
by M. Slavcheva proposes an implicit-to-implicit algorithm
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ϕ(P,S) = ϕ(G(ξ) ·P,G(ξ) · S)
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′
)

Fig. 1: Diagram of Pseudo-point set registration. ϕ is a
transformation invariant function. P and Q in moon shape
are two frames to register. The dots S and S

′
are the pseudo-

points. While registration to solve G−1(ξ), only S
′

is used,
P and Q remain fixed.

and improves the accuracy of registrations [4]. However, this
method requires discretizing the field into dense voxels of dis-
tance values, which represents the function with volumes. The
advantage of a dense representation is that it provides voxel-
to-voxel matched. But the disadvantage is the inefficiency both
in space and time. Thus, it is used only for small object
reconstruction. In this paper, we focus on a sparse solution
for implicit-to-implicit registration.

Since PCR is one of the most important functions in 3D
perception, it also draws more attention to the Deep Learning
(DL) community. The DL research around PCR can be classi-
fied into two categories: (a) feature matching registration and
(b) global feature registration.

Feature matching registrations rely on point detectors [5],
[6], [7] and descriptors [6], [7], [8], [2], then point matching is
applied to solve the transformation. Very large rotations can be
handled by matching-based registration [9]. Anyhow, they are
usually considered as a coarse registration to provide an initial
guess for fine registration. In hybrid models [10], [11], they
assemble different registration modules to achieve a coarse-to-
fine result. In contrast to feature matching-based registrations,
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global feature registrations are more direct. For example, a
network model has been designed as a black-box to take a pair
of frames as input and output transformation result [10]. More
specific point cloud registrations using global features of each
point cloud have also been explored [12], [13], [14]. Those
methods use a global feature (vector) to represent each point
cloud, which does not require correspondences for registration.

We consider the global feature registration as highly inter-
esting, because it eases the computation of point matching
between a new arrived keyframe and batches of the previous
k-frames. In addition, the global features are kept for future
uses. To compare with the conventional method, DL-based
algorithms require a large amount of time for training. When
a new collection of data is obtained, those DL-based models
cannot directly be used because the unseen data might not
contain the same context as the trained dataset. Which results
in an arbitrary guess.

In this paper, we introduce a pseudo point-based method.
Following the diagram given in is shown in Fig. 1: Assume
we have a function ϕ that is transformation invariant with
an arbitrary scan P and a pseudo point set S as input. Thus
ϕ feature is unchanged when both P and S apply the same
transformation. Then a transformation between the point cloud
P and Q is equivalent to transforming S′ (in ϕ(P, ·)) in
the inverse direction. Applying a similar registration frame-
work to feature metric class registrations (DL methods), our
model achieves similar or even better performance without any
training. In addition, feature metric class registrations are not
compatible with real-world scenes [12], [14]. But our method
is applicable in both indoor and outdoor settings.

The contributions of this paper are:

• We propose a new direction of registration that registers a
third pseudo point cloud while keeping the pairs of point
clouds fixed. Thus the distance fields are also fixed.

• We propose the first implicit-to-implicit registration algo-
rithm that does not require volumetric representation of
the fields. I.e., we register two distance fields (or implicit-
to-implicit) with sparse representations of the field.

• We generalize the feature-metric registration framework
to a non-DL setting.

II. RELATED WORK

A. Implicit-to-implicit registration

A Signed Distance Field (SDF) is an implicit function f :
R3 → R that maps a point p ∈ R3 to its closest surface
location with signed distance [15].

Point-to-implicit registrations project point clouds to a SDF
to circumvent the computation of correspondences. It shows
a more robust registration performance than ICP and is well-
compatible with SDF-based 3D reconstruction algorithms. But
it suffers from the unreliability of sparse data and erroneous
distance fields. SDF-2-SDF, as the first implicit-to-implicit
registration algorithm, minimizes the energy between two
dense volumetric SDFs, yielding a larger convergence radius
and more accurate performance [15]. However, limited to the
grid structure, SDF-2-SDF is restricted to be used in small

settings. To enable a large-scale scene reconstruction, SDF-
TAR performs registration on a fixed number of limited-extent
volumes with parallel computation [16].

But the above methods rely on an explicit volumetric
representation of the implicit function. It is in-efficient to
recompute the field in each iteration. To this end, we propose
to register with two fixed distance fields, by introducing a third
pseudo point cloud into the registration process.

B. Feature Metric Registration

Feature Metric Registrations (FMRs) are the group of algo-
rithms for global feature registration with currently best perfor-
mances. PointNetLK first introduced a registration framework
with the feature distance [12]. By iteratively updating the in-
termediate transformation, PointNetLK achieves high accuracy
on synthetic datasets.

Then FMR contributes on top of it and a semi-supervised
algorithm was proposed in [13] to release the model from
category labels. In addition, this algorithm works well on
indoor datasets. However, those two models are using an
approximate Jacobian, which means the step size should be
carefully designed for avoiding too large or small steps along
the gradient.

Recently, [14] propose an analytical Jacobian for replacing
the approximate Jacobian in PointNetLK. The analytical Ja-
cobian consists of a feature gradient and warp Jacobian. They
claim that the analytical Jacobian circumvents the numerical
limitations.

In FMRs, iterating relies on the transformation of the whole
point cloud P, which is inefficient. In this paper, we propose
to directly update on the features.

III. BACKGROUND

A. Feature Metric Registrations

Given two point clouds PS ∈ RNS×3, Pτ ∈ RNτ×3,
registration aims at finding the rigid transformation G(ξ) such
that dist(G(ξ) ·PS ,Pτ ) is minimized. Here G(ξ) denotes the
transformation with twist parameters ξ.

For feature metric registration, one minimizes the feature
distance

arg min
ξ
‖φ(G(ξ) ·PS)− φ(Pτ )‖22. (1)

where φ : RN×3 → RK denotes the encoding function with
point number N and global feature dimension K.

Then by rewriting the transformation on Pτ side, their warp
increment ∆ξ is obtained by

arg min
∆ξ
‖φ(PS)− φ(G−1(ξi ◦−1 ∆ξ) ·Pτ )‖22, (2)

where ◦−1 is an inverse composition. By using the first-order
Taylor expansion, it yields

arg min
ξ
‖φ(PS)− φ(G−1(ξi) ·Pτ )− J∆ξ‖22, (3)

where

J =
∂φ(G−1(ξ) ·Pτ )

∂ξT
∈ RK×6. (4)
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Recently an analytical Jacobian has been proposed in [14].
It circumvents the numerical unstable of approximate Jaco-
bian [12] with step choices. The analytical Jacobian consists
of the Feature Jacobian and the Warp Jacobian:

J =
∂φ(G−1(ξ) ·Pτ )

∂(G−1(ξ) ·Pτ )T
∂(G−1(ξ) ·Pτ )

∂ξT
. (5)

Then by solving

ξ = J+[φ(PS)− φ(Pτ )] (6)

we obtain the transformation and update as

PS ← G(ξ) ·PS . (7)

In the iteration, we solve Eq. (6) and Eq. (7) alternatively to
make the final registration as

G = ∆Gn · · · ·∆G0, (8)

where ∆G = exp(
∑
i ξiTi).

IV. METHODOLOGY

In each iteration, Eq. (7) always requires passing the orig-
inal point cloud PS into the encoder function, which takes
O(N · C) where N and C are the maximum iterations and
the number of points respectively. It suffers from a similar
problem as described in [15], [16], i.e., it requires to repeat
operations on the original point clouds.

We consider this transformation on point cloud to be inef-
ficient and propose to solve it by using another small point
set to “communicate” with PS and Pτ instead of letting PS
and Pτ “contact” directly. We use a random sampled L-points
point cloud Pa ∈ RL×3 where L� N .

Then we use the encoding function ϕ(·,Pa) with ϕ :
RN×3×RL×3 → RK to extract features from the point cloud
with Pa involved. So ϕ(PS ,Pa) between PS and Pa is the
PS feature. ϕ(Pτ ,Pa) is the feature extracted from Pτ .

Here we assume ϕ(PS ,Pa) is transformation invariant
to PS and Pa as in Fig. 1, such that the transformation on
PS is equivalent to the inverse transformation on Pa, i.e.,

ϕ(G(ξ) ·PS ,Pa) = ϕ(PS ,G
−1(ξ) ·Pa). (9)

A. Distance Field as a Transformation Invariant Function

The formulation in Eq. (9) holds only when each dimension
value of ϕ(PS ,G

−1Pa) will not change after rotation and
translation on the inputs of ϕ. Thus, in the view of the feature
metric, where ϕ(Pτ ,Pa) and the transformed ϕ(PS ,G

−1Pa)
are compared, we cannot separately use the feature of PS/Pτ
or Pa. Because we neither transform PS/Pτ in our iter-
ation design, nor Pa gives anything itself. Therefore, we
consider Pa as a medium to help represent the geometry of
PS/Pτ . We observe that the point order of Pa is actually
fixed for ϕ(PS ,G

−1Pa) and ϕ(Pτ ,Pa) in one registration
process. Which provides independence in each dimension and
makes the algorithm design more flexible (in Sec. IV-C and
Sec. IV-D). In addition, the function for each point should
provide continuous values for derivation computation.

We propose to introduce the distance field and use the
score of pi ∈ Pa in the field DPS as the i-th dimension
of ϕ(PS ,Pa) ∈ RL. The concept of the distance field is
then utilized for the transformation invariant function with the
input of scan and pseudo points. Since an unsigned distance
field is able to work on an arbitrary point cloud, that is not
limited to a closed shape, we implement our algorithm under
this more generalized setting. The distance field is a function
that computes the smallest distance between query point x and
the point cloud P

DP(x) = min
p∈P

(||p− x||22). (10)

The demonstration of distance field is in Fig. 2.

B. Pseudo-point Feature Metric Registration

Given above function ϕ, shown similarly in Fig. 1, the
transformation between PS and Pτ becomes the inverse-
alignment of Pa to make ϕ(PS ,G

−1 · Pa) and ϕ(Pτ ,Pa)
equal. Which is

arg min
ξ
‖ϕ(PS ,G

−1(ξ) ·Pa)− ϕ(Pτ ,Pa)‖22 (11)

By computing the Jacobian one is not able to describe the
gradient on the whole field. Different from Eqs. (2) and (3)
that rewrite the transformation onto the target Pτ side. Instead,
we keep updating the feature of PS and update Jacobian in
each iteration. Eq. (11) is rewritten by adding an incremental
∆ξ as

arg min
∆ξ
‖ϕ(PS ,G

−1(ξi ◦−1 ∆ξ) ·Pa)− ϕ(Pτ ,Pa)‖22.
(12)

Using the first-order Taylor expansion, Eq. (12) becomes

arg min
ξ
‖ϕ(Pτ ,Pa)− ϕ(PS ,G

−1(ξi) ·Pa)− J∆ξ‖22 (13)

(a) Intel 2D map. (b) Distance field map.

(c) KITTI scan. (d) Distance field 2D sketch.

Fig. 2: Distance field demonstrations. The above is for 2D
Intel map generated with [17]. Below is on selected KITTI-
odometry frame.
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S

Q

Tpred = G(ξ)

G−1(ξ) · S

ϕ(Q,S)

ϕ(P,G−1(ξ) · S)

ξ = J+ · [ϕ(P,G−1(ξ−) · S)− ϕ(Q,S)]⊕ ξ−

Fig. 3: Algorithm pipeline of the proposed method. The pink arrows denote computations that are carried out once. The yellow
arrows denote computations in an iterative fashion. The 1, 2, 3, 4 are sequential steps in an iteration. We show algorithm of
this pipeline in supplementary material2.

In our algorithm, the Jacobian is computed in each iteration.
The analytical Jacobian is formulated. It contains the feature
Jacobian over the pseudo-point set and multiplies the warp Ja-
cobian of pseudo-point set over the transformation parameters:

J =
∂ϕ(PS ,G(ξi)−1 ·Pa)

∂(G(ξi)−1 ·Pa)T
∂(G(ξi)−1 ·Pa)

∂ξT
. (14)

The warp Jacobian ∂(G(ξi)−1·Pa)
∂ξT

∈ RL×3×6 follows to the
corresponding formulation on the pseudo-point set Pa as
PointNetLK-Revisited [14] uses it for the original point set.
The feature Jacobian Jfeat = ∂ϕ(PS ,G(ξi)−1·Pa)

∂(G(ξi)−1·Pa)T
∈ RL×3×L

is the gradient with closest points of pseudo-points in our
implementation:

Jfeat,(i,·,i) = 2(xi − p) ∈ R3,

with xi ∈ Pa, p = arg min
p∈PS

(||p− xi||22). (15)

And the remaining non-filled entries of Jfeat are set to zero.
Our pseudo-set analytical Jacobian is far more efficient than
the analytical Jacobian of [14] and is discussed in supplemen-
tary material2.

Then by following Eq. (6), ξ is solved with

ξ = J+[ϕ(Pτ ,Pa)− ϕ(PS ,G
−1(ξ−) ·Pa)]⊕ ξ− (16)

where ⊕ is denoting the update between two twist vectors,
ξ− is denoting the twist parameters from last iteration. The
whole diagram of the registration is shown in Fig. 3. Before
the first iteration, ϕ(PS , ·) and ϕ(Pτ ,Pa) are prepared. Then
in each iteration i, we transform Pa as G−1(ξi)Pa to compute
the feature and Jacobian for ϕ(PS ,G

−1(ξ−) ·Pa). Then the
incremental transformation is solved with the linear system
Jξ = r, where r is the residual of features.

2See github page1

C. Robust regression with Weights

Different from deep feature metric registration that di-
mensions are correlated to each other, in our method each
dimension of a feature is actually corresponding to a single
pseudo-point. This means each dimension is independent to
the others. Thus, we are able to add weight to each dimension
of the function Jξ = r to adjust the importance of each
dimension. Therefore, we implement the Iterative Reweighted
Least Squares (IRLS) to solve for the ξ. With the weighted
formulation, we actually solve the sum of L1 version of
Eq. (12). For more detail on IRLS, please follow 3 and [18].

D. Truncation Strategy

In the implementation, truncation is used to remove the
outlier points as in each iteration, certain dimensions of ϕ are
freely removed together with its corresponding Jacobian. For
example, if the j-th pseudo-point is removed, K+ = K−1 for
the feature ϕ of both sample and template point cloud, then
the j-th row of the Jacobian is also ignored in Eq. (6). It is also
feasible as it is considered as part of ϕ function to block certain
dimensions in the iteration. The specific implementation of the
truncation is described in Sec. V-D.

E. Computational cost

The computation cost of our method includes the implemen-
tation of the distance function. With the recent neural network
based distance field [22], [23], it costs O(N) + O(KL) to
get the point cloud global latent and to iterate K times for
the pseudo-point set. In this paper, we focus on the algorithm
itself, and compute the distance value for each pseudo-points
by using k-d tree search. Excluding the O(N logN) tree-
building time, the registration time complexity of our model
is O(KL logN).

3https://en.wikipedia.org/wiki/Iteratively reweighted least squares#cite
ref-Burrus 1-0

https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares#cite_ref-Burrus_1-0
https://en.wikipedia.org/wiki/Iteratively_reweighted_least_squares#cite_ref-Burrus_1-0
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TABLE I: Accuracy and generalizability. Results on 20 object categories, i.e., unseen categories of the baseline learning
methods, from ModelNet40 and ShapeNetCore. ↓ means smaller values are better.

ModelNet40 ShapeNetCore

Rot. Err. (deg.) ↓ Trans. Err. ↓ Rot. Err. (deg.) ↓ Trans. Err. ↓

Algorithm RMSE Median RMSE Median RMSE Median RMSE Median

ICP∗ [19] 39.33 5.036 0.474 0.058 40.71 5.825 0.478 0.073
DCP∗ [20] 5.500 1.202 0.022 0.004 8.587 0.930 0.021 0.003
DeepGMR∗ [21] 6.059 0.070 0.014 8.42e-5 6.043 0.013 0.005 9.33e-6
PointNetLK∗ [12] 8.183 3.63e-6 0.074 5.96e-8 12.941 4.33e-6 0.115 5.96e-8
PointNetLK-Revisited∗ [14] 3.350 2.17e-6 0.031 4.47e-8 3.983 2.06e-6 0.049 2.98e-8

Ours 5.168 1.83e-6 0.055 4.47e-8 4.042 2.95e-6 0.047 5.96e-8
∗

Values taken from [14].

In comparison, excluding the O(N logN) tree building
time, ICP takes O(KN logN) for iterating K times. Feature
metric registrations require O(KN). More detail about space
complexity is given in supplementary material2.

V. EXPERIMENTS, RESULTS, AND DISCUSSION

Next, we focus on the registration performance to evaluate
our model on synthetic datasets, an indoor dataset, and an
outdoor dataset. The deep learning based models are known
to exceed the conventional method on performance. However,
our results show that, even without any training of the model,
as a feature-metric method, our model achieves competitive
results to the state-of-the-art learned models.

A. Datasets

1) ModelNet40 [24]: ModelNet40 is a synthetic 3D object
dataset contains 40 categories of daily objects. For a fair
comparison, we follow PointNetLK-Revisited to select 20
categories from ModelNet40 as a testing set, the rest is for
the training of other learning models.

2) ShapeNetCoreV2 [25]: ShapeNetCore is a subset of
ShapeNet that contains 55 common object categories. Again,
for a fair comparison, 12 categories are selected from
ShapeNetCoreV2 separately for testing and the rest for the
training of other learned models.

3) 3DMatch [26]: 3DMatch collects RGB-D scans from
several datasets. It contains complex indoor scenes, such as
kitchen, office, etc. We follow PointNetLK-Revisited to choose
8 categories of scenes for testing. In addition, only those
testing pairs with at least 70% overlap are kept.

4) KITTI-odometry [27]: KITTI-odometry is a large-scale
outdoor LiDAR point cloud dataset around cities. It consists
of 22 sequences. The first 11 sequences are provided with
ground truth trajectory. This test on outdoor data is used to
compare with outdoor registration models to further explore
the capacity of our algorithm.

Selected examples of used data are shown in Fig. 4.

B. Baselines

We use as baseline ICP [19], DCP [20], DeepGMR [21],
PointNetLK [12], and the most recent state-of-the-art
PointNetLK-Revisited [14] for synthetic registration and in-
door registration. We also test it on an outdoor dataset which
is not applicable to deep feature-based registration [14]. Thus

we use the benchmark from outdoor registration paper [28]
with the baseline ICP [19], G-ICP [29], 3DFeat-Net [6],
DeepVCP [30], and DeepCLR [28].

C. Metrics
The difference between prediction and ground truth for

rotation (in degree) and translation (in meter) is evaluated as
relative rotation error (RRE= arccos(Tr(RTR − 1)/2)) and
relative translation error (RTE). To represent the variance of
registration and the error distribution we use the root mean
square error (RMSE) and median error (MAE) of RRE, RTE
as metrics.

D. Setting
The rigid transformation used for testing consists of a

rotation randomly drawn in [0°, 45°] and a translation in

Fig. 4: Data examples. The four rows are selected exam-
ples from ModelNet, ShapeNet, 3DMatch, KITTI-Odometry
datasets respectively. In the first two rows, aside from the
black point cloud we also plot its object surface as in [14]
for better visualization.
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(a) Rotation threshold. (b) Translation threshold.

Fig. 5: Success Rate. The x-axis is logarithmic.

[0, 0.8] for synthetic and indoor test [14]. The outdoor test
follows [28]. As our model does not require training, we
directly feed all of the points as input.

The maximum number of iterations is set to 10 for iterative
methods on synthetic data and to 20 on real data. The number
of pseudo points L is 1000 in all experiments.

For pseudo set generation, we implement a random pseudo
set and a neighborhood pseudo set generation for following
experiments. For truncation, we filtered out pseudo-points if
(1) too many pseudo-points redundantly neighbors to the same
surface point and (2) pseudo-points are not on the surface
normal direction, as those points are more likely to be far
away from the surface or in a no-surface region.

All experiments are implemented on a NUC-computer
(CPU-i7-10710U, 32GB memory).

E. Synthetic Data Test

In the synthetic test, pseudo set are uniformly drawn from
[−1, 1]3 cube. No truncation has been used.

The evaluation performance is shown in Tab. I. Our
non-learning method (IFR) obtained a competitive perfor-
mance to the new state-of-the-art PointNetLK-Revisited [14].
The feature-metric class methods (PointNetLK, PointNetLK-
Revisited, ours) achieves a median rotation error at 1× 10−6

level and a translation error at 1× 10−8 level, which is much
more precise than the rest.

To further demonstrate the competitive performance, we plot
the success to error threshold curve in Fig. 5. Even at a very
small maximum threshold, the success rates of our method and
DL-based PointNetLK-Revisited are still similar and at a high
level, well-reflecting the performance of our non-learning IFR
model.

F. Efficiency

In [14], PointnetLK-Revisited shows a better efficiency than
other baselines with a sample of 104 points on a single
CPU. It is feasible to test on CPU excluding the acceleration
techniques as the time complexity is more intuitively reflected
from the time cost. Similarly, we also sample 104 points and
test with our Intel Core i7-10710U CPU at 1.10GHz (a low
power processor). PointNetLK-Revisited took 1.97s, while our
model took 0.27s.

(a) Sparse data. (b) Robustness to noise.

Fig. 6: Robustness to noise and sparsity.

G. Robustness Test

Data collected with real sensors usually suffer from noise
and sparsity. Thus to further assess the robustness of our
algorithm, we test for these properties. PointnetLK-Re shows
much better robustness than other baselines [14]. Thus, we
merely compare with the best PointnetLK-Re and shows scores
with it.

1) Different Density: We implement the test on ModelNet
Test set used in the previous part. Due to the large requirement
on GPU memory for PointNetLK-Re, we set the upper bound
of point number to 200,000. Then we randomly select points
from the sample point cloud. The performance of our IFR
algorithm is demonstrated in Fig. 6a. It outperforms the DL
state of the art on the whole range of sparsity.

2) Different Noise Level: The noise robustness test is
similar to the previous setting. To add noise to the
data, we randomly generate Gaussian Noises with σ ∈
{0.01, 0.02 · · · 0.1, 0.2} to every point in both point clouds.
Our IFR uses the distance field as a basis. Therefore, the noise
is addressed at (1) data preprocessing, (2) smoothed distance
field, and (3) on our general algorithm side. To clarify the
capability and limitation of our method, our algorithm deals
with noise at level (3), i.e., on the algorithm side by taking
k = 5 nearest neighbors as the mean feature at the encoding
step.

From Fig. 6b, we observe that in the range [0, 0.06] meter
in the noise, our IFR achieves a relative or even better success
rate. However, when the noise becomes extremely high, 0.1 m
or 0.2 m for example, our curve drops faster than the DL-based
PointNetLK-Re. However, this extreme noise is not expected
in real life, i.e., for realistic sensors. Therefore, in the next
part, we will evaluate our IFR algorithm in real scenes.

H. Real Indoor Data Test

After the robustness test, we turn to the real dataset that
combines various aspects and challenges in the real world.

For the synthetic tests, the distance fields are very similar
and the generation within uniform cube or neighborhood will
not affect the result. However, in the real scene test, the
distance fields for the two point cloud are usually partially
different, which is more severe in space with large distances
from the surface. Thus points far from the surface will falsely
affect the result. Thus, we use points in the neighborhood for
the real scene.
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TABLE II: Performance on complex, real-world scenes. All
learning methods were trained on the synthetic ModelNet40
dataset and tested on the real-world 3DMatch dataset to
investigate their generalizability across data with different
distributions.

Rot. Error (degrees) Trans. Error (m)

Algorithm RMSE ↓ Median ↓ RMSE ↓ Median ↓

ICP∗ [19] 24.772 4.501 1.064 0.149
DCP∗ [20] 53.905 23.659 1.823 0.784
DeepGMR∗ [21] 32.729 16.548 2.112 0.764
PointNetLK∗ [12] 28.894 7.596 1.098 0.260

Ours 23.814 4.191 1.057 0.161
Ours w/ trunc 40.42 1.106 1.546 0.049
∗

Values taken from [14].

In the implementation, we draw Pa near the point cloud Pτ
with a Gaussian distribution centered at the surface points.

The scores are given in Tab. II. In the table, ICP achieves
even better scores than any of the learning methods. How-
ever, our model outperforms all. With a truncation strategy
(in Sec. IV-D), the registration even achieves 1.106 Median
Rot. Error and 0.049 Median Trans. Error. Ablation study
in Sec. V-J is implemented to demonstrate the functionality
of different modules. We also outperform PointNetLK-Re
but do not add it to this table. The reason is detailed in
supplementary2.

I. Outdoor Data Test

From our knowledge, the implicit function based reconstruc-
tions have only been applied to synthetic and indoor data sets,
i.e., that is the basic case for use. But to explore the capacity
of our approach, we also test it on well-known outdoor LiDAR
data, i.e., the KITTI-odometry. Because the KITTI point cloud
has varying density, in implementation we use an ISS-keypoint
detector to sample points as surface points Pτ,sub (Pτ,sub for
pseudo-set generation). From which, we generate Pa as for
the indoor test. The same truncation strategy as for the indoor
test is also applied in this test.

The quantitative evaluation compared to the state-of-the-art
(traditional and DL-based registration) on outdoor data is given
in Tab. III. Our method achieves the best translation error and
competitive rotation error to deep learning methods. However,
G-ICP scores best on the rotation error.

In addition, we predict sequence 00 and plot it in Fig. 7.
Without any loop closure, it still provides a highly accurate
trajectory.

J. Ablation Study

We implement an ablation study to show the impact of
three different modules: IRLS, truncation, and pseudo-set
generation. Because the different settings do not obviously
improve the synthetic test, the study is applied to indoor test
with the 3DMatch dataset.

In Tab. IV, “without IRLS” option disables IRLS and uses
Eq. (16) to solve the transformation parameters ξ, “with trun-
cation” option truncate dimensions following Sec. V-D, uni-
form pseudo and neighborhood pseudo options are following

Fig. 7: Registered trajectory for Kitti-odometry sequence 00
without loop-closure.

the experiment setting at Sec. V-E and Sec. V-H respectively.
We plot two types of pseudo sets in supplementary material2.

The full table with eight tests is provided at Tab. IV. With
one option change, firstly, with IRLS or without IRLS, we
observe that “with IRLS” group #(5,6,7,8) shows a smaller
median error than its corresponding test in group #(1,2,3,4)
respectively. This also holds for major “with truncation” group
#(4,7,8) to respectively exceed “without truncation” group
#(2,5,6). Moreover, major neighborhood pseudo group #(4,6,8)
shows a smaller median error than their corresponding uniform
pseudo group #(3,5,7) respectively.

The above comparison shows the effects of different mod-
ules (with IRLS, with truncation, and neighborhood pseudo).
With all three modules equipped, #8 scores the best.

However, with a truncation, our model (in Sec. IV-D) over-
fits two frames easier. As shown in Tab. IV, our model with
truncation strategy achieves very accurate median rotatational
and translational error. Though it provides more accurate
results. But its higher RMSE in Tab. IV means that when
it fails, it solves completely wrong.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented an indirect point cloud
registration method using a pseudo third point set. Our method
registers two distance fields by only moving the pseudo-points,
reducing the redundant movement of original point clouds. In
addition, we have extended the Feature Metric Registration
class algorithms to a non-deep learning setting. While using
the analytical Jacobian, our pseudo-points based design highly
reduces the theoretical space and time complexity. From the
comparison, our non-learning method achieved competitive
and for some scenes better results than those learned models.
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TABLE III: RMSE on KITTI with artificial transformation. As compared deep learning based methods are trained on 00-07
sequences, we run tests on 08-10 sequences.

ICP Point2Point∗ [19] ICP Point2Plane∗ [19] G-ICP∗ [29] 3DFeat-Net∗ [6] DeepVCP∗ [30] DeepCLR∗ [28] Ours

Rot. Err. (deg.) 0.088 0.079 0.029 0.199 0.164 0.053 0.088

Trans. Err. 0.177 0.140 0.109 0.116 0.071 0.080 0.068
∗

Values taken from [28].

TABLE IV: Ablation Study on IRLS, truncation and pseudo-set generation.

uniform neighborhood Rot. Error Trans. Error
# w/ IRLS w/o IRLS w/ trunc w/o trunc pseudo pseudo RMSE Median RMSE Median
1 18.732 7.073 0.969 0.311
2 25.074 7.393 1.129 0.265
3 46.522 7.503 1.607 0.281
4 37.896 2.998 1.492 0.118
5 19.042 5.732 0.972 0.248
6 23.018 4.443 1.057 0.157
7 44.102 4.687 1.617 0.160
8 32.886 0.913 1.148 0.036

In the future, we plan to embed this registration algorithm
in an implicit-mapping based SLAM framework.
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