
Robotics and Autonomous Systems 184 (2025) 104852

A
0

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Delta- and Kalman-filter designs for multi-sensor pose estimation on
spherical mobile mapping systems✩

Fabian Arzberger a,∗, Tim Schubert a, Fabian Wiecha a, Jasper Zevering a, Julian Rothe b,
Dorit Borrmann c, Sergio Montenegro b, Andreas Nüchter a

a Chair of Computer Science XVII – Robotics, Am Hubland, 97074, Würzburg, Germany
b Chair of Computer Science VIII – Aerospace Information Technology, Am Hubland, 97074, Würzburg, Germany
c THWS Robotics, Münzstraße 12, 97070, Würzburg, Germany

A R T I C L E I N F O

Keywords:
Spherical robots
Pose estimation
Sensor fusion
Kalman filter
Delta filter
Mobile mapping
LiDAR

A B S T R A C T

Spherical mobile mapping systems are not thoroughly studied in terms of inertial pose estimation filtering. The
underlying inherent rolling motion introduces high angular velocities and aggressive system dynamics around
all principal axes. This motion profile also needs different modeling compared to state-of-the-art competitors,
which heavily focus on more rotationally-restricted systems such as UAV, handheld, or cars. In this work
we compare our previously proposed ‘‘Delta-filter’’, which was heavily motivated by the sensors inability to
provide covariance estimations, with a Kalman-filter design using a covariance model. Both filters fuse two
6-DoF pose estimators with a motion model in real-time, however the designs are theoretically suitable for an
arbitrary number of estimators. We evaluate the trajectories against ground truth pose measurement from an
OptiTrack™ motion capturing system. Furthermore, as our spherical systems are equipped with laser-scanners,
we evaluate the resulting point clouds against ground truth maps available from a Riegl VZ400 terrestrial
laser-scanner (TLS). Our source code and datasets can be found on github (Arzberger, 2023).
1. Introduction

Spherical mobile mapping systems are just coming of age, as cur-
rent research in the robotics community shows: The majority of re-
search dealing with spherical systems is about locomotion mechanisms,
e.g. [2–7]. Using spherical robots for mobile mapping (see Fig. 1) is a
rather novel field. To the best of our knowledge, Borrmann et al. [8]
first used a 2D laser-scanner mounted on a unicycle’s wheel axis, to gen-
erate maps via offline—simultaneous localization and mapping (SLAM).
In a follow-up study from our own lab [9] we used the same laser-
scanner inside a spherical robot with a protective outer plastic shell.
The robot is capable of self-initiated motion via flywheels utilizing an
IBCOAM (impulse by conservation of angular momentum) approach.
The idea of using spherical robots for mapping was explored in more
depth by the European Space Agency (ESA) in 2021 during a concurrent
design facility (CDF) study. This CDF study considers the general
concept of a spherical robot for environment mapping and exploring
lunar caves, but also terrestrial vents, to be feasible [10,11]. Another
recent study [12] comes to a similar conclusion and substantiate the

✩ We acknowledge funding from the European Space Agency (ESA), Germany Contract No. 4000130925/20/NL/GLC for the study ‘‘DAEDALUS – Descent And
Exploration in Deep Autonomy of Lava Underground Structures’’ within the Open Space Innovation Platform (OSIP) lunar caves-system and the Elite Network
Bavaria (ENB), Germany for providing funds for the academic program ‘‘Satellite Technology’’.
∗ Corresponding author.

E-mail address: fabian.arzberger@uni-wuerzburg.de (F. Arzberger).

potential of using internal sensor such as LiDAR or cameras inside the
spherical robot. Advantages of using spherical robots are a shell that
protects internal sensors and a versatile locomotion mechanism that
inherently results in sensor rotation leading to optimal coverage of the
environment in all directions. In contrast to other protective shells,
the spherical shape enables access to scenarios where other robotic
systems could not operate, e.g., steep tunnels, underground mines,
narrow funnels, or other hazardous environments. Furthermore, state-
of-the-art 360◦ horizontal field of view (FoV) LiDAR sensors such as the
‘Livox Mid-360’, or ‘Hesai Pandar-XT32’ have only a limited vertical
FoV. Thus, rolling such a LiDAR sensor leads to more coverage of the
environment, especially considering the ceiling and ground. Due to the
inherent rolling mechanism for locomotion, additional actuators, which
potentially get damaged, are not needed to rotate the LiDAR sensor.
However, during SLAM, large and aggressive rotations are the least
favorable motions that a mobile mapping system could experience. This
is because for any falsely estimated translation, the point-to-point errors
in the resulting environment grow linearly, whereas for rotation these
https://doi.org/10.1016/j.robot.2024.104852

vailable online 21 November 2024
921-8890/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/robot
https://www.elsevier.com/locate/robot
mailto:fabian.arzberger@uni-wuerzburg.de
https://doi.org/10.1016/j.robot.2024.104852
https://doi.org/10.1016/j.robot.2024.104852
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2024.104852&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F. Arzberger et al. Robotics and Autonomous Systems 184 (2025) 104852
Fig. 1. Two spherical mobile mapping systems, equipped with inertial sensors, cameras,
and LiDAR. A high-resolution video where the filters run onboard and are compared to
each other in real-time is available at https://youtu.be/oO93Y4nZ5w0. (Left spherical
system:) The new prototype, featuring a ‘Hesai Pandar-XT32’ 360◦ horizontal FoV LiDAR
with 0 cm minimum scanning distance. (Right spherical system:) The old prototype from
previous work [1], featuring a ‘Livox Mid-100’ limited 98.4◦ horizontal FoV LiDAR with
100 cm minimum scanning distance.

errors grow exponentially with increasing distance. While working with
spherical robots, non-centered rotation is the main movement of the
internal sensors, which proposes a huge challenge to state of the art
SLAM algorithms. In previous work, we proposed initial laser-based
offline-SLAM solutions for simplified sub-problems, i.e., rotation while
descending [13], and rolling on flat surfaces [14]. Our previously
proposed Delta-filter [1] – on which this paper builds upon – did not
make use of LiDAR measurements for pose estimation. Similarly, in this
work we also address only the localization of the system and do not
perform laser-based SLAM, but only use the LiDAR data for accuracy
evaluation. However, in the near future, the output of our developed
trajectory filters should be utilized as an initial guess for a laser-based
online-SLAM system, yet this is beyond the scope of this work. The
contributions of this work are as follows:

• A Kalman-filter design for pose estimation via sensor fusion on
spherical mobile mapping systems.

• Comparison of the previously proposed Delta-filter [1] with the
Kalman-filter.

• A second spherical prototype running both filters, using different
hardware and sensor configuration compared to the previous
paper [1].

The paper is structured as follows: In the next section, we provide
an overview of state of the art 6-DoF pose filters, and outline the
most similar approaches. Then, we introduce the ‘‘Delta’’-filter in a
general fashion and show an example implementation on a spherical
mobile mapping system. Finally, we introduce our accuracy measures
and experiments and show that the filter is able to deal with slow and
fast motion as well as driving curves.

2. State-of-the-art

Many onboard multi-sensor pose estimation approaches exist in the
community. The majority of which are implemented and developed
towards autonomous driving cars [15,16], and unmanned aerial vehi-
cles (UAV) [17,18]. Soloviev et al. [19] give a broad outline on the
sensor types used for navigation: They define a self-contained inertial
navigation system (INS) as the primary sensor, as it is available on any
platform. Further, the authors consider the following secondary sensors
which are qualified for fusion with the INS solution: Global Navigation
Satellite System (GNSS) based (e.g. GPS), feature based (e.g. cameras
2
or LiDAR), beacon based (e.g. using specialized navigation signals), or
based on signals of opportunity (SoOP) (e.g. radio-frequency signals).
In this work we will focus on visual-inertial navigation systems (VINS)
and later propose a filter for our spherical system. Santoso et al. [20]
categorize popular filters in the robotics community: (1) The Kalman
Filter (KF) [21] has been designed to estimate the most likely system
state under Gaussian noise by minimizing the covariances of the esti-
mation error. It has since been reinvented and extended several times,
leading to variants such as the Unscented Kalman Filter (UKF) [22],
Extended Kalman Filter (EKF) [23], or Multistate Constrained Kalman
Filter (MSCKF) [24], just to name a few. KF-based approaches are by
far the most popular state estimators among the robotics community.
Example implementations on different systems include [18,25–29]. (2)
The 𝐻∞ filter approach originates from control theory where it is used
as an optimal robust controller. Instead of minimizing the covariance of
the estimation error, the 𝐻∞ filter minimizes the worst-case estimation
error, which leads to better performance if modeling uncertainties are
present [30]. (3) Particle filters (PF), or Monte-Carlo Methods, are
known for being applied in many stochastic estimation problems [31].
By now, it is well-known that PF outperforms KF in nonlinear systems
underlying non-Gaussian noise [32]. Its biggest drawback is the com-
putational load required for processing many particles representing a
single state. (4) Rao–Blackwellized Particle filters (RBPF) combine the
advantages of PF and KF while getting rid of their major issues [33].
Therefore, if the system state model contains linear parts with Gaussian
noise, these components are separated and processed using KFs, while
nonlinear parts with non-Gaussian noise are dealt with PFs. And finally,
in recent years we have noticed the use of (5) graph optimization based
methods such as GOMSF [34] and VIRAL-Fusion [35], where the system
states are represented and optimized in a pose-graph.

The above mentioned examples solely treat filters implemented
on ground vehicles or UAV. Yet other examples exist that imple-
ment multi-sensor pose estimation on more challenging systems. Kim
et al. [36] fuse data from four sensing modalities on an unmanned
underwater vehicle (UUV) using an approach using covariance inter-
section based on nonlinear optimization. They consider measurements
taken via acoustic ultra-short baseline (USBL), Differential GPS (DGPS),
Doppler Velocity Logs (DVL), and an INS. Fang et al. [37] use three
different sensors for pose estimation on wearable augmented reality
(WAR): a monocular camera, a depth sensor, and an INS. They use a KF-
based approach in a sliding window fashion. To our knowledge there
exists only one onboard pose estimation filter for spherical robots [38].
This approach [38] comes from our own lab and uses only data from
inertial measurement units (IMU). The basic idea is to combine the
well known IMU orientation filters: the Madgwick filter [39] and
Complementary filter [40]. As for translation, the filter performs dead-
reckoning using the motion model of a rolling sphere and adding
constraints for slipping and sliding effects. Furthermore, the output of
the filter in [38] is being utilized as input for the filter proposed in
this paper. Another niche filter, the EKF for spherical robots presented
in [41], is similar to [38], as it performs attitude estimation and
dead reckoning based only on an IMU. Lastly, we want to mention
another filter that is much simpler than any of the approaches stated
above, yet surprisingly effective: Gyrodometry [42]. This filter has been
implemented to combine data from wheel encoders (Odometry) with
data from a gyroscope by considering not the measured state, but
instead the change of state. Therefore, the filter considers the similarity
of the measurements to each other to eliminate outliers and update
the current state accordingly, without using any covariance estimation.
The previously proposed Delta-filter [1] is similar in these two aspects
(change of state and similarity of measurements), but extends the idea
to an arbitrary number of estimators in 6-DoF and adds a motion
model. Our proposed Kalman-filter also considers the change of the
state, however we add uncertainty modeling to our sensors in order
to estimate the covariance matrices.

https://youtu.be/oO93Y4nZ5w0

F. Arzberger et al.

W
s
e
t
c
f
I
g
a

p

n

l

t
t

𝑿

f

t

r

d
t

r
e

Robotics and Autonomous Systems 184 (2025) 104852
3. Sensor fusion with 6-DoF delta-filter

In this section we introduce common notation and reiterate the
Delta-filter design from our previous work [1]. The Delta-filters purpose
is to receive 6-DoF trajectory estimates from multiple sources, which
are known to be unreliable, and filter them in a probabilistic way.

e consider a trajectory ‘‘unreliable’’ if it accumulates drift or makes
udden jumps — which are common effects in IMU- and VIO-based
stimators. The filtered trajectory does not utilize covariance estima-
ions, does not use any information from future measurements, and is
omputed in real-time. However, similar to a Kalman filter, the Delta-
ilter requires a motion model, which is also considered unreliable.
n our implementation we filter only two trajectory estimates with a
iven motion model, yet the Delta-filter is theoretically suitable for an
rbitrary number of estimators.

3.1. Notation and filter design

Suppose we have multiple 6-DoF pose estimators 𝑿 = [𝑹,𝒑]⊺ ∈
SE(3), where 𝑹 is a 3 × 3 rotation matrix and 𝒑 is a vector in R3. The
ose of the 𝑘th estimator at time 𝑡 is denoted by 𝑿𝑘(𝑡) =

[

𝑹𝑘(𝑡),𝒑𝑘(𝑡)
]⊺ ∶

R → SE(3). Note that all poses from all estimators must first be
transferred in a shared global coordinate frame. As the poses arrive
at different time stamps, it is necessary to interpolate between mea-
surements to capture all estimates at the same point in time. Thus, the
Delta-filter computes an estimate at the rate of the slowest estimator,
denoted as 𝑿0, yielding a query time 𝑡𝑞 . We call the resulting pose
𝑿0(𝑡𝑞) the ‘‘measurement’’. All other estimators 𝑿𝑘 are queried at time
𝑡𝑞 , by interpolating between two measurements at given timestamps
𝑡𝑞±1, as shown in Fig. 2. Note that rotation matrices and unit quater-
ions are isomorphic, thus we use 𝒒𝑘(𝑡) and 𝑹𝑘(𝑡) interchangeably as

they represent the same elements in SO(3). Then, the interpolation is
constructed using quaternion spherical linear interpolation (Sler p) and
inear vector interpolation as described by Eqs. (1) - (5):

𝑿𝑘(𝑡𝑞) =
[

𝑹𝑘(𝑡𝑞),𝒑𝑘(𝑡𝑞)
]⊺ , (1)

𝑡 =
𝑡𝑞 − 𝑡𝑞+1
𝑡𝑞−1 − 𝑡𝑞+1

∈ [0; 1] , (2)

𝛺 = cos−1 (𝒒𝑘(𝑡𝑞−1) ⋅ 𝒒𝑘(𝑡𝑞+1)
)

, (3)

𝑹𝑘(𝑡𝑞) = Sler p (𝒒𝑘(𝑡𝑞−1), 𝒒𝑘(𝑡𝑞+1), 𝑡
)

(4)

=
sin((1 − 𝑡)𝛺)

sin(𝛺)
⋅ 𝒒𝑘(𝑡𝑞−1) +

sin(𝑡𝛺)
sin(𝛺)

⋅ 𝒒𝑘(𝑡𝑞+1),

𝒑𝑘(𝑡𝑞) = (1 − 𝑡) ⋅ 𝒑𝑘(𝑡𝑞−1) + 𝑡 ⋅ 𝒑𝑘(𝑡𝑞+1) (5)

The idea of the Delta-filter is to track the changes between given
timestamps 𝑡1 and 𝑡2 (also known as ‘‘deltas’’) of the measurements and
interpolations

𝛥𝑿 =
[

𝑹−1(𝑡2) ⋅𝑹(𝑡1) , 𝒑(𝑡2) − 𝒑(𝑡1)
]⊺ (6)

and estimate a new delta that is more meaningful. That is to say that
he Delta-filter estimates the most likely pose change between given
imestamps. Therefore, the filter first estimates a model delta

𝛥𝑿𝑚 =
[

𝛥𝑹𝑚, 𝛥𝒑𝑚
]⊺ (7)

= 𝑓
(

𝛥𝑿0 , {𝛥𝑿𝑘 ∶ 𝑘 ∈ N}
)

where 𝑓 denotes the motion model that estimates the true motion given
the measured and interpolated deltas, 𝛥𝑿0 and 𝛥𝑿𝑘. In a later section
we will give an example for the motion model 𝑓 when implementing
the filter on a spherical robot.

3.1.1. Measurement, interpolation, and model
The measurement, interpolation, and model deltas 𝛥𝑿0, 𝛥𝑿𝑘, and

𝛥𝑿 respectively, are all considered unreliable. They are used to
𝑚

3
Fig. 2. Timelines showing two sensors publishing pose data at different rates. The
sensor having the slower rate is defined as the ‘‘measurement’’, the other trajectories

𝑘 get interpolated at measurement time 𝑡𝑞 .

estimate the filtered pose 𝑿𝑒(𝑡𝑗) by iteratively applying an estimated
iltered delta 𝛥𝑿𝑒 that happened between 𝑡𝑗−1 and 𝑡𝑗 :

𝑿𝑒(𝑡𝑗) = 𝛥𝑿𝑒 ⋅𝑿𝑒(𝑡𝑗−1) (8)

=
[

𝛥𝑹𝑒 ⋅𝑹𝑒(𝑡𝑗−1), 𝛥𝒑𝑒 + 𝒑𝑒(𝑡𝑗−1)
]⊺ . (9)

We separate the rotation and translation parts by assuming that the
measured and interpolated orientations are sufficiently reliable esti-
mates, i.e., they do not drift or jump between two consecutive frames
such that averaging both rotation-deltas with Sler p works. Thus, we set
he parameter 𝑡 of the Sler p function to 0.5. To obtain the estimated

filtered rotation delta 𝛥𝑹𝑒, we compute

𝛥𝑹𝑒 = Sler p
(

𝛥𝒒0, 𝛥𝒒𝑘, 12
)

(10)

Note that for more than two estimators, the Sler p in Eq. (10) must be
eplaced with a different quaternion average, e.g. [43]. Furthermore,

we assume that the estimated translation deltas 𝛥𝒑0, 𝛥𝒑𝑘, and 𝛥𝒑𝑚 are
not sufficiently reliable to just average them, as inertial-tracking tends
to drift and visual-tracking tends to jump.

3.1.2. Probabilistically weighted geometric mean
We calculate weights 𝛽𝑖 for each delta that correspond to the simi-

larity of the deltas distance to their geometric mean, thus outliers get
a damped weight while similar values get a higher weighting:

|�̂�| =

(𝑛
∏

𝑖=1
|𝛥𝒑𝑖|

)𝑛−1

, (11)

𝑠 =

√

√

√

√

1
𝑛 − 1

𝑛
∑

𝑖=0

(

|𝛥𝒑𝑖| − |�̂�|
)2 , (12)

𝛽𝑖 = 1 − 𝑠−1 ⋅
(

|𝛥𝒑𝑖| − |�̂�|
)

, (13)

where 𝛥𝒑𝑖 refers to the measurement, interpolation, and model deltas.
Now we use these weights, corresponding to similarity, to average the
translation direction and then scale it:
𝛥𝒑𝑒 =

𝑑
|

∑

𝑖 𝛽𝑖𝛥𝒑𝑖|
⋅
∑

𝑖
𝛽𝑖𝛥𝒑𝑖 , (14)

where 𝑑 is an estimate of the true scale of the translated distance:

𝑑 =

(

∏

𝛽𝑖

|𝛥𝒑𝑖|𝛽𝑖
)(∑𝑖 𝛽𝑖)−1

(15)

3.2. Implementation on our spherical systems

Fig. 3 shows the reference frames of the sensors in a schematic
rawing. We use three ‘‘PhidgetSpatial Precision 3/3/3 High Resolu-
ion 1044’’ [44] IMUs and an ‘‘Intel RealSense T265 stereo tracking

camera’’ [45]. Our own IMU filtering algorithm [46] takes the 250 Hz
aw outputs from the three onboard IMUs and computes a single pose
stimate at 125 Hz. The fisheye cameras on the Intel T265 produce

images at only 30 Hz. However, the T265 outputs a pose at 200 Hz
using its own IMU. The implementation on our spherical systems uses
two estimators, the IMU operating at 125 Hz defines the measurement
𝑿 , and the camera operating at 200 Hz defines the interpolation 𝑿 .
0 𝑘

F. Arzberger et al. Robotics and Autonomous Systems 184 (2025) 104852
Fig. 3. (Left:) Spherical mobile mapping system without its protecting shell. (Right:)
CAD model of the spherical system with sensor frames.

For the motion model 𝑓 of the spherical system with known radius
𝑟 = 0.145 m, we assume that rotation leads to translation, thus we
calculate the estimated model delta using the arc length of rotation:

𝑓 (𝛥𝑿0, 𝛥𝑿𝑘) =
[

𝛥𝑹𝑒, 𝑟 ⋅ ∠
(

𝛥𝑹𝑒
)

⋅
𝛥𝒑0 + 𝛥𝒑𝑘
|𝛥𝒑0 + 𝛥𝒑𝑘|

]⊺

, (16)

where ∠ (⋅) denotes the angle around the axis described by the rotation
matrix. Note that we just defined the model rotation 𝛥𝑹𝑚 from to be
equal to 𝛥𝑹𝑒 from Eq. (10), as the orientation estimation is considered
sufficiently reliable.

The simplicity of the filter design allows for the introduction of
simple but effective design choices. For example, we notice that the
yaw estimations of the IMUs tend to drift without the use of their
magnetometers, whereas the tracking camera does not have this issue.
This effect is also visible in the upcoming results by comparing the right
columns of Figs. 5(a) with 5(b). Note that we also tried avoiding to
rotate over the camera, such that it experiences less pitching motion
but more roll, seen from the cameras reference frame. This way, the
tracking camera is able to see the floor at all times, which helps with
the sudden position jumps. However, this makes the yaw estimations
of the camera much worse, presumably because it is not designed to
handle strong self-rolling motions.

We show this effect in Fig. 4. Note that a potential fix might be
including a second camera, mounted orthogonally to the other one, and
including it in the filter as an additional estimator. However, we will
address this in future research and stick to pitching the camera instead
in this work. Due to the background of our spherical system, we do not
want to use the magnetometers by design. Thus, we must rely more on
the camera estimations for the yaw angle, which is why we exchange
the estimation of the rotation delta in Eq. (10). Instead of only using
Sler p, which is more universal, we first use Sler p and then replace the
yaw-part of the resulting delta with the interpolated camera yaw delta.
Hence, the change in yaw is only estimated via the camera.

4. Sensor fusion with Kalman-filter

The Kalman-filter (KF) we introduce here, similar to the Delta-filter,
also explicitly filters the change of the system state, instead of the state
itself. The state vector of the KF is then used to iteratively update the
transformation 𝑿𝑒 according to Eq. (9). In this section we utilize the
notation introduced in the previous section, resulting in a state vector
𝒚𝑘

𝒚𝑘 =
⎡

⎢

⎢

⎣

𝛥𝒑𝑘
𝛥𝒒𝑘
𝝎𝑘

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

(

𝛥𝑝𝑥𝑘, 𝛥𝑝
𝑦
𝑘, 𝛥𝑝𝑧𝑘

)⊺

(

𝛥𝑞𝑥𝑘 , 𝛥𝑞
𝑦
𝑘𝛥𝑞

𝑧
𝑘, 𝛥𝑞𝑤𝑘

)⊺

(

𝜔𝑥
𝑘, 𝜔

𝑦
𝑘, 𝜔𝑧

𝑘
)⊺

⎤

⎥

⎥

⎦

(17)

where 𝛥𝒑𝑘 is the position delta and 𝛥𝒒𝑘 is the rotation delta as a
unit quaternion that are used to update 𝑿𝑒, 𝝎𝑘 is the bias corrected
angular velocity in a fixed global coordinate system. In the following,
𝒏 denotes the normal vector of the ground that the sphere is rolling
on without slipping. Note that 𝒏𝑘 is theoretically measurable via the
onboard LiDAR, yet this is beyond the scope of this work, which is
why we assume a flat floor using a constant 𝒏 = 𝒏 = 0, 0, 1 ⊺. The
𝑘 ()

4
key observation here is that the velocity of the balls center 𝒗, when
rolling without slipping over the ground with radius 𝑟 must be

𝒗 = 𝑟𝝎 × 𝒏 , (18)

where × denotes a vector cross product. We assume constant velocity
between two consecutive frames, thus

𝛥𝒑 ∼ 𝒗𝛥𝑡

⇒ 𝛥𝒑𝑘 ≈
(

𝑟𝝎𝑘 × 𝒏𝑘
)

𝛥𝑡

= 𝑟

⎡

⎢

⎢

⎢

⎣

𝑤𝑦
𝑘𝑛

𝑧
𝑘 −𝑤𝑧

𝑘𝑛
𝑦
𝑘

𝑤𝑧
𝑘𝑛

𝑥
𝑘 −𝑤𝑥

𝑘𝑛
𝑧
𝑘

𝑤𝑥
𝑘𝑛

𝑦
𝑘 −𝑤𝑦

𝑘𝑛
𝑥
𝑘

⎤

⎥

⎥

⎥

⎦

𝛥𝑡 . (19)

We use (19) to form a linear motion model. In order to minimize
the effect of integrating errors over time due to the constant velocity
assumption, the frequency of the measurements should be as high as
possible, i.e., 𝛥𝑡 should be as small as possible. It is possible to write
the cross product using a skew-symmetric matrix 𝒏×, which means
we are able to abuse notation such that the resulting matrices in the
Kalman-filter are more compact:

(

𝑟𝝎𝑘 × 𝒏𝑘
)

𝛥𝑡 =

⎡

⎢

⎢

⎢

⎣

0 𝑛𝑧𝑘 𝑛𝑦𝑘
−𝑛𝑧𝑘 0 𝑛𝑥𝑘
−𝑛𝑦𝑘 −𝑛𝑥𝑘 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜔𝑥
𝑘

𝜔𝑦
𝑘

𝜔𝑧
𝑘

⎤

⎥

⎥

⎥

⎦

𝑟𝛥𝑡 (20)

= 𝒏⊺×𝝎𝑘𝑟𝛥𝑡 (21)

Using the assumption from the previous section we omit to predict the
rotation change 𝒒𝑘, but rather weight the individual measurements via
the later described covariance model, which leads to a formulation of
the Kalman-filter prediction in linear form (LKF):

�̂�𝑘 = 𝑭 𝑘𝒚𝑘−1 +𝑮𝑘𝒖𝑘 (22)

�̂� 𝑘 = 𝑭 𝑘𝑷 𝑘−1𝑭
⊺
𝑘 +𝑸𝑘 (23)

�̂�𝑘 = 𝑯𝑘�̂�𝑘 . (24)

The matrices 𝑭 𝑘, 𝑮𝑘, and 𝑯𝑘, considering that the system input is the
angular velocity (𝒖𝑘 = 𝒘𝑘), each state entry gets measured (�̂�𝑘 = �̂�𝑘),
and the motion model from Eq. (19), consequently are:

𝑭 𝑘 =
⎡

⎢

⎢

⎣

𝟎3×7 𝑟𝛥𝑡𝒏⊺×
𝟎4×3 𝑰4×3 𝟎4×3

𝟎3×10

⎤

⎥

⎥

⎦

, (25)

𝑮𝑘 =
[

𝟎7×10
𝟎3×7 𝑰3×3

]

, (26)

and

𝑯𝑘 = 𝑰10×10. (27)

The update step of the Kalman-filter is as usual:

𝑺𝑘 = 𝑯𝑘�̂� 𝑘𝑯
⊺
𝑘 +𝑹𝑘 (28)

𝑲𝑘 = �̂� 𝑘𝑯
⊺
𝑘𝑺

−1
𝑘 (29)

𝒚𝑘 = �̂�𝑘 +𝑲𝑘
(

𝒛𝑘 − �̂�𝑘
)

(30)

𝑷 𝑘 =
(

𝑰 −𝑲𝑘𝑯𝑘
)

�̂� 𝑘 (31)

This update step (Eqs. (28)–(31)) is performed for each estimator—
twice in our case, where 𝒛𝑘 contains the respective sensors measure-
ments.

4.1. Covariance model on spherical system

Many sensors (e.g., Intel’s D-series tracking cameras, or recent Phid-
getSpatial IMU devices) have a built-in function to supply covariance
matrices. If this is available, we recommend using these estimations.
Otherwise, we now introduce a model for prior covariance estimation
based on the following simple heuristics:

F. Arzberger et al. Robotics and Autonomous Systems 184 (2025) 104852
Fig. 4. Resulting 3D point cloud when using only the pose estimations of the tracking camera as frames. Instead of pitching the camera, such that it looses track when looking on
the floor, here the camera primarily experienced roll. (Left:) Sliced birds-eye view of the point cloud. Yaw estimations suffer when rolling the camera instead of pitching. (Right:)
Sliced side view of the point cloud. No sudden jumps are visible when rolling the camera instead of pitching.
• (1) High angular velocities lead to a loss in accuracy for all
estimators.

• (2) When the camera looses track, e.g., when looking at the floor,
or unfavorable lighting conditions, its accuracy suffers.

• (3) The IMU’s do not use their magnetometers by design, thus,
estimation of the yaw angle should prefer camera measurements.

Therefore, we initialize the measurement noise matrices of the
camera 𝑹0,CAM and IMU’s 𝑹0,IMU on the diagonal using a pre-calculated
precision of the sensors when the system does not move, then add
10% to the each value. In order to fulfill the third heuristic, the parts
responsible for yaw estimation in 𝑹0,IMU get multiplied by a factor of
100. Then, we calculate the measurement noise matrices used in the
Kalman-filter at each step 𝑘 by scaling the initial covariance matrices
exponentially with rotational velocity to account for the first heuristic:

𝑹𝑘,IMU = 𝑒|𝝎𝑘| ⋅𝑹0,IMU (32)

𝑹𝑘,CAM = 𝑒|𝝎𝑘| ⋅ 𝐵𝑘 ⋅𝑹0,CAM (33)

The scalar factor 𝐵𝑘 corresponds to an internal confidence variable
of the camera tracking module, which ranges from 1 (high feature-
tracking confidence) to 1000 (failed to track any features) to account
for the second heuristic.

5. Experiments and evaluation

In our previous work we compared the Delta-filter to the baselines.
For completeness, these results will also appear in the following sub-
sections. Fig. 5 qualitatively summarizes the results by showing the
resulting point-clouds when applying the trajectories of each estimator
directly to the LiDAR data. The IMU-based approach (a) suffers from
drift in the yaw axis and overestimates the scale of the trajectory.
The visual-inertial (b) tracking approach tends to jump whenever the
camera looses track, which happens quite often given the unfavorable
type of sensor motion. Our previously proposed Delta-filter (c) com-
bines both trajectories, gets rid of the drift and jumps, and estimates
the scale of the trajectory better. Additionally, we test our spherical
system with another state-of-the-art visual-inertial navigation system
(VINS): ‘‘VINS-Fusion’’ [47,48]. It is an extension of ‘‘VINS-Mono’’ [49]
to support multiple sensors, e.g., in our case a stereo camera setup with
an IMU. We provide the calibration parameters and configuration files
needed to run VINS-Fusion with the Intel T265 tracking camera on our
github [50]. Fig. 6 shows that the VINS estimator diverges as soon as
the rolling motion of the spherical system starts.

In this work, we have also made additional experiments to compare
the Kalman-filter to the Delta-filter. Qualitatively speaking, the first
row of Fig. 17 shows that the resulting point-clouds when applying
the Kalman-filter estimations appear to have less drift. Furthermore,
we apply a simple offline point-to-point ICP to the LiDAR data in a
forward-pass fashion in order to simulate on-board processing, where
no future measurements are available.

Fig. 7 shows the resulting point-cloud. The following sections quan-
tify the results using ground truth trajectories and maps.
5
5.1. Error metrics

To quantify the quality of pose estimation, we use two principal
approaches: On the one hand, we measure ground truth trajectories
with an Optitrack system using IR reflectors. On the other hand, we
also compare the resulting point clouds against ground truth measure-
ments in larger environments, when Optitrack is no longer available.
We denote the ground truth trajectory 𝑿r ef =

[

𝑹r ef ,𝒑r ef
]⊺, and the

other estimated trajectories 𝑿est =
[

𝑹est ,𝒑est
]⊺. For each timestamp

in the ground truth trajectory, we sample the closest pose in time
from the estimated trajectory for correspondence. Note that all the
trajectories must be aligned with the ground truth trajectory. There-
fore we align the origins of the trajectories first, as we know that
all trajectories started from the same point. Afterwards we rotate
around the shared origin using a least-squares alignment according
to Umeyama [51]. Note that we only use the estimated rotation of
the Umeyama method, since we already aligned the origins. From
this point, we use Grupp’s [52] software for trajectory evaluation. We
record each individual LiDAR frame on-board using the Robot Oper-
ating System (ROS). The resulting point clouds are aligned to ground
truth using the well-known Iterative Closest Points (ICP) algorithm. We
use 3DTK [53] for the processing of the point clouds, which includes
merging the individual frames into one scan, visualization, using ICP,
matching to ground truth, and creating difference point-clouds with
corresponding histograms and RMSE.

5.1.1. Absolute position error
The absolute position error (APE) represents the unsigned error

of the translation estimation and is given by the magnitude of the
difference vector of both translation vectors

APE𝑖 = |𝒑est,𝑖 − 𝒑r ef ,𝑖| . (34)

5.1.2. Relative pose error
The relative pose error (RPE) represents the error of the orienta-

tion estimation by first calculating the orientation difference in ro-
tation matrix form, and then extracting the unsigned angle from the
corresponding angle-axis representation. It is thus given by

RPE𝑖 =
|

|

|

|

|

∠
(

(

𝑹−1
r ef ,𝑖𝑹r ef ,𝑖−1

)−1 (
𝑹−1

est,𝑖𝑹est,𝑖−1

)

)

|

|

|

|

|

. (35)

5.1.3. Point cloud error
The point cloud error represents the root of the mean squared point-

to-point errors (RMSE). Suppose, after matching with ICP, there are 𝑁
corresponding model- and data-points in the same coordinate frame,
denoted 𝒎𝑖,𝒅𝑖 ∈ R3 respectively. Then, the root mean squared error is
given by

RMSE =
√

√

√

√
1
𝑁

𝑁
∑

𝑖=0

|

|

𝒎𝑖 − 𝒅𝑖
|

|

2 (36)

F. Arzberger et al. Robotics and Autonomous Systems 184 (2025) 104852
Fig. 5. Resulting point clouds when using three different estimators (a), (b), and (c) are orthographically visualized. A ground truth point cloud is shown in (d). Images in one
column were shot from the same point of view. The colors of the points in the point cloud denote their height. Blue corresponds to lower, whereas red corresponds to larger
height values. The left column shows sliced views from the side, whereas the right column shows sliced views from the birdseye perspective.
Fig. 6. Resulting point clouds and trajectory for VINS-Fusion [47,48]. (Left:) We carry the spherical system by hand without rolling. The resulting trajectory is consistent with the
environment seen in the point cloud. (Right:) We place the spherical system on the floor and introduce rolling motion. The VINS estimator diverges. The resulting trajectory and
point clouds are inconsistent and unusable.
5.2. Comparing delta-filter against baselines

The experiments consist of three types of motion: rolling a straight
line slowly, fast, and driving curves at moderate speed. In the first two
experiments, an OptiTrack system is available to capture ground truth
trajectories, such that we are able to use Eqs. (35) and (34). However,
in the last experiment (driving curves), the environment and trajectory
is larger, making the OptiTrack system unavailable. In this experiment,
we use a Riegl VZ-400 terrestrial laser-scanner (TLS) with an angular
resolution of 0.04◦ and accuracy of 5 mm to provide accurate ground
6
truth point clouds. As our system is equipped with a laser-scanner
(see Fig. 3), we compare the resulting point cloud to the ground truth
map using Eq. (36). Both setups are shown in Fig. 8.

5.2.1. Fast motion
In this experiment, the sphere traversed a distance of approx. 4 m

in about 10 s. Fig. 9 shows the APE (34) of all estimators over time.
The T265 suffers from the highest error due to tracking loss, which
forces it to rely solely on error prone double integration of acceleration
measurements. The IMU-based approach show a considerable increase

F. Arzberger et al. Robotics and Autonomous Systems 184 (2025) 104852
Fig. 7. The resulting point-cloud after using point-to-point ICP with the Kalman-filter estimated trajectory as initial guess. The color of the points in the point cloud denotes their
height, where blue corresponds to lower and red to larger height values. The sphere got rolled manually by hand, however the operator is not visible in the point-cloud since we are
only visualizing points with a minimum distance of 150 cm to the local origin of the scanner. A fly-through video of the point-cloud is available at https://youtu.be/oO93Y4nZ5w0.
Fig. 8. (Left:) Laboratory test setup in a flycage equipped with an Optitrack system. The sphere has IR reflectors attached to its shell, which are detected by the cameras (red
circles). (Right:) Laboratory test setup in the Computer Science building. A RIEGL VZ-400 TLS captures a precise ground truth point cloud for comparison with the spherical mobile
mapping system. In both images, motion of the sphere is initiated manually by hand.
Table 1
Comparison of the estimated translation of the trajectory produced by the Delta-filter with its two source estimators, based on several statistical
metrics. Each column compares three values where lower is better.

Error metrics to ground truth trajectories for fast and slow motion with respect to translation

Estimator RMSE [m] Mean [m] Std. [m] Max. [m]

Slow Fast Slow Fast Slow Fast Slow Fast

Dead-reckoning INS 1.713 1.736 1.447 1.291 0.917 1.160 2.882 3.001
Intel T265 Stereo-VIO 4.486 7.441 4.012 5.290 2.008 5.234 5.848 13.549
Delta-filter 0.114 0.248 0.103 0.193 0.049 0.165 0.189 0.428
Table 2
Comparison of the estimated rotation of the trajectory produced by the Delta-filter with its two source estimators, based on several statistical
metrics. Each column compares three values where lower is better.

Error metrics to ground truth trajectories for fast and slow motion with respect to rotation

Estimator RMSE [deg] Mean [deg] Std. [deg] Max. [deg]

Slow Fast Slow Fast Slow Fast Slow Fast

Dead-reckoning INS 1.389 4.318 1.281 3.270 0.537 2.819 2.653 8.883
Intel T265 Stereo-VIO 1.374 4.213 1.264 3.190 0.541 2.753 2.701 8.852
Delta-filter 1.384 4.305 1.273 3.248 0.543 2.825 2.752 9.199
of error due to the accumulated drift. The error of the Delta-filter are

orders of magnitude smaller compared to the IMUs and T265.

7
Fig. 10 shows the comparison of RPE (35) over time. Note that

the Savgol-filter [54] is applied to the error signals. This is because

https://youtu.be/oO93Y4nZ5w0

F. Arzberger et al.

w

S
t
e

a

t

S

w
t
b
a
t
s

t

o
c
d
u
t
e
v
t

Robotics and Autonomous Systems 184 (2025) 104852
Fig. 9. The absolute position error of all estimators during fast motion over time.

Fig. 10. The relative pose error of all estimators during fast motion over time. The
Savgol-filter is applied with a window size of 51 and a polynomial degree of 3 to
remove the effect of outliers. In the background the noisy pre-filtered data is shown

ith low opacity.

Fig. 11. The absolute position error of all estimators during slow motion over time.

the ground truth orientations from the OptiTrack system contain many
outliers due to mirroring of the IR-reflectors on the spherical shell. The
avgol-filter removes the effect of these outliers but preserves the signal
endency. The RPE of all estimators do not differ particularly from
ach other, which is also evident from the error metrics in Table 2.

In fact, the RMSE of the RPE of the Delta-filter is between the INS-
and T265-solution, which makes sense considering the interpolation
in Eq. (10).

5.2.2. Slow motion
In this experiment, the sphere traversed a distance of approx. 4 m in

bout 45 s. Fig. 11 shows the comparison of APE over time. The Delta-
filter compensates for the linear accumulation of error of the IMU and
he sudden jump of the T265, resulting in a lower overall translation

error. Table 1 confirms this observation.
 9

8
Fig. 12. The relative pose error of all estimators during slow motion over time. The
avgol-filter is applied with a window size of 51 and a polynomial degree of 3 to

remove the effect of outliers. In the background the noisy pre-filtered errors are shown
with low opacity.

Fig. 12 presents the comparison of RPE over time. As mentioned
above, the Savgol-filter is applied on the error signals. The orientation
errors of all estimators are similar to each other, yet overall smaller
compared to fast motion.

5.2.3. Curves
Fig. 13 shows the result of the point cloud analysis. The error

to ground truth is visualized in a point-to-point distance distribution
histogram. Note that the large errors at the pillars are caused by global
filter drift. On the other hand, the errors at the ceiling of the upper
floor are rather caused by missing points in the ground truth. These
points, however, are so few that they are only barely visible in the
histogram. The mean point-to-point error from Eq. (36), which is our
accuracy estimate for mapping, is 18.6 cm.

5.3. Comparison with Kalman-filter

In this section, we compare the previously evaluated Delta-filter
ith the Kalman-filter implemented in this work. For the evalua-

ion, we use the same metrics as before and provide an analysis
ased on a ground-truth trajectory, as well as an analysis based on
 ground truth map. In total, we perform two experiments: First, for
he trajectory-based analysis we utilize the infrared marker tracking
ystem ‘‘OptiTrack’’ available in the flycage again (see Fig. 8) to obtain

the ground-truth trajectory. However, this time we tried rolling a
circular loop instead of a straight line. Second, for the point-cloud based
analysis we have the same RIEGL VZ-400 TLS available to create the
ground-truth map, but perform the experiment in a different laboratory
environment.

5.3.1. Trajectory-based analysis
Although posing additional challenges for the OptiTrack system due

o marker occlusion and shell reflections, the trajectory this time is a
circular loop. We filter these erroneous readings in the following way:
First, we use the erroneous ground truth data to calculate the error
metrics RPE and APE as before. Then, we use the earlier mentioned
Savgol-filter [54] for smoothing. Note that filtering the data this way
nly does not remove outliers, but dampens their effect. However, a
omplete and more precise ground truth trajectory is most certainly
esired, which is subject to future work. One approach might be to
tilize the LiDAR measurements in a post-processing SLAM algorithm
o obtain the exact trajectory of the sensor. Another solution for online
stimation could be to implement a camera-vision based approach with
isual markers, or change detection. In the experiment, the sphere
raversed a circular loop with a distance of approx. 10 m in about
0 s, which is comparable to the speed of the previous slow motion

F. Arzberger et al. Robotics and Autonomous Systems 184 (2025) 104852
Table 3
Comparison of the estimated translation of the trajectory produced by the Delta-filter with the Kalman-filter, based on several statistical metrics.
Each column compares two values where lower is better.

Statistics for APE and RPE error metrics to ground truth trajectories

Estimator Median Mean Std. RMSE

APE [m] RPE [◦] APE [m] RPE [◦] APE [m] RPE [◦] APE [m] RPE [◦]
DLIO 0.086 0.879 0.090 2.132 0.036 8.855 0.097 9.108
FASTLIO 0.081 0.926 0.081 2.168 0.030 8.815 0.086 9.078
Motion model 0.081 0.926 0.081 2.168 0.030 8.815 0.086 9.078
Fig. 13. Resulting point cloud (sliced side-view and birds-eye view) using the trajectory
of the Delta-filter, as well as a histogram showing a distribution of point-to-point
distances. These distances to ground truth are also visualized using color, where blue
corresponds to lower and red to higher distances. The color spectrum at the bottom
of the figure below the histrogram serves as a legend. The red dashed line in the
histogram indicates the mean point-to-point error, which is 18.6 cm.

experiment. Fig. 14 visualizes the 3D path estimation of the Delta-
filter (left) and the Kalman-filter (right), and compares it with ground
truth. The color of the compared paths corresponds to the APE metric.
Fig. 15 compares the same error metric, APE, as a time series. Fig. 16
shows the time series comparison of the RPE metric. In the time
series, the effect of the IR-marker misinterpretations are clearly visible
considering the unreasonable spikes for small durations, present in both
the APE and RPE plots. Table 3 list more statistic regarding the error
metrics, this time including the median value instead of the maximum
value, considering the huge outliers. The Table 3 suggests that the
rotation estimation of the Delta-filter outperformed the Kalman-filter,
considering the median and mean values. However, this result is not
significant considering the huge variance due to the outliers. Thus, we
9
also compare the performance of the filters using a point-cloud-based
analysis.

5.3.2. Point-cloud-based analysis
The experiment in this section is similar to the one from the previous

point-cloud-based analysis. In a laboratory environment, rolling on a
flat surface floor, the sphere traversed a distance of approx. 30 m in
around 210 s. According to previously used term this is a slow motion
to ensure a good mapping result, considering the next section where
we utilize offline LiDAR-based SLAM. In this section, though, we do
not use LiDAR-based SLAM, but apply the estimated trajectories of the
Delta-filter and Kalman-filter directly to the LiDAR measurements, then
match the resulting point-clouds against a ground truth map to evaluate
the accuracy. Fig. 17 shows a direct comparison of the two maps. Each
column represents one filter, where the left column corresponds to the
Delta-filter and the right column to the Kalman-filter. The mean point-
to-point error for the Delta-filter is 20.99 cm, and for the Kalman-filter
it is 17.66 cm. The walls in the map created with the Kalman-filter align
better than in the Delta-filter map, indicating that the Kalman-filter
gives better estimates for the position of the system.

5.4. Offline mapping

Our new prototype (see left sphere in Fig. 1) is equipped with a
360◦ horizontal FOV, 0 cm minimum scanning–distance ‘‘Hesai Pandar-
XT32’’ LiDAR operating at 20 Hz. Compared to the much smaller FOV
and larger minimum scanning distance of the previous system (‘‘Livox
Mid-100’’), the new setup is more suitable for mapping, as more points
are available at all times. In this section we show which mapping result
is possible, if using the trajectory estimation of the Kalman-filter as an
initial guess for the well known offline point-to-point ICP, implemented
in 3DTK [53]. Note that theoretically a better mapping result could
be possible using a more sophisticated, globally consistent graph-based
LiDAR SLAM algorithm, however this would not simulate LiDAR odom-
etry. The ICP algorithm we use matches the current scan (not utilizing
future measurements in order to simulate online mapping) against a
metascan consisting of a window of past 200 matched scans. We do not
skip any scan and downsample each one to include one point per 10 cm.
Furthermore, we discard any point-to-point correspondences having a
distance larger than 25 cm.

Fig. 18 shows the resulting maps, where each point is colored
according to its distance to ground truth. The mean point-to-point error
according to the histogram is 8.92 cm. Note that the red parts (indicating
errors larger than 50 cm) are the result of lacking coverage in the ground
truth map. Furthermore, the runtime of the ICP algorithm was 88 min
on an ‘‘Intel i7-10750H’’ 12 core laptop CPU. This indicates that it is
possible to run a trimmed online version of that ICP algorithm onboard
for low-frequency LiDAR odometry. For example, one could decrease
the sliding window size of the metascans, and not include every single
LiDAR frame, but only a subset of keyframes. This will be subject to
future work.

5.5. Discussion

In our previous paper we showed that the Delta-filter significantly
improves the pose estimation accuracy, reduces drift, and eliminates

F. Arzberger et al. Robotics and Autonomous Systems 184 (2025) 104852
Fig. 14. Comparison of the absolute position error (APE) visualized as a 3D path. Spikes are present in the reference due to misinterpretation of IR-marker reflections off the
spherical shell. The color of the compared trajectory denotes distance to ground truth. The color spectra to the right of the plots serve as a legend.
Fig. 15. Comparison of the absolute position error (APE) of the Delta- and Kalman-filter visualized as time series. Spikes appear due to erroneous ground truth caused by tracking
the IR-marker reflections of the spherical shell.
Fig. 16. Comparison of the relative pose error (RPE) of the Delta- and Kalman-filter visualized as time series. Spikes appear due to erroneous ground truth caused by tracking
the IR-marker reflections of the spherical shell.
jumps on our spherical mobile mapping system. However, despite
reducing the drift, all experiments showed that the Delta-filter still
suffers from global drift regarding translation. Our analysis in this work
shows that the Kalman-filter introduced in this work manages to reduce
this drift even further. The Kalman- and Delta-filter run simultaneously
10
onboard on an ‘‘Intel Gemini Lake N4120 Quad-Core 2.6 GHz’’ CPU
where they introduce 10% mean load in total (20% peak) and drop no
frames.

The offline mapping results, utilizing the Kalman-filter trajectory
estimations, indicate that the drift could be completely compensated by

F. Arzberger et al. Robotics and Autonomous Systems 184 (2025) 104852
Fig. 17. Comparison of resulting point-clouds when applying the trajectory estimations of the filters to the LiDAR data. In the first row, the blue line represents the trajectory. In
the second row, the points are colored according to their distance to ground truth. The histogram colors correspond to the colors of the points. The color spectrum at the bottom
of the figure serves as a legend. The mean point-to-point error according to the histogram is 20.99 cm for the Delta-filter, and 17.66 cm for the Kalman-filter.
utilizing a quite simple direct point-to-point matching algorithm, such
as ICP. It is too computationally expensive to utilize every individual
scan onboard for matching. Thus, a better strategy, e.g., utilizing
keyframes instead of each scan, is required to perform onboard real-
time LiDAR SLAM. Furthermore, even after matching, the walls in the
resulting point clouds appear to be thicker than in the ground truth
point cloud, which comes down to two factors: First, the scanners
used in the experiments have higher measurement noise, especially
when the laser goes through the plastic shell. And second, the extrinsic
11
calibration of the sensors in the spherical system is rather poor, as all
the sensors assume to sit inside the center of the sphere. Also note that
due to the challenges experienced using the infrared markers together
with the reflective shell of the sphere, we will explore alternative
methods of obtaining a ground-truth trajectory for these systems in
future work. Possible solutions might be an approach based on change-
detection using regular cameras, or utilizing more advanced offline
post-processing of the LiDAR measurements to refine the trajectory. The

F. Arzberger et al. Robotics and Autonomous Systems 184 (2025) 104852
Fig. 18. Sliced birds-eye view of the resulting point-cloud after using point-to-point ICP with the Kalman-filter estimated trajectory as initial guess. The points are colored to
represent their distance to ground truth. The color spectrum at the bottom of the histogram serves as a legend. The mean point-to-point error according to the histogram is 8.92 cm.
latter approach sound especially useful if the trajectory of the LiDAR is
to be estimated, instead of the trajectory of the sphere center.

6. Conclusions

In this paper we addressed the problem of precise, real-time, and
onboard localization in 6-DoF for spherical mobile mapping systems.
Usually on these systems, the large angular velocities and constant
aggressive dynamics when rolling makes state-of-the-art approaches,
e.g. INS- or VIO-based solutions, more difficult. In our previous work,
we proposed the simple yet effective Delta-filter, which is able to do
real-time sensor fusion of an INS-with a VIO-based solution without
using covariances on a spherical mobile mapping system. In this work,
we refined our filter by implementing a Kalman-filter using heuristi-
cally estimated covariences. Our linear Kalman-filter design, similar
to the Delta-filter, filters the change of the state, instead of the state
itself. We implemented a linear motion model for rolling based on the
cross-product of the angular velocity vector with the normal vector.
The extensive analysis shows that these implementations have lead
to improvements regarding the quality of the pose estimation on our
spherical systems. Our new prototype (both are shown in Fig. 1)
equipped with a laser-scanner which is better suited for spherical
systems (360◦ horizontal FOV, 0 cm minimum scanning distance), com-
bined with the refined Kalman-filter pose estimations, allowed us to
create precise maps using a simple point-to-point ICP. Using this offline-
ICP, we estimate the mapping accuracy of the spherical mobile mapping
system to be 8.92 cm. The mapping process with ICP was forward-
pass only, not utilizing future measurements, indicating that LiDAR
odometry at a low frequency is possible. Thus, implementing online
LiDAR odometry will be the next step in our future work to further
improve the pose estimation and mapping quality, working towards a
fully autonomous online SLAM. However, needlessly to say, a lot of
work remains to be done. In the future, we need to address a proper
extrinsic calibration for the sensors with respect to the spheres center to
further increase the accuracy. This will be the foundation for an accu-
rate motion distortion compensation algorithm for spherical systems.
Additionally, we should migrate our software to ROS2. Furthermore,
we need to measure the normal vector of the floor in real-time for the
motion model, and test this on slopes or uneven terrain. We also want
to experiment with more advanced Kalman-filter designs than just the
linear version, such as the extended or unscented Kalman-filter.
12
CRediT authorship contribution statement

Fabian Arzberger: Writing – review & editing, Writing – orig-
inal draft, Visualization, Validation, Software, Methodology, Inves-
tigation, Conceptualization. Tim Schubert: Software, Investigation,
Data curation. Fabian Wiecha: Visualization, Methodology, Formal
analysis, Data curation. Jasper Zevering: Software. Julian Rothe: Val-
idation, Methodology. Dorit Borrmann: Validation, Supervision, Inves-
tigation, Conceptualization. Sergio Montenegro: Resources, Methodol-
ogy. Andreas Nüchter: Supervision, Resources, Project administration,
Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Andreas Nuechter reports financial support was provided by European
Space Agency. If there are other authors, they declare that they have
no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

Data availability

A Github link is present in the paper where any software and
datasets from the paper are available.

References

[1] F. Arzberger, F. Wiecha, J. Zevering, J. Rothe, D. Borrmann, S. Montenegro,
A. Nüchter, Delta filter - robust visual-inertial pose estimation in real-time: A
multi-trajectory filter on a spherical mobile mapping system, in: 2023 European
Conference on Mobile Robots, ECMR, 2023, pp. 1–8, http://dx.doi.org/10.1109/
ECMR59166.2023.10256359.

[2] R. Armour, K. Paskins, A. Bowyer, J. Vincent, W. Megill, Jumping robots: a
biomimetic solution to locomotion across rough terrain, Bioinspir. Biomim. 2
(3) (2007) S65.

[3] K.W. Wait, P.J. Jackson, L.S. Smoot, Self locomotion of a spherical rolling
robot using a novel deformable pneumatic method, in: 2010 IEEE International
Conference on Robotics and Automation, IEEE, 2010, pp. 3757–3762.

[4] R. Mukherjee, Spherical mobile robot, 2001, URL https://patents.google.com/
patent/US6289263B1/en. US Patent 6, 289, 263.

[5] R. Chase, A. Pandya, A review of active mechanical driving principles of spherical
robots, Robotics 1 (1) (2012) 3–23.

[6] D. Liu, H. Sun, Q. Jia, L. Wang, Motion control of a spherical mobile robot
by feedback linearization, in: 2008 7th World Congress on Intelligent Control
and Automation, 2008, pp. 965–970, http://dx.doi.org/10.1109/WCICA.2008.
4593051.

http://dx.doi.org/10.1109/ECMR59166.2023.10256359
http://dx.doi.org/10.1109/ECMR59166.2023.10256359
http://dx.doi.org/10.1109/ECMR59166.2023.10256359
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb2
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb2
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb2
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb2
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb2
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb3
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb3
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb3
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb3
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb3
https://patents.google.com/patent/US6289263B1/en
https://patents.google.com/patent/US6289263B1/en
https://patents.google.com/patent/US6289263B1/en
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb5
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb5
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb5
http://dx.doi.org/10.1109/WCICA.2008.4593051
http://dx.doi.org/10.1109/WCICA.2008.4593051
http://dx.doi.org/10.1109/WCICA.2008.4593051

F. Arzberger et al. Robotics and Autonomous Systems 184 (2025) 104852
[7] J. Zevering, D. Borrmann, A. Bredenbeck, A. Nuechter, Dynamics of spherical
telescopic linear driven rotation robots, arXiv e-prints (2024) http://dx.doi.org/
10.48550/arXiv.2404.09230, arXiv:2404.09230.

[8] D. Borrmann, S. Jörissen, A. Nüchter, RADLER – A RADial LasER scanning device,
in: Proceedings of the International Symposium on Experimental Research,
Buenos Aires, Argentina, 2020, pp. 655–664, http://dx.doi.org/10.1007/978-3-
030-33950-0_56.

[9] J. Zevering, A. Bredenbeck, F. Arzberger, D. Borrmann, A. Nüchter, Luna-a laser-
mapping unidirectional navigation actuator, in: Experimental Robotics: The 17th
International Symposium, Springer, 2021, pp. 85–94.

[10] A.P. Rossi, F. Maurelli, V. Unnithan, H. Dreger, K. Mathewos, N. Pradhan, D.-A.
Corbeanu, R. Pozzobon, M. Massironi, S. Ferrari, et al., DAEDALUS-descent and
exploration in deep autonomy of lava underground structures, 2021.

[11] J. Zevering, D. Borrmann, A. Bredenbeck, A. Nüchter, The concept of rod-
driven locomotion for spherical lunar exploration robots, in: 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS, 2022, pp.
5656–5663, http://dx.doi.org/10.1109/IROS47612.2022.9981887.

[12] M. Bujňák, R. Pirník, K. Rástočný, A. Janota, D. Nemec, P. Kuchár, T. Tichý, Z.
Łukasik, Spherical robots for special purposes: A review on current possibilities,
Sensors 22 (4) (2022) http://dx.doi.org/10.3390/s22041413.

[13] F. Arzberger, A. Bredenbeck, J. Zevering, D. Borrmann, A. Nüchter, Towards
spherical robots for mobile mapping in human made environments, ISPRS Open
J. Photogr. Remote Sens. 1 (2021) 100004, http://dx.doi.org/10.1016/j.ophoto.
2021.100004.

[14] F. Arzberger, J. Zevering, A. Bredenbeck, D. Borrmann, A. Nüchter, Mobile 3D
scanning and mapping for freely rotating and vertically descended lidar, in: 2022
IEEE International Symposium on Safety, Security, and Rescue Robotics, SSRR,
2022, pp. 122–129, http://dx.doi.org/10.1109/SSRR56537.2022.10018586.

[15] J.-r. Xue, D. Wang, S.-y. Du, D.-x. Cui, Y. Huang, N.-n. Zheng, A vision-centered
multi-sensor fusing approach to self-localization and obstacle perception for
robotic cars, Front. Inf. Technol. Electron. Eng. 18 (1) (2017) 122–138.

[16] C. Merfels, C. Stachniss, Sensor fusion for self-localisation of automated vehicles,
PFG–J. Photogr. Remote Sens. Geoinf. Sci. 85 (2017) 113–126.

[17] G. Abdi, F. Samadzadegan, F. Kurz, Pose estimation of unmanned aerial vehicles
based on a vision-aided multi-sensor fusion, in: XXII ISPRS Congress, Technical
Commission I, Vol. 41, 2016, pp. 193–199.

[18] H. Du, W. Wang, C. Xu, R. Xiao, C. Sun, Real-time onboard 3D state estimation
of an unmanned aerial vehicle in multi-environments using multi-sensor data
fusion, Sensors 20 (3) (2020) http://dx.doi.org/10.3390/s20030919.

[19] A. Soloviev, M.M. Miller, Navigation in difficult environments: Multi-sensor
fusion techniques, in: V.L. Boginski, C.W. Commander, P.M. Pardalos, Y. Ye
(Eds.), Sensors: Theory, Algorithms, and Applications, Springer New York, New
York, NY, 2012, pp. 199–229, http://dx.doi.org/10.1007/978-0-387-88619-0_9.

[20] F. Santoso, M.A. Garratt, S.G. Anavatti, Visual–Inertial navigation systems for
aerial robotics: Sensor fusion and technology, IEEE Trans. Autom. Sci. Eng. 14
(1) (2017) 260–275, http://dx.doi.org/10.1109/TASE.2016.2582752.

[21] R.E. Kalman, A new approach to linear filtering and prediction problems, Trans.
ASME–J. Basic Eng. 82 (Series D) (1960) 35–45.

[22] E. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation,
in: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Com-
munications, and Control Symposium (Cat. No.00EX373), 2000, pp. 153–158,
http://dx.doi.org/10.1109/ASSPCC.2000.882463.

[23] F. Daum, Nonlinear filters: beyond the Kalman filter, IEEE Aerosp. Electron. Syst.
Mag. 20 (8) (2005) 57–69, http://dx.doi.org/10.1109/MAES.2005.1499276.

[24] A.I. Mourikis, S.I. Roumeliotis, A multi-state constraint Kalman filter for vision-
aided inertial navigation, in: Proceedings 2007 IEEE International Conference
on Robotics and Automation, 2007, pp. 3565–3572, http://dx.doi.org/10.1109/
ROBOT.2007.364024.

[25] A. Sakai, Y. Tamura, Y. Kuroda, An efficient solution to 6DOF localization using
unscented Kalman filter for planetary rovers, in: 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009, pp. 4154–4159, http:
//dx.doi.org/10.1109/IROS.2009.5354677.

[26] G. Ligorio, A.M. Sabatini, Extended Kalman filter-based methods for pose
estimation using visual, inertial and magnetic sensors: Comparative analysis and
performance evaluation, Sensors 13 (2) (2013) 1919–1941, http://dx.doi.org/10.
3390/s130201919.

[27] J. Kelly, G.S. Sukhatme, Visual-inertial sensor fusion: Localization, mapping
and sensor-to-sensor self-calibration, Int. J. Robot. Res. 30 (1) (2011) 56–79,
http://dx.doi.org/10.1177/0278364910382802.

[28] G. Huang, K. Eckenhoff, J. Leonard, Optimal-state-constraint EKF for visual-
inertial navigation, in: A. Bicchi, W. Burgard (Eds.), Robotics Research: Volume
1, Springer International Publishing, Cham, 2018, pp. 125–139, http://dx.doi.
org/10.1007/978-3-319-51532-8_8.

[29] J. Liao, X. Li, X. Wang, S. Li, H. Wang, Enhancing navigation performance
through visual-inertial odometry in GNSS-degraded environment, Gps Solut. 25
(2021) 1–18, http://dx.doi.org/10.1007/s10291-020-01056-0.

[30] N. Abdelkrim, N. Aouf, A. Tsourdos, B. White, Robust nonlinear filtering
for INS/GPS UAV localization, in: 2008 16th Mediterranean Conference on
Control and Automation, 2008, pp. 695–702, http://dx.doi.org/10.1109/MED.
2008.4602149.
13
[31] M. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process.
50 (2) (2002) 174–188, http://dx.doi.org/10.1109/78.978374.

[32] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, P.-
J. Nordlund, Particle filters for positioning, navigation, and tracking, IEEE Trans.
Signal Process. 50 (2) (2002) 425–437, http://dx.doi.org/10.1109/78.978396.

[33] A.J. Haug, Bayesian Estimation and Tracking: a Practical Guide, John Wiley &
Sons, 2012, http://dx.doi.org/10.1002/9781118287798.

[34] R. Mascaro, L. Teixeira, T. Hinzmann, R. Siegwart, M. Chli, GOMSF: Graph-
optimization based multi-sensor fusion for robust UAV pose estimation, in: 2018
IEEE International Conference on Robotics and Automation, ICRA, 2018, pp.
1421–1428, http://dx.doi.org/10.1109/ICRA.2018.8460193.

[35] T.-M. Nguyen, M. Cao, S. Yuan, Y. Lyu, T.H. Nguyen, L. Xie, VIRAL-fusion: A
visual-inertial-ranging-lidar sensor fusion approach, IEEE Trans. Robot. 38 (2)
(2022) 958–977, http://dx.doi.org/10.1109/TRO.2021.3094157.

[36] K. Kim, H.-T. Choi, C.-M. Lee, Underwater precise navigation using multiple
sensor fusion, in: 2013 IEEE International Underwater Technology Symposium,
UT, 2013, pp. 1–4, http://dx.doi.org/10.1109/UT.2013.6519855.

[37] W. Fang, L. Zheng, X. Wu, Multi-sensor based real-time 6-dof pose tracking for
wearable augmented reality, Comput. Ind. 92–93 (2017) 91–103, http://dx.doi.
org/10.1016/j.compind.2017.06.002.

[38] J. Zevering, A. Bredenbeck, F. Arzberger, D. Borrmann, A. Nüchter, IMU-
based pose-estimation for spherical robots with limited resources, in: 2021 IEEE
International Conference on Multisensor Fusion and Integration for Intelligent
Systems, MFI, IEEE, 2021, pp. 1–8.

[39] S. Madgwick, et al., An Efficient Orientation Filter for Inertial and
Inertial/magnetic Sensor Arrays, Vol. 25 (2010) 113–118.

[40] H.G. Min, E.T. Jeung, Complementary Filter Design for Angle Estimation Using
Mems Accelerometer and Gyroscope, Department of Control and Instrumentation,
Changwon National University, Changwon, Korea, 2015, pp. 641–773.

[41] O.K. Vanjpe, M. Narasimhappa, A.D. Mahindrakar, Global Attitude Estimation
and Dead Reckoning of a Mobile Spherical Robot Using Extended Kalman
Filter, in: Proceedings of the 2019 4th International Conference on Advances in
Robotics, AIR ’19, Association for Computing Machinery, New York, NY, USA,
2020, http://dx.doi.org/10.1145/3352593.3352623.

[42] J. Borenstein, L. Feng, Gyrodometry: a new method for combining data from
gyros and odometry in mobile robots, in: Proceedings of IEEE International
Conference on Robotics and Automation, Vol. 1, 1996, pp. 423–428 vol.1,
http://dx.doi.org/10.1109/ROBOT.1996.503813.

[43] F.L. Markley, Y. Cheng, J.L. Crassidis, Y. Oshman, Averaging quaternions, J.
Guid. Control Dyn. 30 (4) (2007) 1193–1197, http://dx.doi.org/10.2514/1.
28949.

[44] Phidgets, PhidgetSpatial precision 3/3/3 high resolution, 2023, https://phidgets.
com/?&prodid=32#Tab_Specifications.

[45] Intel, Tracking camera T265 / T261 datasheet, 2019, https://dev.intelrealsense.
com/docs/datasheets.

[46] J. Zevering, A. Bredenbeck, F. Arzberger, D. Borrmann, A. Nüchter, IMU-
based pose-estimation for spherical robots with limited resources, in: 2021
IEEE International Conference on Multisensor Fusion and Integration for Intel-
ligent Systems, MFI, 2021, pp. 1–8, http://dx.doi.org/10.1109/MFI52462.2021.
9591183.

[47] T. Qin, J. Pan, S. Cao, S. Shen, VINS-Fusion: An optimization-based multi-sensor
state estimator, 2019, https://github.com/HKUST-Aerial-Robotics/VINS-Fusion.

[48] T. Qin, J. Pan, S. Cao, S. Shen, A general optimization-based framework for
local odometry estimation with multiple sensors, 2019, https://arxiv.org/abs/
1901.03638.

[49] T. Qin, P. Li, S. Shen, VINS-mono: A robust and versatile monocular
visual-inertial state estimator, IEEE Trans. Robot. 34 (4) (2018) 1004–1020.

[50] F. Arzberger, 6-DoF Delta pose filter for sensor fusion, 2023, https://github.com/
fallow24/delta_pose_filter.

[51] S. Umeyama, Least-squares estimation of transformation parameters between two
point patterns, IEEE Trans. Pattern Anal. Mach. Intell. 13 (4) (1991) 376–380,
http://dx.doi.org/10.1109/34.88573.

[52] M. Grupp, evo: Python package for the evaluation of odometry and SLAM, 2017,
https://github.com/MichaelGrupp/evo.

[53] A. Nüchter, K. Lingemann, 3DTK—The 3D Toolkit. 2011, 2011, https://slam6d.
sourceforge.io/index.html.

[54] A. Savitzky, M.J. Golay, Smoothing and differentiation of data by simplified least
squares procedures, Anal. Chem. 36 (8) (1964) 1627–1639, http://dx.doi.org/10.
1021/ac60214a047.

Fabian Arzberger is a Ph.D. student at the University
of Würzburg. He received his masters degree in the Elite
Network Bavarian (ENB) program ‘‘Satellite Technologies’’,
as well as a bachelors degree in ‘‘Aerospace Computer
Science".

He graduated in 2021 at the chair of robotics and
telematics, supervised by Prof. Andreas Nüchter, and stayed
at the lab since then. His research focuses around 6-
DoF pose estimation and LiDAR-based SLAM on spherical
exploration robots.

http://dx.doi.org/10.48550/arXiv.2404.09230
http://dx.doi.org/10.48550/arXiv.2404.09230
http://dx.doi.org/10.48550/arXiv.2404.09230
http://arxiv.org/abs/2404.09230
http://dx.doi.org/10.1007/978-3-030-33950-0_56
http://dx.doi.org/10.1007/978-3-030-33950-0_56
http://dx.doi.org/10.1007/978-3-030-33950-0_56
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb9
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb9
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb9
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb9
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb9
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb10
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb10
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb10
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb10
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb10
http://dx.doi.org/10.1109/IROS47612.2022.9981887
http://dx.doi.org/10.3390/s22041413
http://dx.doi.org/10.1016/j.ophoto.2021.100004
http://dx.doi.org/10.1016/j.ophoto.2021.100004
http://dx.doi.org/10.1016/j.ophoto.2021.100004
http://dx.doi.org/10.1109/SSRR56537.2022.10018586
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb15
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb15
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb15
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb15
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb15
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb16
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb16
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb16
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb17
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb17
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb17
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb17
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb17
http://dx.doi.org/10.3390/s20030919
http://dx.doi.org/10.1007/978-0-387-88619-0_9
http://dx.doi.org/10.1109/TASE.2016.2582752
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb21
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb21
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb21
http://dx.doi.org/10.1109/ASSPCC.2000.882463
http://dx.doi.org/10.1109/MAES.2005.1499276
http://dx.doi.org/10.1109/ROBOT.2007.364024
http://dx.doi.org/10.1109/ROBOT.2007.364024
http://dx.doi.org/10.1109/ROBOT.2007.364024
http://dx.doi.org/10.1109/IROS.2009.5354677
http://dx.doi.org/10.1109/IROS.2009.5354677
http://dx.doi.org/10.1109/IROS.2009.5354677
http://dx.doi.org/10.3390/s130201919
http://dx.doi.org/10.3390/s130201919
http://dx.doi.org/10.3390/s130201919
http://dx.doi.org/10.1177/0278364910382802
http://dx.doi.org/10.1007/978-3-319-51532-8_8
http://dx.doi.org/10.1007/978-3-319-51532-8_8
http://dx.doi.org/10.1007/978-3-319-51532-8_8
http://dx.doi.org/10.1007/s10291-020-01056-0
http://dx.doi.org/10.1109/MED.2008.4602149
http://dx.doi.org/10.1109/MED.2008.4602149
http://dx.doi.org/10.1109/MED.2008.4602149
http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1109/78.978396
http://dx.doi.org/10.1002/9781118287798
http://dx.doi.org/10.1109/ICRA.2018.8460193
http://dx.doi.org/10.1109/TRO.2021.3094157
http://dx.doi.org/10.1109/UT.2013.6519855
http://dx.doi.org/10.1016/j.compind.2017.06.002
http://dx.doi.org/10.1016/j.compind.2017.06.002
http://dx.doi.org/10.1016/j.compind.2017.06.002
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb39
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb39
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb39
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb40
http://dx.doi.org/10.1145/3352593.3352623
http://dx.doi.org/10.1109/ROBOT.1996.503813
http://dx.doi.org/10.2514/1.28949
http://dx.doi.org/10.2514/1.28949
http://dx.doi.org/10.2514/1.28949
https://phidgets.com/?&prodid=32#Tab_Specifications
https://phidgets.com/?&prodid=32#Tab_Specifications
https://phidgets.com/?&prodid=32#Tab_Specifications
https://dev.intelrealsense.com/docs/datasheets
https://dev.intelrealsense.com/docs/datasheets
https://dev.intelrealsense.com/docs/datasheets
http://dx.doi.org/10.1109/MFI52462.2021.9591183
http://dx.doi.org/10.1109/MFI52462.2021.9591183
http://dx.doi.org/10.1109/MFI52462.2021.9591183
https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
https://arxiv.org/abs/1901.03638
https://arxiv.org/abs/1901.03638
https://arxiv.org/abs/1901.03638
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb49
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb49
http://refhub.elsevier.com/S0921-8890(24)00236-7/sb49
https://github.com/fallow24/delta_pose_filter
https://github.com/fallow24/delta_pose_filter
https://github.com/fallow24/delta_pose_filter
http://dx.doi.org/10.1109/34.88573
https://github.com/MichaelGrupp/evo
https://slam6d.sourceforge.io/index.html
https://slam6d.sourceforge.io/index.html
https://slam6d.sourceforge.io/index.html
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047

	Delta- and Kalman-filter designs for multi-sensor pose estimation on spherical mobile mapping systems
	Introduction
	State-of-the-art
	Sensor fusion with 6-DoF Delta-filter
	Notation and filter design
	Measurement, interpolation, and model
	Probabilistically weighted geometric mean

	Implementation on our spherical systems

	Sensor fusion with Kalman-filter
	Covariance model on spherical system

	Experiments and Evaluation
	Error metrics
	Absolute position error
	Relative pose error
	Point cloud error

	Comparing Delta-filter against baselines
	Fast motion
	Slow motion
	Curves

	Comparison with Kalman-filter
	Trajectory-based analysis
	Point-cloud-based analysis

	Offline mapping
	Discussion

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

