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Online Learning of Neural Surface Light Fields
alongside Real-time Incremental 3D Reconstruction

Yijun Yuan and Andreas Nüchter

Abstract—Immersive novel view generation is an important
technology in the field of graphics and has recently also received
attention for operator-based human-robot interaction. However,
the involved training is time-consuming, and thus the current
test scope is majorly on object capturing. This limits the usage of
related models in the robotics community for 3D reconstruction
since robots (1) usually only capture a very small range of
view directions to surfaces that cause arbitrary predictions on
unseen, novel direction, (2) requires real-time algorithms, and
(3) work with growing scenes, e.g., in robotic exploration. The
paper proposes a novel Neural Surface Light Fields model that
copes with the small range of view directions while producing
a good result in unseen directions. Exploiting recent encoding
techniques, the training of our model is highly efficient.

In addition, we design Multiple Asynchronous Neural Agents
(MANA), a universal framework to learn each small region in
parallel for large-scale growing scenes. Our model learns online
the Neural Surface Light Fields (NSLF) aside from real-time 3D
reconstruction with a sequential data stream as the shared input.
In addition to online training, our model also provides real-time
rendering after completing the data stream for visualization. We
implement experiments using well-known RGBD indoor datasets,
showing the high flexibility to embed our model into real-time
3D reconstruction and demonstrating high-fidelity view synthesis
for these scenes. The code is available on github1.

Index Terms—Mapping; SLAM

I. INTRODUCTION

IN robotics, mapping, and 3D reconstruction have long been
of great interest and have been studied for decades. Initially,

researchers focused on 3D point clouds and voxel grids, and
this later shifted towards using Signed Distance Functions
(SDF). An SDF, is the starting point of many of the following
state-of-the-art papers. It has been well-developed from Point-
to-SDF [1] to SDF-to-SDF [2], [3], from explicit voxel field [4]
to neural implicit representation [5], [6]. These methods have
achieved high-quality 3D reconstructions in real-time while
maintaining high regression functionality of the neural models.

Aside from the reconstruction of geometries, neural render-
ing for colors is also a hot topic, however more in the field
of computer graphics [7]. Neural rendering focuses on the
synthesis of novel views from 3D models. The goal of this
topic is to enhance the immersive experience for users. In the
context of robotics, for instance, it is crucial for human-robot
interaction or situation awareness of an operator of a telerobot.
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Fig. 1: Light difference between object capturing for graphics
applications and scene capturing in robotic SLAM & recon-
struction. At 3D point p, lights are cast from direction d. The
sphere shows the S2 space for the direction vectors d that are
partially covered by light rays.

In 2020, the Neural Radiance Field (NeRF) [8] was introduced
as an innovative approach to high-resolution rendering for
view synthesis, activating the trend of neural rendering. It
learns a neural radiance field that produces both an occupancy
field and a light field via differentiable rendering for custom
immersive view synthesis, and it has extended the testing scope
of 3D reconstruction to large scene-level [9], [10]. The draw-
back is the extremely high training time, and it is therefore
unsuitable for real-time 3D reconstruction. Nevertheless, it still
affects the field of 3D reconstruction. Recent works on 3D
reconstructions, i.e., iMAP [11] and NICE-SLAM [12], build
on the differentiable rendering from NeRF to approach an
online reconstruction with color. However, their visualization
of color appears blurred. It is worth mentioning that shape
reconstruction has already been extensively studied and has
already achieved high-quality 3D reconstruction performance.
Aside from the high quality, the robotics community values
online capable reconstructions.

However, NeRFs in the graphics community concentrate
more on (1) object capturing instead of capturing large scene
surfaces (captures contain dense view-directions to surface),
(2) rendering high-quality images while caring less on depth
and surface accuracies (shape-radiance ambiguity) [13], and
(3) more on rendering (testing) speed instead of online train-
ing. Therefore, we explore the high potential to use surface
reconstruction research as the basis of this topic to meet the
interest of the robotics community to have a universal way to
simulate real environments.
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We utilize a real-time reconstruction model to provide
surfaces and simplify the problem to online learn the light
field on surfaces aside from real-time reconstruction as given
in Fig. 3. Where our model relies on data from reconstruction
without affecting it. During the online learning phase, we
employ a colored point cloud. Subsequently, in the inference
phase, we apply ray-rasterizing on the reconstruction mesh to
obtain the point cloud for color prediction.

The Surface Light Fields (SLF) has been proposed by Wood
et al. [14] to model the surface reflectance. For a surface
point p, the radiance of a reflection ray (with direction do)
is computed from an accumulation of incident rays (with
direction di for ray i). However, due to the inefficient dense
sampling requirement of SLF, more work has focused on
modeling compression [15]. Recently, Chen et al. [16] and
Yu et al. [17] have introduced Deep Surface Light Fields
(DSLF), which utilize a neural network to replace the pre-
vious handcrafted formulation. Still, these approaches have an
extremely slow training speed. Similarly, these techniques are
mainly concentrated on capturing a 360-degree view of the
object.Large-scale scenes have not been considered.

Unlike the graphics communities, in robotics, SLAM, and
3D reconstruction (1) capture scene frames that contain only
a limited range of surface view-direction as depicted Fig. 1,
apply for (2) growing large-scale scenes without prior knowl-
edge of their size and require (3) real-time processing speed.
These three points are the primary concerns for using Neural
Surface Light Fields (NSLF) in robotics. Thus, this paper aims
to address the limited view-direction challenge during testing,
where most unseen directions will cause arbitrary results. To
cope with this problem, we introduce Spherical Harmonics
for decoding, as depicted in Fig. 2. Furthermore, relying on
recent advances in graphics, i.e., the Multi-resolution Hash-
encoding, we train grid-latent as an encoder for (3) real-time
online learning. We further introduce Multiple Asynchronous
Neural Agents (MANA) to handle (2), i.e., we handle large
scenes without pre-knowing the size.

We take inspiration from [18] which claims that multiple
local MLPs converge faster. However, [18] has to train all
local MLPs with one optimizer because NeRF’s differentiable
rendering accumulates data from different MLPs. While Sur-
face Lighting Field training does not depend on ray integration
in NeRF. Therefore, each region has its model and optimizer
to learn individually.

To deal with scalable data when data is distributed, we
dynamically allocate neural models and optimizers for new
regions and run them in a new thread independently as
depicted in Fig. 3. Every region has a neural model and an
optimizer running independently without synchronizing with
others.

The contributions of this paper are as follows:
• Proposing a novel Neural Surface Light Fields model

to address the issue of arbitrary prediction on unseen
direction causing from the small range of view-direction
to surface in SLAM & 3D reconstruction captures,

• Proposing the first framework (MANA) for online-
learning neural surface light fields on growing large-scale
scenes,

• Implementing MANA aside from real-time reconstruction
for experiments. Both online learning and real-time test-
ing are supported. Agents can be distributed to multiple
GPUs.

II. RELATED WORKS

Our work is mainly related to NSLF. Here, we also review
the hotter sister topic, NeRF because its development process
highly inspires and directs us to use NSLF online for the large
scenes.

A. Neural Radiance Fields (NeRF)

Mildenhall et al. [8] propose to represent a scene as a contin-
uous mapping from five-dimensional coordinates (x, y, z, θ, φ)
to volume density and view-dependent RGB color (σRGB),
which are so-called NeRF representations. The training of
NeRF relies on the use of differentiable rendering along rays.
NeRF represents a significant advancement in graphics due
to its immersive view-synthesis performance. However, NeRF
does have some limitations. Firstly, the speed for training and
rendering is extremely slow. Secondly, the NeRF model suffers
from shape-radiance ambiguity.

1) Speed-aware NeRF: Although NeRFs show a very high
quality of view synthesis, their computational cost for training
and testing is extremely high. Therefore, lots of recent work
shows interest in the speed issue. Tewari et al. [7] summarize
and show many works exploring speedups using pruning [19],
sampling [20], fast integration [21], data structure [22], [23],
[24], and so on [18], [25], [26]. Many different data structures
are also used to speed up the rendering and the training process
benefits. A recently highlighted work from NVIDIA, Instant
Neural Graphics Primitives, uses a multi-resolution hash en-
coding to realize fast NeRF training in a few seconds [24].
It provides an encoder with very fast convergence. We will
also employ this encoder in our proposed model. In the most
related scope, KiloNeRF, which uses thousands of tiny MLPs
to imitate standard NeRF, shows a factor of 2000 speedup in
rendering [18]. Real-time rendering already meets the needs
of the field of computer graphics (CG).

However, from a robotics perspective, online algorithms
such as 3D reconstruction and SLAM are always preferred. In
such an environment, online training makes the task of light
fields much more challenging.

2) Depth Aided NeRF: Another problem with NeRF is
shape-radiance ambiguity. NeRF++ [13] points out that given
an incorrect shape, there exists a family of radiance fields
that perfectly explains the training images, but generalizes
poorly to novel views. Although a well-trained NeRF does not
show this phenomenon, imperfect depth prediction is common
but is neglected since the application targets color prediction.
However, this also leads to another research direction, a group
of works uses depth as an input to reduce the complexity of
geometry modeling. This group of works embed Structure-
from-motion (SfM) [27], [28], Multi-view Stereo (MVS) [29],
[30] or directly input RGBD data [31].

The above algorithms show a trend that the facilitation of
geometry learning well-reduces the complexity of NeRF while
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improving the high quality. Moreover, in the robotics com-
munity, recent mature real-time 3D reconstructions already
provide high-quality online shape reconstruction [5].

Therefore, we consider solving the geometric and color
regression separately. Where the geometry is estimated using
a mature online 3D reconstruction model. Meanwhile, an
NSLF is independently trained for surface colors. Without ray
sampling, our model uses only surface points during training
and inference. This breaks the constraint of NeRF’s rendering
loss and allows asynchronous training and inference for each
intelligent agent.

B. Neural Surface Light Fields (NSLF)

NSLF learns a mapping function fNSLF : X × S3 → C
where X ⊆ R3 denotes the point set on the surface, S3 is the
unit 3-sphere, C denotes the RGB color space.

With the high regression capability of deep learning, Chen
et al. [16] propose Deep Surface Light Fields (DSLF) which
uses MLPs to replace the accumulation function. This para-
metric modeling greatly reduces the computational and spatial
burden. And thus provides more efficient rendering. Yu et
al. [17] have introduced Anisotropic Fourier Features Mapping
(AFFM) to encode points. This increases convergence speed
and rendering quality.

Similar to the NeRF design, the NSLFs also follow the
encoding-decoding pattern. For a given point, its position
vector is encoded as Fp = φp(p). In the other branch, the
direction vector is also encoded with a non-parameterized
encoder, spherical harmonics, or frequency encoding: Fd =
ϕsh/freq(d). Shallow MLPs are then applied to concatenated
features (position encoding and direction) to predict color:
c = φdec(Fp,Fd).

However, similar to NeRF the NSLF has not been used
in large-scale incremental 3D reconstruction. Thus, in the
following, we fill this gap and provide an online learned neural
surface light fields function for large scales.

III. METHODOLOGY

In the following, we introduce our proposed NSLF model,
that addresses the problem of limited view directions toward
the surfaces. Then we further design a Multiple Asynchronous
Neural Agents (MANA) framework that learns the NSLF
alongside the reconstruction. The geometry regression that
provides the surface relies on the existing incremental 3D
reconstruction models.

A. NSLF Design

In the use of capturing of 360 degrees of an object, for a
certain surface point, the trained view directions are densely
sampled over a large range and thus, the novel view inference
is mostly on the touched view directions. However, in large-
scale 3D SLAM and reconstruction, this feature of data
acquisition is not guaranteed. Therefore, training on a small
range of view directions will lead to arbitrary prediction on
unseen views.

Unlike previous encoding schemes that concatenate position
and direction encoding, in Fig. 2, we propose to learn Spher-
ical Harmonics (SH) parameters from the position encodings.

p d p d

φp ϕsh φp,1 φp,2

concat

φdec

φw φmlp

ϕsh

φwp

Fp Fd

F

Fp,1 Fp,2

wp Fsh

s

c c

Observation Latent Result

Fig. 2: Patterns of models designed for Neural Light Field. (a)
is most widely used. Our (b) learn one sphere for each p and
use a φwp to map the 1D value on direction d to 3D RGB.

On the decoding side, we run deterministic formulas with a
known SH basis.

To achieve the speedup from current techniques, we use
the novel Multiresolution Hash Encoding [24] to bear the
main burden of position encoding: Fp = φp,θHG

(p). Such
an encoding produces an encoding by interpolation of voxel
features, which mitigates the global effect problem of MLPs
in DSLF. In addition, the surfaces occupy a small space in
a cubic region, and thus the allocation during use is more
efficient in space. Considering that scene sequences only cover
very limited direction space on surface surface, training on
specific positions and directions easily leads to an arbitrary
result in unseen view. To prevent arbitrary guessing in the
unseen direction, we introduce learning of SH parameters that
affect the full direction. We add an MLP-layer to generate the
SH parameters: Fsh = φmlp(φθHG

(p)) = (vm` )m:`≤m≤`
`:0≤`≤`max

.
So here we are creating one sphere of latent to continu-
ously represent a small space of 1 dimensional color range
for corresponding lights on a point. Then, with the known
spherical harmonics function Y m` : S2 → C, we extract
the latent in a given direction of the sphere utilizing the
SH formula

∑`max

`=0

∑`
m=−` v

m
` Y

m
` (d) to deterministically

decode on direction d: s = FTshϕsh(d). Meanwhile, the other
branch of the encoder computes features wp to parameterize
MLPs φwp

. It maps (or extracts) the color range value s to
the color c.

Hash encoding requires normalizing the data into a unit
cube [24]. This means that we need to know the scale of the
data. Thus, using this model in each region avoids this problem
as the regional scale is predefined. In the following, we present
a framework that operates on the growing scenes.

B. NSLF with Region-wise Neural Agents

DSLF [16] uses MLPs to learn an entire scene. But such
a model is not robust for the incrementally creation of large
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scenes, because newly fed data still changes the scene globally
even the non-effected parts. Some ideas in NeRF provide
possible solutions: (1) using voxels of multiple MLPs (KiloN-
eRF [18]) or (2) using a voxel multi-resolution representation
(Instant-NGP [24]).

1) Multiple Asynchronous Neural Agents: We use RGBD
and rasterization to directly approach points on the surface
during training and testing respectively.

To speed up training while making it scalable, we divide the
space equally into regions and dynamically assign models for
each newly touched region. Each region is assigned with an
Intelligent Agent (IA) that maintains its own thread, neural
model and optimizer and is trained autonomously.In training
mode, when data is fed into an agent, it will train continuously
until it reaches max-iterations. In evaluation mode, the IA will
predict input data and output colors. Since the implementation
is done with neural network, we will refer to such an IA as a
Neural Agent (NA) in the rest of this paper.

In addition, we assign an optimizer to each NA, making
it an independent model that does the training itself. Each
region maintains its own neural model and optimizer to train
independently. With this feature, our model distinguishes itself
from KiloNeRF which synchronizes voxels . And thus, our
model is capable of asynchronous training. We call it Multiple
Asynchronous Neural Agents (MANA) with each NA U =
(φθ, Optim).

Then following KiloNeRF, we use an axis-aligned bounding
box (AABB) to enclose the scene. We preset bmin and bmax
as the minimum and maximum bound of AABB and discretize
the space uniformly with the resolution r = (rx, ry, rz). We
assign to each grid cell the index i = (ix, iy, iz) for the NA
Ui. For growing scenes, we define extremely large box that

Obtain Depth&Color

Colored Point
Cloud (CPC)

Tracking & Mapping

Reconstruction

Poses

Frame i

MANA

Neural Surface Light

Fields (NSLF)

3D Reconstruction

Online Learning
of NSLF

Fig. 3: MANA learns online a NSLF by serving as an external
function to 3D reconstruction.

Frame i
(P,D,C)

(P,D,C)k

(P,D,C)1

in Neural Agent for Region k

While left iteration a > 0

(P,D,Cgt)
k
j ← get data with j ∈ {1, . . . , i}

stepTrain((P,D,Cgt)
k
j , φθk ,Optimk)

a −= 1

Distribute Data

MANA

Neural Agent for Region k

Neural Agent for Region 1

Fig. 4: Online Learning of NSLF. (a) shows MANA distribut-
ing data into different Neural Agents by region. Each Neural
agent maintains its thread and optimizes individually as (b).

cost almost nothing.
Given a RGBD frame, we unproject it to 3D space as

a point cloud P ∈ RNPj
×3 and their corresponding color

C ∈ RNP×3. The corresponding direction D ∈ RNP×3 is
also obtained for light fields. Each point p ∈ P is assigned to
the corresponding region with

v(p) = b(p− bmin)/(bmax − bmin)/rc. (1)

Then the color is predicted with the point pj ∈ P and its
direction vector dj ∈ D as input:

cj,pred = φθ(v(pj))(pj ,dj) (2)

Thus, for each agent i, it optimizes

min
θ(i)

∑
j, v(pj)=i

||cj − cj,pred||22 (3)

independently with Optimi.

C. Online Learning of Surface Light Fields

As indicated in Fig. 3, our MANA works aside from the
real-time 3D reconstruction of the model. Note that, our model
uses colored point clouds and poses sequentially from the
reconstruction. But the training of MANA does not depend
on the reconstruction result. The reconstruction mesh is only
used during the testing, i.e., view rendering, where the surface
is needed to determine the intersection points of rays. In our
implementation, the main thread is used to feed data into
MANA and to perform the reconstruction.

We plot the diagram of MANA as a frame is fed into the
pink window of Fig. 4.

1) Distribution Module: When a frame arrives, we generate
a colored point cloud with direction (P,C,D). The distribu-
tion module feeds the points to their corresponding regions
with their position. Together with the feed data, to ensure
equal training of each region, our distribution module assigns
iterations to less trained models, while setting zero iterations
to more trained models.
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Since the distribution module and agents run in different
threads, the data distribution is sufficient for real-time data
streaming while the training of the color models is optimized
independently in the background.

2) Asynchronous Neural Agents: When training data of re-
gion k is passed to agent k, it is appended to the data memory
stack. Each agent maintains its own thread to independently
train the color field model θ with memory data. As described
in Fig. 4 (b), a thread of NA maintains the optimization of
the neural model. The newly distributed data for an agent
is appended into its own memory stack. Meanwhile, left
iterations a is modified for more iterations (in the experiments
a is set large enough such that it does not block the whole
algorithm). Then a signal is given to continue training.

D. View Rendering

After a complete online pass of the data stream, a learned
NSLF and a surface are obtained.

By rasterizing with a surface mesh and camera pose as
input, we obtain from the unprojected surface point P. Ren-
dering is then implemented by assigning points to different
agents and synchronously predicting using Eq. (2).

We show in the experiments, that in addition to the real-time
training, the rendering is also done in real-time.

IV. RESULTS AND EXPERIMENTS

Our experiments are on the scenario of Real-time Incre-
mental sequences, which run the online learning modules
(MANA) aside from reconstructing.

A. Dataset

a) ICL-NUIM: ICL-NUIM [32] is one of the most
widely used RGBD datasets for SLAM and reconstruction
purposes. ICL-NUIM contains two synthetic scenes, i.e., room
and office.

b) Replica: The Replica dataset [33] provides synthetic
indoor space reconstructions that contain clean dense geom-
etry, high resolution, and dynamic textures. It is suitable for
our surface light field purpose.

B. Baselines

Our comparisons are mainly on online learning of Neural
Surface Light Fields given incremental reconstruction frames
in real-time. The reconstruction model that we work aside is a
current SOTA, a large-scale real-time incremental reconstruc-
tion model, DiFusion [5], which is based on Neural Implicit
Maps.

First, we compare NSLF models under our online learning
framework (MANA) to demonstrate the advances of our
proposed model. The baselines are the recent Deep Surface
Light Field models DSLF [16], AFFM [17], and HashGrid
(HG), an SLF model migrated from NeRF based on Instant-
NGP [24].

Then we evaluate the model and framework as a whole
to compare the photometric performance with the latest
incremental neural implicit reconstruction SOTA, NICE-
SLAM [12].

C. Implementation Details

The implementations of DSLF and AFFM are taken from
[17]. For the HG baseline, we use a multi-resolution hash
grid with resolution=512 to encode position, and spherical
harmonics to encode direction [24]. The decoder operates on
the concatenated feature using 4 layers of MLPs with net-
width=32. The sigmoid at the end is used to normalize value in
[0, 1] as normalized color. Our model is also implemented with
the same multi-resolution hash grid settings. Instead of encod-
ing directions, we learn spherical harmonics parameters and
extract a value directly in that direction. Then, the extracted
latent is operated on another MLPs with learned parameters
at that position for color extraction. For all models, learning
rates are set to lr = 1e− 3 to train with the Adam optimizer.

For online learning of growing scenes, we set the region
scale to 4m. Our MAMA works alongside the recent 3D re-
construction models (DiFusion [5]) for reconstruction support.
The main thread processes the data and passes it to reconstruc-
tion and MANA. In the MANA, the data_feeding function
in the main thread takes 0.01 s for each frame. The agents run
asynchronously in their own threading. On the sequence, we
skip and take every 20th frame into DiFusion and MANA.
During the evaluation, we infer all frames.

For comparison, we use peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM), and Learned Per-
ceptual Image Patch Similarity (LPIPS) to evaluate the pro-
duced image quality.

Experiments run on a computer with an AMD Ryzen 9
5950X 16-Core Processor CPU and a GTX3090Ti GPU.

D. Online NSLFs alongside Real-time 3D Reconstruction

We implement MANA alongside Real-time 3D reconstruc-
tion for Online NSLF. We first run MANA and the reconstruc-
tion on the real-time sequence ICL-NUIM lrkt0n. For a fair
comparison, we should use the same mesh for all four models.
Since ICL-NUIM does not provide a ground-truth mesh, we
pre-run DiFusion to obtain the same mesh for all four NSLF
models. Four NSLF models are embedded respectively into
MANA. Then, we sequentially feed those frames into MANA.
The real-time learning skips every 20 frames and the main
thread sleeps 1 s when every 20th frame arrives. The evaluation
is done on all frames.

Table I shows the photometric quantitative evaluation. DSLF
and AFFM perform much worse than HG and ours. Our model
shows the best performance on all metrics. We also find this
in Fig. 5 that both DSLF and AFFM show blur or incorrect
image prediction. While HG and ours show a more realistic
quality on the painting and sofa.

We find that HG has results, very similar to ours. Therefore,
we select HG and our model for further testing and investi-
gation on the Replica dataset. For the experiment on Replica
which provides a ground truth mesh, to mitigate other effects,
we use the ground truth mesh for prediction. Similarly, MANA
learns in real-time the sequences that skip every 20 frames
and sleep 1 s then. In Table II, HG and ours also provide very
similar quality.
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DSLF [16] AFFM [17] HG [24] Ours Ground Truth

Fig. 5: Demonstration on ICL-NUIM dataset lrkt0n sequence.

TABLE I: Comparison on ICL-NUIM sequence lrkt0n.

DSLF [16] AFFM [17] HG [24] Ours
PSNR ↑ 21.74 21.29 28.46 28.73
SSIM ↑ 0.836 0.846 0.908 0.915
LPIPSalex ↓ 0.523 0.578 0.285 0.277
LPIPSvgg↓ 0.616 0.652 0.409 0.403

However, Table I and Table II are compared on the whole
sequence, which is very close to the selected trained frames.
To better demonstrate the advantage of our model, we show in
Fig. 6 the unseen direction of the observed surface. For HG,
these surfaces show the correct color when we capture them
in the trained direction. But we find that HG gives arbitrary
results for the unseen direction of the observed surface. For
example, in the first row, HG lost the color of the painting
and the sofa cushion. In the second and third rows, HG shows
arbitrary colors on the sofa and desk. In the fourth row,
HG incorrectly predicts the color of the carpet. This problem
happens to HG because the novel directions on those points are
not learned. While our model works fine. Our model learns a
sphere on each point instead of just for the observed directions.

To better support this, we further use object Chicken data
from DSLF [16], which gives a dense view of the object. We
perform the experiment on the Chicken test set (200 frames).
We train both HG and ours using a single frame (135th)
for 1000 iterations and render on all. The rendered video is
demonstrated in our project page2. Where HG shows high
color bias when viewing angle changes while our model gives
a better prediction.

From the video, most of the surface in the data is not trained.
This means that quantitative evaluation of the whole sequence
can hardly find the result differences. Therefore, we compute
the angle between the view directions of the inferences frame
and the trained frame (135th). Then we threshold the angle to
count only the frame result in a certain range. In Table IV, we
use three options ≤ 15◦, ≤ 30◦, ≤ 60◦. Where we find ours

2https://jarrome.github.io/NSLF-OL

TABLE II: PSNR comparison on Replica sequences.

Ofc0 Ofc1 Ofc2 Ofc3 Ofc4 Rm0 Rm1 Rm2
HG 38.12 37.63 28.38 26.64 35.02 30.06 33.51 34.37
Ours 38.13 37.85 28.57 26.89 35.17 30.20 33.47 34.35

are always better. In addition, the large angle causes inference
on the unlearned surfaces and will give a more similar score.
Which is revealed by the smaller gap in the larger angle
threshold.

HG Ours

Fig. 6: Demonstration on unseen direction of observed
surface.

https://jarrome.github.io/NSLF-OL
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TABLE III: Full model comparison on Replica sequences. Header indicates scene names.

Office0 Office1 Office2 Office3 Office4 Room0 Room1 Room2

NICE-SLAM [12]

PSNR ↑ 28.38 30.68 23.90 24.88 25.18 23.46 23.97 25.94
SSIM ↑ 0.908 0.935 0.893 0.888 0.902 0.798 0.838 0.882
LPIPSalex ↓ 0.386 0.278 0.330 0.287 0.326 0.443 0.401 0.315
LPIPSvgg↓ 0.455 0.403 0.433 0.405 0.430 0.496 0.486 0.451

DiFusion[5]+MANA

PSNR ↑ 28.59 26.70 21.10 21.89 25.74 23.24 25.68 24.88
SSIM ↑ 0.913 0.879 0.863 0.847 0.893 0.816 0.883 0.888
LPIPSalex ↓ 0.371 0.497 0.362 0.368 0.401 0.371 0.308 0.330
LPIPSvgg↓ 0.395 0.446 0.421 0.416 0.425 0.417 0.415 0.422
PSNR ↑ 30.76 30.52 22.48 22.57 25.94 24.08 25.43 26.43

NICE-SLAM mesh SSIM ↑ 0.942 0.927 0.891 0.872 0.911 0.819 0.879 0.904
+MANA inference LPIPSalex ↓ 0.214 0.216 0.265 0.263 0.304 0.345 0.310 0.266

LPIPSvgg↓ 0.346 0.371 0.386 0.377 0.406 0.416 0.420 0.403

NICE-SLAM [12] DiFusion[5]+MANA NICE-SLAM mesh+MANA inf. Ground Truth

Fig. 7: Demonstration of full model comparison. The green box emphasized our better texture. With the red box we shows
the mesh difference between Di-Fusion and NICE-SLAM.

TABLE IV: PSNR comparison on object sequences.

≤ 15◦ ≤ 30◦ ≤ 60◦

HG 26.97 22.87 21.45
Ours 27.63 23.13 21.55

E. Comparing with Incremental Surface & Color Reconstruc-
tion

In the task of real-time incremental reconstruction, surface
and color are not necessarily decoupled. For example, a recent
Neural Implicit Reconstruction SOTA, NICE-SLAM provides
high-quality surface and color reconstruction at the same time
as online reconstruction. Therefore, we compare it to the SOTA
of real-time incremental reconstruction to demonstrate the
advantages of our setting. Table III shows the quantitative eval-
uation; we find that NICE-SLAM shows close performance
to DiFusion combined with our MANA. However, we find

in Fig. 7 that this is not the case. Our photometric result is
more realistic compared to NICE-SLAM. The reason for this
phenomenon is that DiFusion’s reconstruction quality is worse
than NICE-SLAM, MANA score is weakened. For example, in
the first two rows, DiFusion+MANA shows a clear plot on the
wall painting while NICE-SLAM shows a very blurry result.
Also in the third and fourth rows, MANA shows fine texture on
the quilt and carpet, while NICE-SLAM fails to find the detail.
However, DiFusion produces a worse reconstruction (shown in
the edge of the tables and chairs), which causes defects to the
NSLF rendering.

To better demonstrate the advantage of our work along the
reconstruction, we use the same learned NSLFs to infer on
NICE-SLAM’s mesh. This shows a better result in most of
the scenes of Table III. The specific detail is also shown in
the colored region of Fig. 7.
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F. Time Efficiency

Real-time reconstruction while online learning NSLF on
ICL-NUIM lrkt0n (1508 frames) sequence in Section IV-D
takes about 28 s. This means that our online learning frame-
work incrementally trains this fixed amount of time. Rendering
a 480×640 image in ICL-NUIM data takes on average 0.07 s.
Therefore, our model easily achieves both real-time learning
(training) and rendering (inference) in a similar size.

V. CONCLUSION

In this paper, we have proposed an online learning method
for neural surface light fields during real-time incremental 3D
reconstruction on large scenes.

We have proposed a novel Neural Surface Light Fields
model to address the challenge that in a SLAM and reconstruc-
tion scenario the captured surface directions are very limited,
the learned model easily produces arbitrary predictions from
unseen directions.

For online learning in growing scenes where we do not pre-
know the boundaries in advance, we have designed Multiple
Asynchronous Neural Agents to work alongside real-time
incremental 3D reconstruction.

The performance of the proposed method has been demon-
strated in our experiments. Our implementation achieves real-
time learning of Neural Surface Light Fields alongside real-
time incremental reconstruction.
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