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Abstract

A globally consistent solution to the simultaneous localization and mapping (SLAM) problem in 2D with three degrees of freedom (DoF)
poses was presented by Lu and Milios [F. Lu, E. Milios, Globally consistent range scan alignment for environment mapping, Autonomous Robots
4 (April) (1997) 333–349]. To create maps suitable for natural environments it is however necessary to consider the 6DoF pose case, namely the
three Cartesian coordinates and the roll, pitch and yaw angles. This article describes the extension of the proposed algorithm to deal with these
additional DoFs and the resulting non-linearities. Simplifications using Taylor expansion and Cholesky decomposition yield a fast application that
handles the massive amount of 3D data and the computational requirements due to the 6DoF. Our experiments demonstrate the functionality of
estimating the exact poses and their covariances in all 6DoF, leading to a globally consistent map. The correspondences between scans are found
automatically by use of a simple distance heuristic.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Simultaneous localization and mapping (SLAM); 6D SLAM; GraphSLAM; Scan matching
1. Introduction

A globally consistent representation of a robot’s environ-
ment is crucial for basic robot tasks such as localization
and navigation. Equipped with a laser scanner, many mo-
bile systems gather information about their local environ-
ments. These local representations have to be matched to
build a global map. Iterative application of pairwise matching
algorithms leads to inconsistencies due to errors in laser scans
and the matching procedures itself. To avoid these problems,
global matching algorithms are needed, taking correspondences
between all scans into account. The common methods for merg-
ing all scans are based on probabilistic information. Lu and Mil-
ios presented a solution using a network of relations between
laser scan poses. A single linear equation system, built from all
error measurements, yields optimal estimations for all poses.
Limited to 2D laser scans, this approach does not fulfil the re-
quirements for building a correct map of outdoor environments.
In this article we extend the linear estimation algorithm to work
with 3D scans and 6DoF. To run the algorithm automatically,
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0921-8890/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2007.07.002
the network is built using a distance heuristic. Furthermore,
we integrate the global optimization into a system consisting
of odometry extrapolation and the well-known iterative closest
point algorithm (ICP). After describing the problem formula-
tion and the algorithm we document its functionality by exper-
imental results.

2. Related work

2.1. Categorization of robotic mapping algorithms

One way to categorize mapping algorithms is by the map
type. The map can be topological or metrical. Metrical maps
represent quantitative distances of the environment. These maps
can either be 2D, usually an upright projection, or 3D, i.e., a
volumetric environment map. Furthermore, SLAM approaches
can be classified by the number of DoFs of the robot pose. A
3D pose estimate contains the (x, y)-coordinate and a rotation
θ , whereas a 6D pose estimate considers all DoFs a rigid mobile
robot can have, i.e., the (x, y, z)-coordinate and the roll, yaw
and pitch angles.

In the literature, three different techniques are used for
generating 3D maps: First, a planar localization method
combined with a 3D sensor; second, a precise 6D pose estimate
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combined with the data from a 2D sensor; and third, a 3D
sensor with a 6D localization method. Table 1 summarizes these
mapping techniques (non-shaded) in comparison with planar
2D mapping (shaded). In this paper, we focus on 3D data and
6D localization, hence on 6D SLAM.

2.2. Planar 2D mapping

The state of the art for planar 2D metric maps is
probabilistic methods, where the robot has probabilistic motion
and uncertain perception models. By integrating these two
distributions with a Bayes filter, e.g., a Kalman or particle filter,
it is possible to localize the robot. Mapping is often an extension
to this estimation problem. Beside the robot pose, positions
of landmarks are estimated. Closed loops, i.e., a second
encounter of a previously visited area of the environment,
play a special role here. Once detected, they enable the
algorithms to bound the error by deforming the already mapped
area such that a topologically consistent model is created.
However, there is no guarantee for a correct model. Several
strategies exist for solving SLAM. Thrun reviews in [29]
existing techniques, i.e., maximum likelihood estimation [12],
expectation maximization [10,30], extended Kalman filter [9]
or (sparse extended) information filter [33]. In addition to these
methods, FastSLAM [32], which approximates the posterior
probabilities, i.e., robot poses, by particles, and the method of
Lu/Milios on the basis of IDC scan matching [20], play an
important role in 2D.

2.3. Planar 3D mapping

Instead of using 3D scanners, which yield consistent 3D
scans in the first place, some groups have attempted to build
3D volumetric representations of environments by translating
2D laser range finders. Thrun et al. [32], Früh et al. [13] and
Zhao et al. [41] use two 2D laser scanners for acquiring 3D
data. One scanner is mounted horizontally, the other vertically.
The latter one grabs a vertical scan line which is transformed
into 3D points based on the current 3D robot pose. Since the
vertical scanner is not able to scan sides of objects, Zhao et al.
use two additional, vertically mounted 2D scanners, shifted by
45◦ to reduce occlusions [41]. The horizontal scanner is used
to compute the 3D robot pose. The precision of 3D data points
depends, besides on the precision of the scanner, critically on
that pose estimation.

Recently, different groups have employed rotating SICK
scanners for acquiring 3D data [18,28,39]. Wulf et al. let the
scanner rotate around the vertical axis. They acquire 3D data
while moving, thus the quality of the resulting map crucially
depends on the pose estimate that is given by inertial sensors,
i.e., gyros [39]. In addition, their SLAM algorithms do not
consider all six DoFs.

2.4. Slice-wise 6D SLAM

Local 3D maps built by translated 2D laser scanners and
6D pose estimates are often used for mobile robot navigation.
A well-known example is the grand challenge, where the
Stanford racing team used this technique for high speed terrain
classification [34].

2.5. Full 6D SLAM

A few other groups use highly accurate, yet somewhat
immobile 3D laser scanners [1,14,27]. The RESOLV project
aimed at modeling interiors for virtual reality and tele-
presence [27]. They used a RIEGL laser range finder on robots
and the ICP algorithm for scan matching [5]. The AVENUE
project develops a robot for modeling urban environments [1],
using a CYRAX scanner and a feature-based scan matching
approach for registering the 3D scans. However, in their
recent work they do not use data of the laser scanner
in the robot control architecture for localization [14]. The
group of M. Hebert has reconstructed environments using
the Zoller+Fröhlich laser scanner and aims to build 3D
models without initial position estimates, i.e., without odometry
information [15]. Magnusson and Duckett proposed a 3D scan
alignment method that – in contrast to the previously mentioned
research groups – does not use the ICP algorithm, but the
normal distribution transform instead [21].

In principle, the probabilistic methods from planar 2D
mapping are extendable to 3D mapping with 6D pose estimates.
However, no reliable feature extraction nor a strategy for
reducing the computational costs of multi hypothesis tracking,
e.g., FastSLAM, that grows exponentially with the DoF, has
been published to our knowledge.

2.6. Recent trends

A recent trend in SLAM research is to apply probabilistic
methods to 3D mapping. Katz et al. use a probabilistic notion
of ICP scan matching [17]. Weingarten et al. [37] and Cole
et al. [8] use an extended Kalman filter on the mapping problem.
In the present paper, we extend this state of the art by a
GraphSLAM method. A similar approach was used in [35].
However, their algorithm is not practical due to the reported
computational requirements. Without considering any sensor
data such as laser scans, Olson et al. create globally consistent
maps by minimizing the global non-linear constraint network
on a set of poses [24]. Triebel et al. apply this approach to their
multi-level surface maps [36]. Furthermore, Frese presented an
extension of his treemap SLAM algorithm to 6DoF [11].

2.7. Globally consistent range image alignment

Besides the robotic community, computer vision researchers
are interested in consistent alignment methods. Chen and
Medioni [7] aimed at globally consistent range image alignment
when introducing an incremental matching method, i.e., all new
scans are registered against the so-called metascan, which is
the union of the previously acquired and registered scans. This
method does not spread out the error and is order dependent.

Bergevin et al. [4], Benjemaa and Schmitt [2,3], and
Pulli [25] present iterative approaches. Based on networks
representing overlapping parts of images, they use the ICP
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algorithm for computing transformations that are applied after
all correspondences between all views have been found.
However, the focus of research is mainly 3D modeling of
small objects using a stationary 3D scanner and a turntable;
therefore, the used networks consist mainly of one loop [25].
A probabilistic approach was proposed by Williams et al. [38],
where each scan point is assigned a Gaussian distribution in
order to model the statistical errors made by laser scanners.
This causes high computation time due to the large amount
of data in practice. Krishnan et al. [19] presented a global
registration algorithm that minimizes the global error function
by optimization on the manifold of 3D rotation matrices.

3. Algorithm overview

In the following the extension to 6DoF data of the global
consistent scan matching approach by Lu and Milios is
described. The scan matching process is outlined in Fig. 1.

All scans are registered sequentially using the ICP algorithm
until convergence. To this end, the odometry of newly acquired
scans is extrapolated to 6DoF using registration matrices
of previously registered scans. We are using a left-handed
coordinate system, i.e., the y coordinate represents elevation.
Then, the change of the robot pose ∆P, given the odometry
information (xodo

n , zodo
n , θodo

y,n ), (xodo
n+1, zodo

n+1, θ
odo
y,n+1) and the
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Therefore, calculating ∆P requires a matrix inversion. Finally,
the 6D pose Pn+1 is calculated by

Pn+1 = ∆P · Pn

using the poses’ matrix representations.
Once a loop is detected, i.e., the distance between the

poses of two scans falls below a threshold, the adaptation
of Lu/Milios style scan matching described in Section 6 is
applied. For each iteration, a network of pose relations is built
automatically. From the corresponding scans, a linear equation
system representing distance measurements is built and solved,
resulting in optimized pose estimations. When the sum of
all distances is below a threshold, new data is acquired and
registered using ICP.
4. 3D scan matching

We use the well-known iterative closest points (ICP)
algorithm [5] to calculate the transformation while the robot
is acquiring a sequence of 3D scans. ICP calculates the point
correspondences iteratively. In each iteration step, the algorithm
selects the closest points as correspondences and calculates the
transformation (R, t) for minimizing the equation

E(R, t) =

Nm∑
i=1

Nd∑
j=1

wi, j
∥∥mi − (Rd j + t)

∥∥2
,

where Nm and Nd , are the numbers of points in the model set
M or data set D, respectively, and w j,i are the weights for
a point match. The weights are assigned as follows: wi, j =

1, if mi is the closest point to d j within a close limit,
wi, j = 0 otherwise. The assumption is that in the last iteration
the point correspondences are correct. In each iteration, the
transformation is calculated by the quaternion based method of
Horn [16].

To digitalize environments without occlusions, multiple 3D
scans have to be registered. Consider a robot traveling along a
path, and traversing n + 1 poses V0, . . . , Vn . A straightforward
method for aligning several 3D scans taken from V0, . . . , Vn
is pairwise ICP, i.e., matching the scan taken from pose V1
against the scan from pose V0, matching the scan taken from
V2 against the scan from pose V1, and so on.

5. Loop closing

Pairwise ICP improves the robot pose estimates, but
registration errors sum up. SLAM algorithms use loop closing
to bound this error. If two estimated robot poses Vi and V j
are close enough, i.e., their distance falls below a threshold
(here: 5 m), we assume these scans overlap and are matchable.
To a graph, initially containing the sequence of all poses
(V0, V1), (V1, V2), . . . , (Vn−1, Vn), the edge (Vi ,V j ) is added.

While processing the scans with pairwise ICP, we detect
closed loops using this simple distance criterion. Once detected,
a 6D graph optimization algorithm for global relaxation based
on the method of Lu and Milios [20] is employed, namely, Lu
and Milios style SLAM (LUM). We extended this variant of
GraphSLAM to 6DoF, as described in the next section.

If this simple loop closing strategy fails, the resulting map
is incorrect. We accept this drawback, since a multi hypothesis
approach with 6DoF is currently not tractable. In [40] we give
a quantitative performance evaluation and an in depth analysis
of the loop closing method.

6. Global relaxation

6.1. Problem formulation

Consider a robot traveling along a path, and traversing the
n +1 poses V0, . . . , Vn . At each pose Vi , the robot stops to take
a laser scan of its environment. By matching two scans made
at two different poses, we acquire a set of neighbor relations
between these poses. In the resulting network, nodes represent
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Fig. 1. The interaction of ICP and LUM in the overall algorithm. The threshold ε used to determine if a scan changed its pose is the same in both algorithm parts.
poses, and edges neighbor relations between them. Given such
a network with n + 1 graph nodes X0, . . . , Xn and the directed
edges Di, j , we want to estimate optimally all poses to build
a consistent map of the environment. For simplification, the
measurement equation is assumed to be linear:

Di, j = X i − X j .

The observation D̄i, j of the true underlying difference is
modeled as D̄i, j = Di, j + ∆Di, j where ∆Di, j is a Gaussian
distributed error with zero mean and a covariance matrix Ci, j ,
that is assumed to be known.

Maximum likelihood estimation is used to approximate the
optimal poses X i . Under the assumption that all errors in
the observations are Gaussian and independently distributed,
maximizing the probability of all Di, j , given their observations
D̄i, j , is equivalent to minimizing the following Mahalanobis
distance:

W =

∑
(i, j)

(Di, j − D̄i, j )
TC−1

i, j (Di, j − D̄i, j ). (1)

6.2. Solution as given by Lu and Milios

We consider the simple linear case of the estimation
problem. Without loss of generality we assume that the network
is fully connected, i.e., each pair of nodes X i , X j is connected
by a link Di, j . In the case of a missing link Di, j we set the
corresponding C−1

i, j to 0. Eq. (1) unfolds:

W =

∑
(0≤i< j≤n)

(X i − X j − D̄i, j )
TC−1

i, j (X i − X j − D̄i, j ). (2)
To minimize Eq. (2), a coordinate system is defined by setting
one node as a reference point. Setting X0 = (0, 0, 0), the n free
nodes X1, . . . , Xn denote the poses relative to X0.

Using the signed incidence matrix H, the concatenated
measurement equation D is written as

D = HX,

with the concatenation X of X1 to Xn . The Mahalanobis
distance Eq. (1) can be written as:

W = (D̄ − HX)TC−1(D̄ − HX).

The concatenation of all observations D̄i, j forms the vector
D̄, while C is a block-diagonal matrix comprised of Ci, j as
submatrices. The solution X that minimizes the Eq. (2), and its
covariance CX are given by

X = (HTC−1H)−1HTC−1D̄ (3)

CX = (HTC−1H)−1.

The matrix G = HTC−1H and the vector B = HTC−1D̄
simplify the notation of the solution. G consists of submatrices

Gi, j =


n∑

j=0

C−1
i, j (i = j)

C−1
i, j (i 6= j).

(4)

The entries of B are obtained by:

Bi =

n∑
j=0
j 6=i

C−1
i, j D̄i, j . (5)
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Solving the linear optimal estimation problem (3) is equivalent
to solving the following linear equation system:

GX = B. (6)

6.3. The extension to six degrees of freedom

To apply the above solution to mobile robots, it is necessary
to linearize the pose difference equation Eq. (2). The 3DoF
case, i.e., (x, z, θ)T poses, was solved by Lu and Milios [20].
In addition to pose relations from scan matching, Lu and Milios
considered pose relations from odometry. Our algorithm derives
relations for 6DoF poses, i.e., (x, y, z, θx , θy, θz)

T, by matching
data obtained by a 3D laser range finder. The challenges of the
extension were:

The amount of data. A 3D laser range finder scans the
environment with a large number of samples. Typical
resolutions vary between 23 168 and 360 500 range points
per 3D scan.
Linearization. Linearization of the rotation must regard
the 3DoF. The rotation consists of the three Euler angles
(θx , θy, θz), and the multiplication of the corresponding
three rotation matrices results in the desired overall rotation.
By linearizing the Euler angles, we enforce valid rotation
matrices.
Solution space. The additional three DoF result in
an exponentially larger solution space. The solution is
computationally more complex.

We define a 6D pose relation as follows: Assume that a robot
starts at the pose Vb = (xb, yb, zb, θxb , θyb , θzb )

T and changes
its pose by D = (x, y, z, θx , θy, θz)

T relative to Vb, ending up
at Va = (xa, ya, za, θxa , θya , θza )

T. The poses Va and Vb are
related by the compounding operation Va = Vb ⊕ D. Similarly,
a 3D position vector u = (xu, yu, zu) is compounded with the
pose Vb by u′

= Vb ⊕ u:

x ′
u = xb − zu sin θyb + cos θyb (xu cos θzb − yu sin θzb )

y′
u = yb + zu cos θyb sin θxb + cos θxb (yu cos θzb + xu sin θzb )

+ sin θxb sin θyb (xu cos θzb − yu sin θzb )

z′
u = zb − sin θxb (yu cos θzb + xu sin θzb ) + cos θxb (zu cos θyb

+ sin θyb (xu cos θzb − yu sin θzb )).

This operation is used to transform a non-oriented point
(from the scanner data) from its local to the global coordinate
system.

Scan matching computes a set of m corresponding point
pairs ua

k , ub
k between two scans, each representing a single

physical point. The positional error made by identifying these
two points in different scans, is described by:

Fab(Va, Vb) =

m∑
k=1

∥∥∥Va ⊕ ua
k − Vb ⊕ ub

k

∥∥∥2
(7)

=

m∑
k=1

∥∥∥(Va 	 Vb) ⊕ ua
k − ub

k

∥∥∥2
. (8)
Table 1
Overview of the dimensionality of SLAM approaches

Sensor data Dimensionality of pose representation
3D 6D

2D Planar 2D mapping (2.2)
2D mapping of planar sonar
and laser scans.

Slice-wise 6D SLAM (2.4)
mapping using a precise
localization, considering the
x , y, z-position and the roll,
yaw and pitch angle.

3D Planar 3D mapping (2.3)
3D mapping using a planar
localization method and,
e.g., an upward looking
laser scanner or 3D
scanner.

Full 6D SLAM (2.5)
mapping using 3D laser
scanners or (stereo) cameras
with pose estimates
calculated from the sensor
data.

Shaded portion: 2D maps. Non-shaded portion: 3D maps.

Based on these m point pairs, the algorithm computes the
matrices D̄i, j and Ci, j for solving Eq. (1). D̄i, j is derived as
follows:

Let V̄a = (x̄a, ȳa, z̄a, θ̄xa , θ̄ya , θ̄za ) and V̄b = (x̄b, ȳb, z̄b, θ̄xb ,

θ̄yb , θ̄zb ) be close estimates of Va and Vb. If the global coor-
dinates of a pair of matching points uk = (xk, yk, zk), then
(ua

k , ub
k) fulfill the equation

uk ≈ Va ⊕ ua
k ≈ Vb ⊕ ub

k .

For small errors ∆Va = V̄a − Va and ∆Vb = V̄b − Vb, a Taylor
expansion leads to:

∆Zk = Va ⊕ ua
k − Vb ⊕ ub

k := Fk(Va, Vb)

≈ Fk(V̄a, V̄b) − [∇V̄a
(Fk(V̄a, V̄b))∆Va

− ∇V̄b
(Fk(V̄a, V̄b))∆Vb]

= V̄a ⊕ ua
k − V̄b ⊕ ub

k − [∇V̄a
(V̄a ⊕ ua

k )∆Va

− ∇V̄b
(V̄b ⊕ ub

k)∆Vb] (9)

where ∇V̄a
(Fk(V̄a, V̄b)) is the gradient of the pose compound-

ing operation. By matrix decomposition

Mk Ha = ∇V̄a
(Fk(V̄a, V̄b))

Mk Hb = ∇V̄b
(Fk(V̄a, V̄b)),

Eq. (9) simplifies to the equation given in Box I. This matrix
decomposition and the derivation of Ha , Hb is the crucial step
in extending Lu and Milios style SLAM to 6DoF.

D as defined by the second condition in Box I is the new
linearized measurement equation. To calculate both D̄ and CD ,
the Eq. (8) is rewritten in matrix form

Fab(D) ≈ (Z − MD)T(Z − MD).

M is the concatenated matrix consisting of all Mk’s, and Z the
concatenated vector consisting of all Zk’s. The vector D̄ that
minimizes Fab is given by

D̄ = (MTM)−1MTZ. (10)

Since minimizing Fab constitutes a least squares linear
regression, we model the Gaussian distribution of the solution
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∆Zk ≈ V̄a ⊕ ua
k − V̄b ⊕ ub

k − Mk[Ha∆Va − Hb∆Vb]

= Z̄k − Mk D

with

Z̄k = V̄a ⊕ ua
k − V̄b ⊕ ub

k

D = (Ha∆Va − Hb∆Vb)

Mk =

1 0 0 0 −yk −zk
0 1 0 zk xk 0
0 0 1 −yk 0 xk



Ha =



1 0 0 0 z̄a cos(θ̄xa ) + ȳa sin(θ̄xa ) ȳa cos(θ̄xa ) cos(θ̄ya ) − z̄a cos(θ̄ya ) sin(θ̄xa )

0 1 0 −z̄a −x̄a sin(θ̄xa ) −x̄a cos(θ̄xa ) cos(θ̄ya ) − z̄a sin(θ̄ya )

0 0 1 ȳa −x̄a cos(θ̄xa ) x̄a cos(θ̄ya ) sin(θ̄xa ) + ȳa sin(θ̄ya )

0 0 0 1 0 sin(θ̄ya )

0 0 0 0 sin(θ̄xa ) cos(θ̄xa ) cos(θ̄ya )

0 0 0 0 cos(θ̄xa ) − cos(θ̄ya ) sin(θ̄xa )

 .

Hb is given analogously.

Box I.
Algorithm 1 Optimal estimation algorithm

(1) Compute the point correspondences ua
k , ub

k .
(2) For any link (i, j) in the given graph compute the

measurement vector D̄i j by Eq. (11) and its covariance Ci j
by Eq. (12).

(3) From all D̄i j and Ci j form the linear system GX = B, with
G and B as given in Eq. (4) and (5) respectively.

(4) Solve for X
(5) Update the poses and their covariances, as explained in

Section 6.4.

with mean D̄ and standard covariance estimation

CD = s2(MTM). (11)

s2 is the unbiased estimate of the covariance of the identically,
independently distributed errors of Zk , given by:

s2
= (Z − MD̄)T(Z − MD̄)/(2m − 3) =

Fab(D̄)

2m − 3
.

The error term Wab corresponding to our pose relation is
defined by:

Wab = (D̄ − D)TC−1
D (D̄ − D).

6.4. Transforming the solution

Solving the linear equation (6) leads to an optimal estimate
of the new measurement equation of D (second condition in
Box I). To yield an optimal estimation of the robot poses, it is
necessary to transform D. By this optimal estimation, a set of
solutions X i = Hi∆Vi is computed, each corresponding to a
node in the network.

Assuming that the reference pose V0 = 0, the pose Vi and
its covariance Ci are updated by:
Vi = V̄i − H−1
i X i ,

Ci = (H−1
i )C X

i (H−1
i )T.

If V0 is nonzero, the solutions have to be transformed by:

V ′

i = V0 ⊕ Vi

C ′

i = K0Ci K T
0

where

K0 =

(
Rθx0 ,θy0 ,θz0

0
0 I3

)
with a rotation matrix Rθx0 ,θy0 ,θz0

.

6.5. The algorithm

The optimal estimation algorithm is given as Algorithm
1. Iterative execution of Algorithm 1 yields a successive
improvement of the global pose estimation. Step 3 is sped up
by component-wise computation of G and B. The components
C−1

i, j = (MTM)/s2 and C−1
i, j D̄i, j = (MTZ)/s2 are expanded

into simple summations, as shown in Appendix B. The most
expensive operation is solving the linear equation system GX =

B. Since G is a positive definite, symmetric 6n ×6n matrix, this
is done by Cholesky decomposition in O(n3).

6.6. Performance issues

The large amount of 3D data to be processed makes
computing time an issue in globally consistent range scan
matching. Our algorithm again benefits from the network
structure. Each scan has to be aligned only to few neighbors
in the graph. Compared to ICP metascan matching, LUM
becomes more advantageous with increasing number of scans
n. Our SLAM algorithm spends O(n3) time on matrix
computation. The matrices B and G are filled efficiently
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Fig. 2. Map improvement during LUM. Main square in Horn (Austria). Data provided by courtesy of RIEGL LMS GmbH [26]. Progress after 1 (top), 30 (middle),
200 (bottom) iterations. Left: Top view, Middle: Monument in the center of the main square, Right: Church spire. Fig. 3 shows parts of the scanned scene as photos.
using simple additions (cf. Appendix B). However, calculating
the corresponding points for a link needs O(N log N ), using
standard nearest neighbor search methods, namely k-d trees.
N denotes the number of points per 3D scan, n � N . In all
experiments the most computing time was spent in step 2 of
Algorithm 1, e.g., n < 13, N < 300 000 or n < 468, N <

18 000, respectively (cf. Section 7). Due to these performance
issues, we presented several speed-ups for closest point
computation in the scan matching context, i.e., approximate k-d
tree search and cached k-d tree search [22,23].
6.7. Invertibility of G

The proposed algorithm depends on the invertibility of the
matrix G, which is the case if:

(1) All covariances are positive or negative definite, and:
(2) The pose graph is connected, i.e., there exist no two

separate subgraphs.

The second condition is trivially met in practice, since all
consecutive poses are linked. The inductive proof of the first
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Table 2
Position and orientation errors in the Horn data set

3D scan no. Initial error (m) (Eucl. distance) Position error (m) after registration Initial error (deg) (θx , θy , θz) Rotation error (deg) after registration

1 0 0 (0.0, 0.0, 0.0) (0.0, 0.0, 0.0)

2 0.780 0.017 (0.0, 4.0, 0.0) (−0.0221, 0.0177, −0.0116)

3 1.965 0.024 (0.0, 4.0, 0.0) (−0.0242, 0.0257, −0.0236)

4 1.764 0.029 (0.0, 2.0, 0.0) (−0.0242, 0.0228, −0.0200)

5 1.222 0.037 (0.0, 5.0, 0.0) (−0.0266, 0.0298, −0.0339)

6 0.859 0.059 (0.0, 1.0, 0.0) (−0.0297, 0.0183, 0.0039)

7 2.151 0.052 (0.0, 2.0, 0.0) (0.0061, 0.0195, −0.0269)

8 0.451 0.053 (0.0, 1.0, 0.0) (−0.0416, 0.0173, 0.0076)

9 1.023 0.069 (0.0, 3.0, 0.0) (−0.0690, 0.0279, 0.0170)

10 2.039 0.082 (0.0, 1.0, 0.0) (−0.0690, 0.0165, 0.0190)

11 1.654 0.059 (0.0, 5.0, 0.0) (−0.0988, 0.0936, 0.0040)

12 1.340 0.033 (0.0, 2.0, 0.0) (0.0030, 0.0196, 0.0410)

13 1.195 0.017 (0.0, 5.0, 0.0) (0.0022, 0.0593, 0.0510)

The remaining error after the application of our algorithm and the initial error are given. The initial error was chosen randomly, i.e., we added noise to the horizontal
axis in position and to the vertical axis in orientation.
Fig. 3. Photos showing the scene presented in Fig. 2. Data provided by courtesy
of RIEGL LMS GmbH [26]. Left: The right part of the middle detailed view.
Right: The white-steepled St. Georg church.

condition over the number of nodes in the graph is given in
Appendix A.
7. Experiments and results

The proposed algorithm has been tested in various
experiments. In [6] we show by evaluating 2D laser range
scans that the extension to three dimensions did not decrease
the functionality of the algorithm in areas where it did work
sufficiently well before. Furthermore 3D data was successfully
aligned to ground truth when matching data from a planar
indoor environment. Additionally, full functionality in all six
DoFs was shown by use of data obtained from non-planar
outdoor environments.

In this article, we first present an evaluation using high
resolution 3D scans. The resulting poses are compared with
ground truth. Second, highly connected data from a 3D
environment is matched with an active loop closing algorithm.
This leads to a network with many links that helps to diminish
inconsistencies in the resulting map.

7.1. Registration of high resolution outdoor 3D scans

For this experiment we used a data set from the main square
in Horn (Austria), consisting of 13 laser scans. Each scan is
composed of 240 000 to 300 000 points. Scan matching with
reduced points took 19 min (6 min for ICP and 13 min for
LUM) until convergence, e.g. no scan was moved more than
0.5 cm in one iteration.
Fig. 4. Sequential ICP registration, from start to first loop detection, in the Hannover data set.
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Fig. 5. LUM iterations at first closed loop. Close-ups made from the same virtual camera position. After a few iterations the leaves of the tree are moved behind the
camera position (bottom). Left: 1, Middle: 10, Right: 77 iterations.
Parts of the resulting map can be seen in Fig. 2
(see http://kos.informatik.uni-osnabrueck.de/download/Riegl/
index.html for the whole map). From top to bottom, the number
of iteration increases, and analogously the precision of the map.
Qualitatively, no inconsistencies remain in the bottommost
images.

For quantitative results, Table 2 shows the drastic
reduction of errors compared to ground truth, acquired by
manual alignment using retro-reflective targets of known
coordinates [26], during scan matching. Pose errors are equally
reduced for each laser scan, without any accumulation of errors.
This holds not only for position errors but also for rotation
errors, which pose the most significant challenge in 6D SLAM.

7.2. Registration with dynamic network construction

Detecting loops in sets of data helps build globally consistent
maps, because it facilitates distributing larger errors over all
scans. Each pose relation gives additional information for
improving the calculation of optimal pose estimations. After
loop detection, we automatically determine the pose network,
using simple distance heuristics. By calculating the pose
relations dynamically after each iteration of LUM, we obtain
optimized poses, leading iteratively to more accurate networks.
Scans that converge towards each other result in new pose
relations, while connections between diverging scans disappear.

This is demonstrated on a set of 468 laser scans from a robot
run at the Leibniz Universität Hannover while driving a distance
of ca. 750 m. Each scan consists of 14 000 to 18 000 scan points.
The convergence limit was set to 0.1 cm movement per pose.
Neighbor relations are established between all scans within a
distance of less than 7.5 m.

Figs. 4–8 show the maps after particular steps of scan
matching. First, scans are registered iteratively using the ICP
algorithm, generating the maps shown in Fig. 4. Once a loop is
detected, LUM is used to achieve global consistency (cf. Fig. 5).
Fig. 6 shows the map after LUM at the second, third and fourth
closed loops and Fig. 8 the final map. While matching the fourth
loop, the robot path merges through recomputation of the graph,
as shown in Fig. 7.

Ground truth for this data set is not available, therefore
no comparison of our final 3D map to a reference 3D model
is possible. Wulf et al. developed a method to benchmark
our mapping algorithm using Monte Carlo localization in 2D
reference maps from the German Land Registry office [40].
Using this novel benchmarking method on a similar data set
they demonstrated that our algorithm maps the areas where the
loops are closed with higher precision than the remaining parts.

8. Summary

One very active research area in robotics is mapping
environments by matching point clouds collected by laser
scanners. Popular techniques for 3D scan matching are based
on minimizing the distances between point pairs detected in
two corresponding range scans. Errors in laser scan data and
imprecise matching methods lead to accumulated errors in the
progress of building large maps, causing inconsistencies in
regions where loops are closed.

This paper has presented a technique of matching laser scans
globally consistently. Since a global error function is minimized
in our approach, it avoids the common problems of sequential
matching strategies.

The algorithm copes with the difficulties posed by the 6DoF
and the large amount of data in a fast and robust manner. The
instabilities reported in [31] for 2D scans and 3D poses did not
occur in the 3D scan/6D pose case.
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Fig. 6. LUM iterations at second, third and fourth closed loop. Top: second and third loop closing. Bottom: fourth loop closing after one iteration and after 20
iterations. Notice the merging of the robot path through graph recomputation in the fourth loop closing! (see Fig. 7 for the corresponding graphs, Fig. 8 for the
resulting map).

Fig. 7. Top: Graphs corresponding to the two alignments of Fig. 6 (Bottom). Bottom: Zoom into the boxed areas.
Oliver Wulf, Bernardo Wagner (Leibniz Universität Hannover)
for providing the data sets. Further thanks to Evangelos
E. Milios (Dalhousie University), Sebastian Thrun (Stanford
University) and Szymon Rusinkiewicz (Princeton University)
for answering questions about GraphSLAM methods.

Appendix A. Proof of invertibility

The algorithm described in this paper is based on the
inversion of matrix G. We prove that G is positive definite,
and therefore invertible, using induction. In order to simplify
the proof, we show that changing the reference pose does
not change the positive definiteness of G. Without loss of
generality, G is a positive definite matrix of the form (4), with
the reference node X0. Switching the reference node to X i

results in the matrix G′. These two matrices are related by

G′
= IiG

where Ii is an identity matrix of size (dn × dn) with a row of
negative (d × d) identity matrices of the form:

Ii =

Id(i−1) 0 0
−Id . . . −Id

0 0 Id(n−i+1)

 .

Multiplication with Ii corresponds to replacing the submatrices
at (i, j) with the negative sum of all submatrices at row j . Since
Ii is invertible, G′ remains positive definite.
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Fig. 8. Final map. Top: Top view including the final trajectory. Bottom: Two details rendered from the Hannover scene.
Induction base k = n: Assuming a graph with n + 1 nodes and
n links. The matrix G is transformed into the block diagonal
matrix G′, composed of covariance matrices by

G′
= IDGIT

D,

with an upper-right triangular matrix ID of d-dimensional
identity matrices

ID =

Id . . . Id
. . .

...

0 Id

 .

Since G′ is given by

G ′

i,i = C−1
i−1,i

G ′

i, j = 0 (i 6= j)
and all covariances are positive definite, G′ itself is positive
definite. The same holds for G, as ID is invertible.

Inductive step k → k + 1: Let G be a positive definite matrix
that corresponds to a graph with n + 1 nodes and k links. An
additional link between the nodes X i and X j is inserted, with
positive definite covariance Ci, j . Without restriction, X i is the
reference node of the given graph, since the reference pose is
arbitrary. Thus, the resulting matrix G′ is changed only at the
d × d submatrix G ′

j, j :

G ′

j, j = G j, j + C−1
i, j .

If Ci, j is positive definite, G′∗ is positive definite, too, iff

XTG′X > 0 X ∈ Rd·n X 6= 0,
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which is equivalent to

n∑
k,l=1

XT
k G ′

k,l Xl > 0, (A.1)

where Xk are the d-dimensional subvectors of X. Expand-
ing Eq. (A.1) to

n∑
k,l=1

XT
k G ′

k,l Xl = XT
j G ′

j, j X j +

n∑
k,l=1

k 6= j 6=l

XT
k Gk,l Xl

= XT
j C−1

i, j X j +

n∑
k,l=1

XT
k Gk,l Xl

= XT
j C−1

i, j X j + XTGX > 0.

G′ is a positive definite matrix. �

Appendix B. Fast construction of the linear equation
system

To solve the linear equation system GX = B,

C−1
D = (MTM)/s2

C−1
D D̄ = (MTZ)/s2

are needed. To calculate these efficiently, summations are
substituted for matrix multiplication by using the regularities
in the matrix M. MTM is represented as a sum over all
corresponding point pairs:

MTM

=

m∑
k=1



1 0 0 0 −yk −zk
0 1 0 zk xk 0
0 0 1 −yk 0 xk

0 zk −yk y2
k + z2

k xk zk −xk yk

−yk xk 0 xk zk y2
k + x2

k yk zk

−zk 0 xk −xk yk yk zk x2
k + z2

k

 .

Similarly, MTZ is calculated as follows:

MTZ =

m∑
k=0


∆xk
∆yk
∆zk

−zk · ∆yk + yk · ∆zk
−yk · ∆xk + xk · ∆yk
zk · ∆xk − xk · ∆zk


with∆xk

∆yk
∆zk

 = Z̄k = V̄a ⊕ ua
k − V̄b ⊕ ub

k

and an approximation for each point:xk
yk
zk

 = uk ≈ (V̄a ⊕ ua
k + V̄b ⊕ ub

k)/2.
Finally, s2 is a simple summation using the observation of the
linearized measurement equation D̄ = (MTM)−1MTZ:

s2
=

m∑
k=0

[
(∆xk − (D̄0 − yk · D̄4 + zk · D̄5))

2

+ (∆yk − (D̄1 − zk · D̄3 + xk · D̄4))
2

+ (∆zk − (D̄2 + yk · D̄3 − xk · D̄5))
2
]
.

D̄i denotes the i-th entry of the vector D̄. Summation of C−1
D

and C−1
D D̄ yields B and G.
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