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Fig. 1. Robot equipped with laser scanner facing an unframed mirror.

are only occasionally visible. Evenworse is the aspect that the glass
surface is registered as a volatile (disappearing) object or as not
being visible at all. This carries the risk of crashing a robot into
such surfaces. Mirrors and shiny metal redirect the laser beams.
Therefore, at certain positions, phantom-like objects appear in
the map. Hence, customizing most environments is necessary to
reduce interferences from such objects. One way to handle these
situations is to rely on a second sensor principle, like ultrasonic
arrays. This adds additional complexity to the application. In a
preceding study, we had introduced the Mirror Detector for multi-
echo laser scanners [2] based exclusively on the distance and
intensity information provided.

Fig. 2 depicts the effects of reflective objects for three state-of-
the-art SLAMapproaches using the samedataset: Critical Rays Scan
Match-SLAM (CRSM-SLAM) [3], Hector-SLAM [4] and Truncated
Signed Distances-SLAM (TSD-SLAM) [5]. Furthermore, the TSD-
SLAM combined with the Mirror Detector is shown. It is worth
mentioning that the robot supports neither inertial measurements
nor dead reckoning. Therefore, only mapping approaches are se-
lected which do not require them.

The location of the mirror is marked by a blue rectangle and
magnified on the top left. Phantom-like objects are marked by the
red broken line rectangle. Hector-SLAM creates a static map, i.e.,
points added once to the map remain ad infinitum. The mirror
is partly recognizable in the Hector-SLAM map due to the fact
that at some positions the laser beam is not deflected. In com-
parison, CRSM- and TSD-SLAM build a dynamic map. Changes in
the environment are considered in both approaches, e.g., when
objects are moved. Therefore, the mirror disappears if its surface
is not measurable at certain perspective views. This is likely the
case when passing by a mirror. The map of the TSD-SLAM with
the Mirror Detector does not show any phantom-like objects, but
it contains the reflective object (mirror). In [2] we have pointed
out the importance of distinguishing between transparent and
specular reflections to improve map quality.

In the following, we present research to distinguish between
specular reflective and transparent objects using multi-echo laser
scanners in order to classify the effects mentioned above. Section 2
outlines related work. Section 3 describes the basic function of the
Mirror Detector as it is used to record the data. In Section 4, one
experiment shows the resulting map of the Mirror Detector. Then
two experiments demonstrate the applicability to differentiate
various specular reflective and transparent materials based on the
intensity of the returning echoes of the laser beam. Experiment
4 shows an applied discrimination for translucent and specular
reflective objects using an extendedMirror Detector approach, fur-
ther called Reflection Classifier. In the end, Section 5 summarizes
results and offers an outlook for future work.

2. Related work

As far as reflections are concerned, there are two different
branches of research — stationary and mobile systems. When
workingwith stationary systems, the environment is often adapted
to prevent influences. This is difficult when working with mobile
systems, since the area is often unknown or changes. Therefore,
specular reflective surfaces might be covered manually under
certain circumstances. An approach also capable of dealing with
reflective phenomena is preferable since it reduces preparation
efforts. Besides, it is applicable in unknown environments.

To avoid the need to cover surfaces for mapping, several ap-
proaches describe sensor fusion algorithms to distinguish dis-
crepancies. To detect reflections, Yang et al. [6] fused a laser
scanner with an ultrasonic sensor. Based on differences in the two
individual grid maps, a discrimination of reflections was done.
Later he and his team extended the algorithm to identify mirrored
images [7]. This version assumes every gap in laser lines resulting
from reflective objects. Therefore, no ultrasonic sensor is further
required. Once a potential mirror is detected, the space behind the
gap was analysed for a mirrored image, i.e., the search for simi-
larities between both sides of the opening was conducted. Objects
with symmetry w.r.t. a line could likely be identified incorrectly.
Additionally, the discrimination between a reflection caused by a
transparent or a specular reflective object was not discussed in
Yang’s study.

Another applicable online approach was implemented by
Forster et al. [8]. At specific angles, reflections were identified
based on the returning intensity of the laser. A subset of these
angleswas tracked— on occurrencemirrorswere assigned accord-
ing to the laser beam’s intensity. An object with diffuse reflectivity
caused false identification when it was placed directly behind the
transparent object.

Tatogulu et al. [9] used the most suitable illumination model to
modulate the surface. Lambertian diffuse reflectionmodels, Blinn–
Phong models [10], Gaussian models [11] and Beckmann specular
reflection models [12] were matched to the data set to identify the
characteristics of the scanned surface. While this system is quite
effective for diffuse surfaces, it does not however, cover specular
reflections.

Also, Yoshitaka et al. [13,14] used intensity values to improve
the mapping of the environment containing interfering objects.
The algorithm assumes that smoothness in intensity is related
to smoothness in distance. Therefore, a conventional Iterative-
Closest-Point algorithm (ICP [15]) was combined with an intensity
ICP to achieve an accurate position. Nonetheless, the approachdoes
not use the intensity to ascertain any material.

None of the mentioned approaches use the intensity values
to distinguish between specular reflective and transparent reflec-
tive surfaces. In previous work, we presented the Mirror Detector
Approach to identify reflections based on differences in the laser
scan echoes [2]. The related distance values of the two echoes
were compared and analysed. The need to distinguish reflection
behaviours, e.g., to distinguish between a reflection of a mirror
or an object behind a transparent object, is pointed out in the
conclusion section of [2]. In this work the experimenters present
research to identify different transparent and specular reflective
materials according to their intensity characteristics based on the
Mirror Detector Approach. Further, the improvement in SLAMwas
pointed out with the Reflection Classifier Approach.

3. The Mirror Detector approach

The Mirror Detector was used to record the data for the Ex-
periments 1, 2, and 3 in Section 4. Additionally, it was extended
in Experiment 4, by a function to ascertain specular reflective
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(a) CRSM-SLAM. (b) Hector-SLAM.

(c) TSD-SLAM. (d) TSD-SLAM with Mirror Detector.

Fig. 2. Maps registered from the same dataset with different SLAM approaches in an environment containing a mirror. The mirror is marked by a blue solid line, reflections
are marked by a red broken line.

and transparent objects. Section 3.1 describes the Mirror Detector
as it is presented in [2] to give the reader required background
information. Section 3.2 describes the applied modifications and
the used values for the experiments in the preceding section.

3.1. Mirror Detector approach

The Mirror Detector uses a Hokuyo 30LX-EW multi-echo laser
scanner and the TSD-SLAM module [5]. For each data taken the
Hokuyo records up to three echoes of the returning light wave,
including distance and intensity. Differences in scan messages
indicate surface reflection properties. While a specular reflective
object causes strong differences in both scan messages, diffuse re-
flective objects provide near consistency. The problem in detecting
specular reflections is that it depends both on the laser beam’s
incident angle to the surface and the refractive index. If the angle
is too large, the light will be completely reflected. Subsequently,
the robot will only detect the mirrored object and, if the angle is
smaller, there are up to three potential cases of measurements.
For a transparent object, the robot can receive a point on the
surface, a point behind the surface, or a mirrored point. If the
object is non-transparent, the second case does not apply. As a
result of the incident angle dependency, the robot has to pass the
surface to ensure that it was seen at least once from the ‘‘right’’
perspective. If so, the reflective object is identified and reflective
errors subsequently removed. Hence, it is not possible to eliminate
all reflective errors instantaneously. Because of this, the Mirror
Detector is set up in two filter stages, a pre- and a post-filter.

Both stages are connected to a mapping module, e.g., TSD-SLAM,
cf. Fig. 3.

Pre-filter processing runs on the fly and filters current scans.
It filters scan points only if the incident angle is in the required
range. Fig. 3a shows the processing chain of the pre-filter with its
mapping stage. Reflection errors, which are detectable in a single
data take, are removed. Hence, the map includes less erroneous
data than a map which has received raw data. Since not all reflec-
tions are detectable in a single scan, themap is not completely free
from reflective influences. Thus, pre-filtered scans and detected
reflective points are passed to the post-filter.

The post-filter, cf. Fig. 3b, builds up a history of these scans,
the detected reflective points and the robot poses. The history is
used to merge measurements from different perspective views.
This increases the probability of identifying specular reflective
areas. Themapping stage assigned to thepost-filter chain considers
a set of scan tuples. All measurements are preprocessed which
results in the elimination of reflective influences. This supplies a
map free of any reflection errors available at new trigger events,
e.g., from a loop closure module. All modules are implemented as
ROS-nodes and are publicly available as open-source packages at:
http://www.github.com/autonohm/ohm_mirror_detector.git.

3.1.1. Pre-filter:
The pre-filter, see Algorithm 1, receives a scan tuple with N

representing scan points

S = {s1,i, s2,i | i = 1, . . . ,N},
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Algorithm 1 Pre-filter1
Input: S, α, I:

S includes the scan points of Echo 1 and Echo 2, α includes
the corresponding angles, and I includes the corresponding
intensities of Echo 1 and Echo 2. N is the amount of scan points
per echo.

Output: G2,valid,mirror,affected:
G2,valid includes the valid scan points with their corresponding
intensities, G2,mirror includes the scan points, located on the
surface of the transparent or specular reflective object, with
their corresponding intensities, and G2,affected includes the scan
points, located behind the surface of the transparent or specu-
lar reflective object, with their corresponding intensities.

1: procedure Prefilter
2: S, α← receiveScanTuple()
3: D← removeSparsePoints(S)
4: G1,{valid,mirror,affected} ← identifyReflection(D, I, α)
5: (c⃗1, c⃗2)← findLine(G1,mirror) ▷ get corners of line
6: (αc⃗1 , αc⃗2 )← spanUpAngles(c⃗1, p⃗, c⃗2)
7: for i = 0, i < N, i++ do ▷ resort outliers, cf. Figure 4
8: G2,valid,i,G2,mirror,i,G2,affected,i ← 0
9: dp,mirror ← ∥c⃗i − p⃗ ∥ − gi

10: if αi < αc⃗1 & αi > αc⃗2 then
11: G2,valid,i ← gi, Ii, αi
12: else
13: if dp,mirror < −ϵ then
14: G2,valid,i ← gi, Ii, αi
15: else if dp,mirror > ϵ then
16: G2,affected,i ← gi, Ii, αi
17: else
18: G2,mirror,i ← gi, Ii, αi
19: end if
20: end if
21: end for
22: sendFilteredScans(G2,{valid,mirror,affected})
23: end procedure

or ‘‘affected’’ are singled out into the groups A1,mirror and A1,affected.
Finally S2, and A1∗ are stored in a history bank G1.

G1 = {S2, A1, | j = 1, . . . , L}

where L is the length of the history.
This procedure is repeated for every incoming scan. The post-

filter is triggered after a reflective object was passed in order to
reduce remaining errors, e.g., by a passing-algorithm or a loop-
closure.

As soon as the post-filter has received the trigger signal, the
function findLine() searches the entire history GA1,mirror for reflec-
tive objects. The function is based on the same RANSAC-based
algorithm which was already used in the pre-filter. In contrast
to the pre-filter, this time there are more scan points, since the
post-filter does not rely on a single scan but on the entire history.
The history contains scans from different positions. That is why
the reflective object was seen from many different perspectives.
Hence, it is assumed that each part of the object had been seen at
least once. As a result the RANSAC of the post-filter creates a more
accuratemodel compared to the pre-filter. The resulting endpoints
c⃗1 and c⃗2, of each object O, are used together with the position of
the robot in order to span up a sector, similar as it is done at the
pre-filter, c.f. Fig. 4. Subsequently, each scan point of the entire
history is classified based on the ‘‘precise’’ reflective object model.
The points masked as ‘‘valid’’, ‘‘mirror’’, or ‘‘affected’’ are stored
in G2. The function identifyReflectionType() is an extension of the
Mirror Detector Approach to distinguish between objects of differ-
ent types. The function identifyReflectionType() was implemented

during the following experiments. This aspect is thus described in
detail in Section 4.3.4.

Finally, five different scan messages are published. The first
message is called ‘‘valid’’ and contains the points GA2,valid, but
also the points on the mirror plane GA2,mirror; the points on the
transparent plane GA2,transparent; and the points behind the trans-
parent plane GA2,transparent_affected, because they represent real ob-
jects. In addition separatemessages called ‘‘mirror’’, ‘‘transparent’’,
‘‘mirror_affected’’, and ‘‘transparent_affected’’ are also published.
The message ‘‘mirror’’ contains the points GA2,mirror; the message
‘‘transparent’’ contains the points GA2,transparent; the message ‘‘mir-
ror_affected’’ contains the points GA2,mirror_affected; and the message
‘‘transparent_affected’’ contains the points GA2,transparent_affected. The
points GA2,mirror_affected are not used yet, but it remains the aim of
future work. These points are caused by objects mirrored on the
specular reflective surface.

3.1.3. TSD-SLAM:
Exemplarily, the TSD-SLAM [16] software is used to verify the

results of the Mirror Detector. TSD-SLAM uses depth measure-
ments from arbitrary 2D/3D sensor units to build a map based on
the signed distance function. The underlying framework general-
izes the KinectFusion approach with an object-oriented model re-
specting different sensor modalities. For instance, measurements
of 2D/3D laser range finders andRGB-D cameras are integrated into
the same representation. The approach does not depend on addi-
tional pose information, e.g., supported by IMU or dead reckoning.
Due to the low drift, the approach is a proper candidate for the
experiments in this paper. It is worth mentioning that any other
mapping algorithm is possible to use with the Mirror Detector
as well as the Reflection Classifier. In this case, it is important to
ensure the support of the robot pose to the post-filter module.

3.2. Modified Mirror Detector Approach for experiments

To record the data for the experiments, the pre-filter was cus-
tomized. The distance and intensity values of both echoes were
saved separately and were used as input for the research in this
paper. The experimenters used a Hokuyo 30LX-EWwith following
specifications:

Hokuyo 30LX-EW:

Scan points (N): 1080
Scan frequency: 50 Hz
Scan angle: 270◦
Angular resolution: 0.25◦
Wave length λ: 905 nm
Distance range (Echo 1 and Echo2): 0.1–60 m
Intensity range: 0–224*

* The measured intensity during the experiments was <22000.
The variables of the pre-filter were set to:

Pre-filter:

Subtract threshold (ϵ): 5 cm
Particle filter threshold 5 cm
RANSAC threshold 4 cm
RANSAC iterations 100 iterations
RANSAC points to fit model 20 points
Min. points on surface 40 points

The variables of the post-filter were set to:

Post-filter:

Threshold around corner 15 cm
Threshold around mirror line (γ ) 5 cm
Angle threshold 20◦
RANSAC threshold 4 cm
RANSAC iterations 100 iterations
RANSAC points to fit model 40 points
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Algorithm 2 post-filter
Input: S:

S includes the scan points of Echo 1 and Echo 2, the correspond-
ing intensities, angles are included along with an object mask
according to the assignment of the pre-filter.N is the amount of
scan points and L is the length of the history of received scans.

Output: GA2,valid,mirror,transparent,mirror_affected,transparent_affected:
GA2,valid includes the valid scan points, GA2,mirror includes the
scan points located on the surface of the specular reflective
object, GA2,transparent includes the scan points located on the
surface of the transparent object, G2,mirror_affected includes the
scan points located behind the surface of the specular reflec-
tive object, and G2,mirror_affected includes the scan points located
behind the surface of the specular reflective object.

1: procedure Postfilter
2: S1 ← receiveMaskScan()
3: T ← requestTf(timestampScan)
4: S2 ←moveInWorldCoordinateSystem(S1, T )
5: A1,{mirror,affected} ← extractCorrupted(S2)
▷ points which are on the reflective object or corrupted by it

6: G1 ← storeHistories(S2, A1,M)
7: if externalTrigger() then ▷ e.g., external loopclosure

detection
8: (c⃗1, c⃗2)← findLine(GA1,mirror) ▷ get corners of lines
9: for j = 0, j < L, j++ do

10: for i = 0, i < N, i++ do ▷ resort outliers, cf.
Figure 4

11: GA2,valid,j,i,GA2,mirror,j,i,GA2,affected,j,i ← 0
12: dp,mirror ← ∥c⃗j,i − p⃗ ∥ − gi
13: if αj,i < αc⃗1 & αj,i > αc⃗2 then
14: GA2,valid,j,i ← gj,i
15: else
16: if dp,mirror < −ϵ then
17: GA2,valid,j,i ← gj,i
18: else if dp,mirror > ϵ then
19: GA2,affected,j,i ← gj,i
20: else
21: GA2,mirror,j,i ← gj,i
22: end if
23: end if
24: end for
25: GA3,* ← identifyReflectcionType
▷
∗ stands for valid, mirror, transparent, mirror_affected,

transparent_affected
▷ cf. Algorithm 3 in Section 4.3.4 as an add on of the experi-
ments

26: sendFilteredScans(GA3,*)
27: end for
28: end if
29: end procedure

4. Experiments and results

This chapter demonstrates four experiments to show the ne-
cessity and the realizability of object discrimination. Further, they
show the improvement for SLAM. The first experiment used the
Mirror Detector Approach to point out its drawbacks and the need
of a discrimination of specular reflective and translucent objects.

Experiments 2 and 3 were made to identify proper reflection
models for multi-echo laser scanners for different materials. In-
spired by the work of Tatogulu et al. [9] the experimenters used
the Phong reflection model [17] as a basis to analyse different
materials. The second experiment was conducted to identify the
reflection characteristics on surfaces in a static scene to compare

it with the Phong model. In Experiment 3 a mobile platform was
used to show the reflection characteristics in a dynamic scenario.
For this, the scanner was moved on a track along the sample. This
is a realistic case when robots explore and map an environment.

In the final experiment, amapwith the Reflection Classifier was
made. It used the applied results of Experiments 2 and 3 and point
out the improvement for SLAM.

4.1. Experiment 1: TSD-SLAM wih Mirror Detector approach

This experiment used the Mirror Detector Approach. Fig. 5a
shows a glass surface and Fig. 5b shows a mirror. Both were
located at the mapped area. The maps, resulting from the scans
of the preliminary SLAM module and refined SLAM module, are
illustrated in Fig. 6. The glass surface is marked by a blue dotted
rectangle while the mirror is marked by a blue solid rectangle.
Bothweremagnified to illustrate the differences in the preliminary
and the refined maps. The points behind the glass and the points
reflected by the mirror are marked by a red broken line rectangle.
In the resulting map of the post-filter, cf. Fig. 6b, both planes (mir-
ror, glass) were visible and the points located behind the planes
were removed. In the case of the mirror plane, these values were
corrected properly. In the case of the glass plane, the correction
of values was incorrect and was therefore deemed undesirable.
Since these points illustrated an object behind the glass plane, the
points had to remain. The following two experiments were used to
buildmodels to discriminate a reflective surface froma transparent
surface to handle such situations.

4.2. Experiment 2: Static scene

To identify the parameters of the reflection model of different
surfaces, Figs. 7a and 7b show the setup of the laser scanner as well
as the sample mount, both of which were affixed to a track. Only
scan points detected on the sample surface b (b = 52 cm) were
recorded. The distance s between sample and laser scanner was
extended in 0.5 m steps between s = [0.5, 6.5]m. It is understood
that the angular range shrinks with increasing distance. Therefore,
the number of measurements on the sample decreased. To elim-
inate stochastic errors the arithmetic mean intensity Imean of L =
5000 measurements was taken. This does not reduce systematic
errors which remain, such as contamination of the sample surface,
quantization errors, roughness of the surface and mechanical mis-
alignments. These errors are slightly noticed in Fig. 11, e.g., in a
peak that is not aligned exactly at 0◦.

The experiment was conducted with glass (w = 6 mm),
transparent plastic (w = 4 mm), a mirror, an aluminium plate,
white paper, red paper, yellow paper, blue paper and green paper
as shown in Fig. 7c.

4.2.1. Intensity characteristic related to the Phong reflection model
The Phong illumination model, also applied in this study, de-

scribes the measurable intensity of each point individually in de-
pendency of the incident angle and surface properties. It comprises
ambient, diffuse, and specular proportions:

Iout = Iambient + Idiffuse + Ispecular, (3)

where Iout states the measured intensity.
We were interested in modelling the reflection of laser beams

hitting surfaces with different properties. The measurable inten-
sity of the returned laser beam was mainly caused by specular
reflection. Hence, the modelling neglected ambient and diffuse
proportions and focused only on the last term of Eq. (3).

Ispecular = Iin · kspecular · cosn θ, (4)
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(a) Picture of area with glass surface. (b) Picture of area with mirror, marked by a
blue solid rectangle in the map.

Fig. 5. Test area with a glass surface and a mirror from Experiment 1.

(a) Map created from the data of the pre-filter
with TSD-SLAM.

(b) Map created from the data of the post-filter
with TSD-SLAM.

Fig. 6. Maps created with the pre- and post-filter of the Mirror Detector Approach.

where Iin defines the intensity arriving at the surface, kspecular is an
empirically determined reflection factor, θ is the angle of incidence
on the surface, and n is a factor to describe surface properties.

For diffuse surfaces, n is small. Higher values belong to specular
reflective surfaces. An ideal mirror has n = ∞.

The normalized intensity returning from different surfaces is
illustrated in Fig. 8.

Figs. 9–14 illustrate the intensity function for different dis-
tances and materials of Echo 1. The curves for paper with dif-
ferent colours do not show significant differences. An example
with white paper and blue paper is illustrated in Figs. 9 and 10.
Likewise, the intensity curve of aluminium, cf. Fig. 11, likens to
be a Phong reflection curve with a high value for n. Therefore,
the measurements were normalized, since the shape of the curve
remains unchanged regardless of the distance. This is exemplarily
illustrated in Fig. 15 with measurements of a white paper and an
aluminium sample. Using n = 5 the Phong model describes best
the curve of the white paper sample, while n = 4000 applies to
the curve of the aluminium sample. It is not possible to describe
the curve of glass, cf. Fig. 13, or transparent plastic, cf. Fig. 14, with
this model. Instead, it seems that there is no dependency on the
incident angle and the distance. They show many discontinuities.

Additionally, the maximum intensity values are significantly less
than the corresponding values of paper or aluminium. This is due
to the fact that the light is hardly reflected on the surface. Most of
the light passed through the object, as was anticipated. The mirror
is comprised of glass and a specular surface. Thus, an overlay of
both effects was expected Fig. 12.

4.2.2. Intensity characteristic related to the distance
Apart from the dependency on the incident angle, the intensity

also depends on the distance to the surface:

Ireceived ∼
Isent
s2

, (5)

with s defining the distance between object and surface, Ireceived
is the received intensity of the scanner, and Isent is the transmitted
intensity of the scanner.

Figs. 16–19 illustrate this effect, which is especially noticeable
for the paper surface and aluminium surface. It also confirms that
glass has a high level of discontinuity. Moreover, it confirms that
the mirror combines both effects measured from aluminium and
glass.
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(a) Returned intensity at Pos. A before passing the glass front.
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(b) Returned intensity at Pos. B when being vertically positioned to the
glass front.
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(c) Returned intensity at Pos. C after passing the glass front.

Fig. 23. Intensity values Echo 1 (red) and Echo 2 (green) at different times on glass.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

closest position to the sample. In this case, the laser beam hits
the sample surface perpendicularly. The amount of scans varies
because all thematerials have a different angle sensitivity (cf. Fig. 8
Phong curve Experiment 2).

Glass, cf. Fig. 29a, and transparent plastic, cf. Fig. 29b, show sim-
ilar characteristics. Both graphs show that the intensity of Echo 2 is
significantly higher than the intensity of Echo 1. Furthermore, the
curve was related to the Phong reflection model for objects with
a low n-factor. In the experiment, there was white paper behind
the glass surface. In most cases it is unknown where transparent
objects are or what kind of surface is behind them. This is why it is
important to analyse the intensities of Echo 1 which are associated
with the object itself. The intensity values result in a curve with
low intensity values and a minimal ‘‘bump’’.
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(a) Returned intensity at Pos. A before passing the plastic front.
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(b) Returned intensity at Pos. B when being vertically positioned to the
plastic front.
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(c) Returned intensity at Pos. C after passing the plastic front.

Fig. 24. Intensity values Echo 1 (red) and Echo 2 (green) at different times on
transparent plastic. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

The progression of the intensity of Echo 1 and Echo 2 for
aluminium, cf. Fig. 30a, differs significantly. Here, the intensities
of Echo 1 are greater than the intensities of Echo 2. Moreover,
the characteristics of aluminium was seen in both echoes. As
previously seen, the curves of the mirror have an overlay of both
characteristics.

The factor fmaterial between the mean intensity of Echo 1 and
Echo 2 is illustrated in Fig. 31.

fmaterial =
Îjecho2
Îjecho1

(7)

with j is the number of scan of the history L. As previously men-
tioned for aluminium, the intensity values of Echo 1 are greater
than those of Echo 2. Therefore, the factor faluminium is lower than
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(a) Returned intensity at Pos. A before passing the aluminium front.
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(b) Returned intensity at Pos. B when being vertically positioned to the
aluminium front.
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(c) Returned intensity at Pos. C after passing the aluminium front.

Fig. 25. Intensity values Echo 1 (red) and Echo 2 (green) at different times at
aluminium. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

1. For the mirror surface the factor fmirror is ∼1 and for glass
significantly greater than 1. It isworthmentioning that the number
of scans varies in the history. This is due to the fact that different
materials have different reflective characteristics and therefore
different sensibility depending on the angle, as was shown in
Section 4.2.1. Therefore, the aluminium sample has fewer detected
scan points than themirror sample. As a result the curves were not
‘‘synchronized’’. For objects close behind the glass surface (Fig. 32a
→dbg1 = 50 cm) the factor fglass is greater than for anobject further
away (Fig. 32b→ dbg2 = 110 cm, Fig. 32c→ dbg3 = 160 cm).

The characteristics of transparent surfaces depend on the object
behind it. Fig. 32 illustrates the dependency of white paper behind
the glass surface at different distances dbg. On the one hand, the
maximum value of the intensity of Echo 2 shrinks, the further the
object is placed behind the sample. This corresponds to the results
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(c) Returned intensity at Pos. C after passing the mirror front.

Fig. 26. Intensity values Echo 1 (red) and Echo 2 (green) at different times at a
mirror. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

of distance dependency in Experiment 2 in Section 4.2.2. On the
other hand, a ‘‘bump’’ in Echo 1 grows, which was also confirmed
in Experiment 2. This leaves no doubt that this effect needs further
investigation.

This experiment describes the results of the applied research
of Experiment 2 and Experiment 3 implemented in the Reflection
Classifier Approach. TheReflection Classifier is an extended version
of the Mirror Detector Approach. For this reason the function
identifyReflectionType() is integrated in the post-filter.

4.3.4. Extension to post-filter
The function identifyReflectionType() (cf. Fig. 3) is integrated in

the post-filter of the Mirror Detector Approach (cf. Algorithm 2). It
discriminates the reflective object according to its type.
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Fig. 27. Echo 1 intensity curve via angle and position of glass and transparent
plastic.
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Fig. 28. Echo 1 intensity curve via angle and position of aluminium and a mirror.

For each object O the function scans the masked points of the
entire scan history GA2 with its length L, if the point is located
on its surface or behind it. Subsequently, the object surface is

(a) Glass.

(b) Transparent plastic.

Fig. 29. Themean intensity of Echo 1 (red dotted) and Echo 2 (green solid) per scan
for glass and transparent plastic.

identified throughout and across all scans in three steps. Finally, it
rates the different identification techniques to result a final object
type.

The first function, checkPhong(), was implemented in order to
accommodate a Phong model curve into the intensity values of
each scan. This function was based on the results of Section 4.2.1.
The experiment showed that the results were less significant. As
already mentioned in Section 4.2.1 only non translucent surfaces
can be assimilated to the Phong model. Attempts with glass and
plastic were unsuccessful (cf. Figs. 13 and 14). Even for a mirror it
is hard to fit the Phong model (cf. Fig. 12).

The second function checkIntensityFactor(), builds the mean
intensity of the first and the second echo of a single scan and
compares them. It runs through all scans and counts ‘‘transparent’’
and ‘‘mirror’’ hits. Finally the object is rated as the amount of the
most hits and the function returns the result of this step.

The third function checkReflectedPoints() reprojects the points
behind the object back to their original locations and searches for
an identical object nearby. This function is similar to the idea of
Yang [7] and is not directly related to the previous experiments
in this study. Even then this is an important method to identify
this type of reflection. After the points are reprojected back to
their original locations, they are used as a scene while the rest
of the scan, the ‘‘valid’’ masked points, are used as a model for
the following ICP algorithm. ICP algorithm determines a trans-
formation matrix. If a transformation is found and points to a
nearby location, the object for this scan is rated as amirror. Nearby
locations are determined as being close to the reprojected location
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Algorithm 3 identifyReflectionType
Input: G, C,O, L,N:

G includes the scan points of Echo 1 and Echo 2 along with the
corresponding angles and intensities.C includes the end-points
c⃗1 and c⃗2 of the objects. O is the amount of identified objects.
L is the length of history of received scans. N is the amount of
scan points per echo.

Output: G2,valid,mirror,transparent,mirror_affected,transparent_affected:
GA2,valid includes the valid scan points, GA2,mirror includes the
scan points, located on the surface of the specular reflective
object, GA2,transparent includes the scan points, located on the
surface of the transparent object, G2,mirror_affected includes the
scan points, located behind the surface of the specular reflec-
tive object, and G2,mirror_affected includes the scan points, located
behind the surface of the specular reflective object.

1: procedure identifyReflectionType
2: for n = 0, n < O, n++ do
3: for j = 0, j < L, j++ do
4: for i = 0, i < N, i++ do
5: S, I← selectPointsOnThisObject(GA2)
6: E, I← selectPointsBehindThisObject(GA2)
7: end for
8: end for
9: res_Phong ← checkPhong(S, I)
▷ see Section 4.2.1

10: res_meanInt ← checkMeanIntensityFactor(S, I)
▷ see Section 4.3.3

11: res_reflPoints← checkReflectedPoints(S, E, I)
12: objectType← rateResults(res_Phong, res_meanInt,

res_reflPoints)
13: remaskScans(GA3,∗)
▷
∗ stands for valid, mirror, transparent, mirror_affected,

transparent_affected
14: end for
15: returnRemaskedScans(GA3,∗)
16: end procedure

included.While the area behind the glass is stillmapped, the points
behind the mirror area were erased.

It is important to mention one effect which is seen on the glass
surface, cf. Fig. 33bmagnified glass. Instead of one line (wall), there
are two lines (walls) visible. This happens because the points on
the surface are added after the points behind the surface. This
is based on the fact that the TSD-weight function has two zero
crossings and each represents awall. The distance between them is
the truncation radius and represents the minimal measurable wall
thickness.

The experiment confirmed that a discrimination of transpar-
ent and specular reflective objects is possible. Further research is
needed to fail-safe the algorithm identifyReflection().

5. Conclusions and future work

TheMirror Detector and the Reflection Classifier identify trans-
parent and specular reflective objects like glass, mirrors, or shiny
surfaces such as blankmetal. Free standing unframedobjects of dif-
ferent size are detectable based on their discontinuities regarding
their distances of Echo 1 and Echo 2. The Reflection Classifier is an
extended version of the Mirror Detector used to identify reflective
materials. It was implemented during these experiments to show
the feasibility of a discrimination of transparent and specular re-
flective objects.

The experiments confirmed that it is possible to discriminate
materials by the behaviour of their reflective characteristics.While

(a) Refined map created from the data of Experi-
ment 1 with the Mirror Detector.

(b) Refined map created from the post-filter of the
Reflection Classifier.

Fig. 33. Maps created with the Mirror Detector and the Reflection Classifier.

aluminium has the most significant characteristics it is more dif-
ficult to identify transparent objects, like glass or plastic, by sig-
nificant features. For aluminium, the intensities of Echo 1 were
greater than Echo 2. In addition, the two curves showed similar
characteristics. For transparent objects, the distance and material
of the background affected the curve of Echo 2 while intensity
values of Echo 1 were low. Mirrors showed a combination of
both characteristics—glass and aluminium. Therefore, its intensity
values differed and showed a high number of discontinuities. For
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all materials, a long term interpretation provided us with more
detailed insight.

To identify materials, it was not possible to rely on a single
principle as there were too many unknown factors. That is why
the discrimination function was determined by considering the
following factors:

• fitting cosn θ to a normalization of Echo 1 and Echo 2
• observe changes of the n-factor over time
• rate the magnitude and progression of factor fmaterial
• re-project the affected points back to search for a transfor-

mation matrix to the rest of the scan.

The final experiment showed the applied discrimination and
the improvement for SLAM. Furthermore, non-planar surfaces
need to be modelled to cover a greater field of reflective and
transparent objects.

Therefore future work will concentrate on transparent object
behaviour with different background circumstances. This will re-
sult in a better model to identify reflection types.

Based on the knowledge of the surface material it is possible to
process the points located behind a surface. It was the aim to use
these points as well for mapping after they had been reprojected
back to their original locations. Further it is necessary to reduce the
mapping modules. It is desired to use only a single map. Working
with two maps carries two main drawbacks. On the one hand it
needs more calculation power and storage to process the data. On
the other hand the robot relies on the preliminary map which is
not free of all reflective influences. Therefore the robot does not
process the data of the refined map at all. One idea to overcome
these drawbacks is tomerge the twomaps, e.g., each time after the
post filter finished.

This will help to archive the environment, such as mapping
modern glass galleries or historic buildings. Castles and palaces are
full of reflective and transparent objects, e.g., chandeliers, golden
artwork, or mirror cabinets. The aim is to support robust localiza-
tion and mapping in such challenging areas.
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