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Abstract— The field of human-robot interaction has been
rapidly advancing in recent years, as robots are increasingly
being integrated into various aspects of human life. However, for
robots to effectively collaborate with humans, it is crucial that
they have a deep understanding of the environment in which
they operate. In particular, the ability to predict traversability
and detect tactile information is crucial for enhancing the
safety and efficiency of human-robot interactions. To address
this challenge, this paper proposes a method called ”Feel the
Point Clouds” that use point clouds to predict traversability
and detect tactile terrain information for a tracked rescue
robot. This information can be used to adjust the robot’s
behavior and movements in real-time, allowing it to interact
with the environment in a more intuitive and safe manner. The
experimental results of the proposed method are evaluated in
various scenarios and demonstrate its effectiveness in improving
human-robot interaction and visualization for a more accurate
and intuitive understanding of the environment.

I. INTRODUCTION

The vision of intelligent exploration e.g. hazard detection,
rescue, and firefighting involves the collection, aggregation,
and integration of information from a variety of databases
and sensor networks. It also includes tools to analyze this
information to make predictions about fire spread, occupant
evacuation, and object recovery. Realizing this vision would
enable fire services to better coordinate with other city
services and fire departments and improve the execution
of difficult operations. The coordinated operation of auto-
mated systems also requires a certain degree of situational
awareness, especially in situations where potential obstacles
and other relevant objects need to be identified. The biggest
challenge is to develop robust methods for robots and op-
erators that can cope with the practically infinite number
of possible viewing angles and environmental influences.
Teleoperated or autonomous navigation in generic, large-
scale environments is essential for the safe and efficient
operation of robotic systems in many challenging application
scenarios. It enables mobile robots to perform or support
tasks that are repetitive, rigorous, or even dangerous for
humans, e.g. exploration and inspection, search and rescue
of injured persons, surveillance, reconnaissance, or even
transport of victims. Disaster robotics are increasingly being
used in search and rescue operations to reduce the risk to
others [1].
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Fig. 1. We study Feel the Point Clouds — our goal is to enable an extended
HRI for tracked mobile robots to extend their environment perception
through standard LIDAR sensors and a tactile sensor. (A) Robot exploration
of the nuclear power plant (NPP) Zwentendorf with a tracked search and
rescue robot. (B) A occupancy map is generated by using one onboard
LiDAR sensor which predicts the traversability of the surrounding terrain
in 3D. The green marker indicates risk-free traversable, while red indicates
traversable under high-risk. (C) Pressure distribution through a customized
tactile sensor implemented in the chassis of the tracked robot.

Rescue robots are used in hazardous environments, like
areas or buildings that are in danger of collapsing, to search
for and localize casualties. As it is very common that the
robot will have to traverse over bumpy terrain, through
collapsed areas, or go up a flight of stairs, it is essential that
the toppling of the robot has to be avoided. It is, therefore,
a common practice that such mobile robots are equipped
with a chain drive and a flipper system, as shown in Fig.
1. 3D Motion planning and terrain assessment for ground
robots, including rough outdoor terrain, multi-level facilities,
and more complex geometries were discussed in [2].
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While a lot of previous and current developments have
addressed traversability mapping and Simultaneous localiza-
tion and mapping (SLAM) methods, especially in extreme
underground infrastructures [3], there are still a lot of prob-
lems to be solved. Here we go beyond previous work and
ask: Can we decipher the properties of the measured point
clouds and work further with the terrain information? All
solutions in [3] used multiple Light Detection and Ranging
sensors (LiDARs) and cameras and more work is required
with fewer and lower-cost components. Traversing rough
terrain in unstructured underground environments can lead
to common failure modes such as localization failure due to
drops. With legged robotic systems (e.g., ANYmal, Boston
Dynamics Spot) or UAVs (e.g., Flyability drones, RMF-
Owl) or tracked UGVs (e.g., BIA5 Titan), a relatively under-
explored area is reliable state estimation under unexpected
collisions and to assess the robot’s condition.

Our previous work in this area has focused on the de-
velopment of different drive types of search robots and
improved state estimation. The degradation of visual and
laser sensing due to dense smoke motivated us to develop
a novel solution for embedding area sensing for chain drives
and also to improve odometry estimation and state estimation
of the robot. The sensor technology developed in [4] for the
main chassis has already been tested in the first experiments
and has now been further developed with the extension of
the flipper sensor technology and wireless communication.
Further experiments show that our approach is also capable
of precisely localizing contacts to the ground.

To summarize, our key contributions are:
• A method of tactile perception that enables tracked

robots to extend sensing through different terrain;
• Improved Human-Robot Interaction (HRI) and visu-

alization for cognitive assessment of robot state and
traversability prediction;

• Field experimental results in industrial environments
validate the augmented environment perception system
on a real robot, as well as insights that may impact
future designs.

II. BACKGROUND AND RELATED WORK

The traversability mapping and tactile perception in mo-
bile robotics are broad research area that spans sensing,
learning, and control. Here, we give a brief overview of
related work for traversability analysis and learning and
refer interested readers to survey articles [5], [6], [7], [8],
[9] for more comprehensive information. The aim of our
study is to determine the characteristics of interactions that
actually occur during global environmental measurement and
estimated traversability by LiDAR and during local ground
prediction by the tactile pressure sensors.

A. Traversability Mapping

In this section, we provide an overview of methods for
estimating the traversability of ground robots using visual,
geometric, and deep learning approaches. Within the context
of autonomous robotic navigation, elevation mapping is

widely recognized as important for creating consistent eleva-
tion maps of the terrain. The robot-centric elevation mapping
method in [10] and [11] estimates the terrain profile including
confidence bound which is tested with the quadrupedal robot
ANYmal [12]. Fankhauser et al. has also published an open-
source universal grid map library for rough terrain navigation
[13]. Compared to the well-known Octree representation
in [14], [15] exhibits a time efficiency, simple, and highly
parallelizable computational structure with grouping voxels
into a tree of SkipLists. [16] has proposed to apply a
Bayesian generalized kernel inference to terrain traversability
mapping. All previous work has relied on height maps,
which are prone to error when dealing with multi-floor
or overhanging obstacles, to estimate traversability during
deployment. [9] instead use a more expressive occupancy
input representation resolving this error by using a sparse 3D
convolution neural network trained on traversability data.

Our approach is similar to the work by [16], where the
traversability map is used with the aid of sparse kernels.
Due to the movement of the robot, the height of a grid
cell changes due to new sensor data, and the traversability
of all neighboring cells in the radius of the robot must
be recalculated. Based on the motion of the robot the
elevation of a grid cell is changed due to the arrival of new
measurements. Therefore the traversability of all neighboring
cells, within at least the radius of the robot, needs to be
recomputed.

B. Tactile Terrain Prediction

A far future application would be to implement the ter-
rain analysis with tactile sensors and thus match the priori
traversability analysis.

Other approaches that are related to this can be found
in [17]. Yuan et al. present an autonomous flipper planning
method based on a skeleton of the robot model for the eleva-
tion map. The proposed planning algorithm inflates the 2.5D
elevation map for correct collision checks and manipulates
the four flippers individually to traverse the 3D terrain. Inoue
et al. [18] propose a sensor that detects the deflection of
the track in contact points with the terrain. Prior work on
optical distributed contact sensors for the tracked vehicle
has been devised in [19]. Salansky et al. [20] and Pecka
et al. [21] designed a force sensor for their flipper system
which is suitable for tracked robots as well as an algorithm
to estimate terrain shape in conditions. Compared to this
paper, we focus on a higher resolution terrain prediction
where dynamic tactile sensing is performed using sensors
on the whole robot body to visualize the prediction for an
improved HRI.

In contrast to the approaches for using contact sensors, we
upgrade our sensor package with wireless communication.
This enables data transmission between the individual sensor
modules and can be easily expanded.

C. HRI in Urban Search and Rescue (USAR)

Here, we give a brief overview of related work in the
field of HRI literature on rescue robotics and refer interested
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Fig. 2. Feel the Point Clouds: Schematic illustration of the coordinate frames used for traversability mapping and tactile terrain detection. The relation
between the base frame B and the inertial frame I is given by the state estimation of the robot. The LiDAR sensor frame S and pressure sensor (yellow
marker) frames Pchassis and Pf lipper are associated to the base B through a fixed and revolute transformation which is defined in the Unified Robot Description
Format (URDF). The map frame M is defined relative to the base frame B.

readers to survey articles [22] and [1] for more comprehen-
sive information. [23] is providing a case study for HRI
in USAR and long-term HRI systems during the World
Trade Center rescue response. The paper gives a fundamental
research topic that involves extensive development and test-
ing of different robot platforms, software frameworks, and
sensors with a focus on image processing, recognition, and
identification for intelligent assistance. However, previous
work has focused on identifying the ecology required for
environmental and social modeling, and [24] provides a
framework for understanding the specific tasks and cognitive
models captured by the domain. In addition to raw temporal
visual data, we work with a variety of features: Traversability
Map and Terrain Ground Prediction.

The issues addressed in related work have long been
applied in numerous fields, e.g., monitoring sensor data and
diagnosis of machines, but the scientific problem in this
paper — the common interpretation of the traversability
and pressure distribution by tactile ground measurement for
tracked robots — remains relatively unexplored in robotics.

III. PROBLEM STATEMENT: FEEL THE POINT CLOUDS
FOR TRACKED ROBOTS

Our overall goal in this work is to draw conclusions
about the traversability prediction and feedback of the tactile
sensory system on the pressure distribution; a problem that
we call ”Feel the point clouds with tactile perception”. The
perception and detection are particularly given in humans,
who have a significantly above-average number of sensors
on their skin. Researchers are taking this innate ability as a
model and using bionic approaches and innovative ideas to
re-engineer it for robotic use cases [25]. Tactile sensors have
found significant application especially in industrial environ-
ments and particularly in the manipulation of objects [26].
But tactile sensors can do much more and with this work, we
have also found a new additional area of application that is

primarily intended to improve HRI. In addition to the tactile
ground measurement, the system can be used as a predictive
model for further planning algorithms.

IV. TRAVERSABILITY AND TERRAIN REPRESENTATION
FOR AN INTUITIVE HRI

Based on [7] traversability maps are created indepen-
dently for each sensor modality, with different traversability
definitions. In this paper, we present how the individual
traversability maps are created and how the terrain perception
is presented to the user. The framework introduces five-
coordinate frames, the inertial frame I, the map frame M,
the robot base frame B, the tactile pressure sensor P, and the
LiDAR sensor frame S, see Fig. 2.

A. Sensor Operational Design Domain (ODD)

Exploration robots are equipped with different sensor
modalities to achieve the best possible sensor coverage
and redundancy. For the mobile rescue robot in Fig. 1 the
following sensors are implemented and visualized for the
operator:

• a.) Mapping: For large-scale mapping, a Velodyne VLP-
16 is used to map the environment. The modular sensor
system [27] allows the installation of different sensing
systems, depending on the application.

• b) Object detection: An RGB cam in front of the
gripper system is used for object detection and victim
verification. A thermal camera is mounted on top of the
gripper for victim and heat source detection.

• c.) Localization: LiDAR, IMU, and track odometry data
are fused to enable more robust robot localization in
rough terrain.

• d.) Live stream: Several analog cameras provide a real-
time view of the environment for the operator.

• e.) New terrain pressure distribution, see Fig. 3: A
novel tactile sensor system is developed to get feedback
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Fig. 3. Sensor Concept for Terrain Feedback: Yellow marker indicates
sensitive pressure sensor for center tracks, while blue indicates in sum
eight pressure sensor units for the flipper system. Due to the mechanical
construction, either the front or the rear flipper system can be rotated
inwards.

from the ground and to improve HRI and the odometry
data for tracked vehicles [4].

• f.) Gas and radiological detection: Measuring devices
and sensors for the search of Objects of Potential
Interest (OPI).

B. Global Traversability Map

The probabilistic grid is the simplest and the most effective
way of applying Bayesian fusion [28]. Our proposed occu-
pancy map is generated using one onboard LiDAR sensor and
predicts the traversability of the surrounding terrain in 3D,
suitable to the deployed robot locomotion. To keep operating
costs low, the so-called traversability map is projected as
the 2d grid representation. Each cell value can be intuitively
understood as a probability that the vehicle can successfully
drive over. The traversability map is a 3D grid map that
divides the environment into equally sized spatial cells. The
structure of the map is similar to the well-known occupancy
grid maps [7] and [29], but each cell reflects the traversability
rather than the occupancy of the given space.

Within the context of robotics our work is based on
[7], [28]. The traversability t of these cells is computed
by adapting the traversability estimation framework and
is determined by three criteria to adjust the traversability
analysis depending on the terrain capability of the robot: (i)
the step height threshold h, (ii) the slope angle threshold s
and (iii) the roughness r:

t = hw
h
h∗

+ sw
s
s∗

+ rw
r
r∗
. (1)

The parameters hw, sw, and rw are weights that sum to 1
whereas h∗,s∗ and r∗ represent the maximum allowable step
height, slope, and roughness respectively. These are critical
values that may cause the robot to tip over or assume an
unstable state. We have extended the approach by taking
the critical values from the Robot Operating System (ROS)
parameter server. The values are modeled as ROS parame-
ters, which are defined in the Unified Robotics Description
Format (URDF) and can thus be adapted individually for

each robot. A parameter server is basically a dictionary
containing global variables of the robot system for physical
and collision properties that can be accessed from anywhere
in the current ROS environment. The traversability cost t
has a range with t ∈ [0,1] where a small value presents
at the local terrain as flat and smooth (traversable). While
a large value indicates rough terrain and is marked as not
traversable. The hyper-parameters are automatically set by
the parameter server and consistently applied throughout the
field trials with the same robot. If a grid cell arrives with
a new measurement, changes in the height of the grid cell
and the traversability of all neighboring cells, within at least
the radius of the robot, need to be recomputed. The direct
calculation of the traversability using Eq. 1, which involves
level fitting and eigenvalue decomposition over all affected
cells, is not practical for use in real-time. Therefore, we
only perform this calculation for the cells that are directly
intersected by the used LiDAR points (Velodyne VLP-16).
The variance prediction in a similar way to the occupancy
assignment problem discussed in [28] and the previous work
of an improved formulation of Gaussian process occupancy
mapping [30] can be used in addition to the mean of the
predicted traversability t to improve the traversability state.
The state of a grid cell and the cell for the traversability
state are modeled as follows by combining the occupancy
probability and the variance of the prediction:

state of grid cells =

 0, free mp < mfree,σ
2 < σ2

th
1,occupied mp > mocc,σ

2 < σ2
th

x,unkown otherwise
(2)

traversability state=
{

0, traversable, t < tth,σ2 < σ2
th

1,non-traversable, otherwise
(3)

in which mp is the occupancy probability and therefore
the mean of the predicted traversability t at this cell. tth
corresponds the traversability threshold on the occupancy
probability whereas mfree represents the threshold for free
cells and mocc for occupied grid cells.

The variance σ2 will filter out predictions that are larger
than the corresponding threshold σ2

th and label the grid as
non-traversable. High variance in the state of grid cells will
be registered as unknown cells. The inclusion of variance
naturally leads to a conservative estimate of traversability
in regions where measured sensor data are sparse. The
use of traversability map representation has the following
advantages:

• (i) the running cost can be adjusted by changing the cell
size of the grid map;

• (ii) with appropriate assumption, each cell can be han-
dled independently under the Bayesian principle and the
sensor fusion in certainty grids [31];

• (iii) intuitive predictive probabilistic terrain modeling
for a mobile robot.
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C. Event-based Tactile Sensor

Motivated by the requirements of terrain sensing, we
contribute our first prototype of the recently proposed tactile
sensor [4]. The new version revises the first prototype in
three specific ways:

• Extension of wireless communication between the indi-
vidual tactile sensor units;

• Measurements of the tactile sensor to determine char-
acteristics and pressure distribution;

• Whole body pressure distribution and visualization for
improved HRI.

The tactile sensor is modeled on the human sense of touch
and measures physical conditions and properties through
the sensor’s contact with the ground. The developed tactile
sensor produces a stream or sequence of data

pchassis =

 (x1,y1,cpi) · · · (x15,y1,cpi)
...

. . .
...

(x15,y1,cpi) · · · (x15,y15,cpi)

 (4)

p f lipper =

(x1,y1,cpi) · · · (x4,y1,cpi)
...

. . .
...

(x4,y1,cpi) · · · (x4,y4,cpi)

 (5)

where each p j ∈Rd is the observed tactile data with x,y as
position and cp e.g. contact property. This means that each
sensor module measures the distribution of the individual
contacts and sends the collected data as an array to the main
module. The flipper data contains either the upper or the
lower sensor data, as only one side of the flipper can cause
contact with the ground. The full tactile sensor detection then
combines the collected streams with

probot =

(p f lipper, f r, ti) 0 (p f lipper,br, ti)
0 (pchassis, ti) 0

(p f lipper, f l , ti) 0 (p f lipper,bl , ti)

 (6)

and t as observed time.

D. Data Transfer and Communication Interfaces

This work deals with the data acquisition and data transfer
of the individual measuring devices located on the robot. In
order to minimize the wiring effort, the data is exchanged
via a wireless communication protocol. The algorithm for
the sensor terrain measuring was implemented on an ESP-
32 which is a low-cost, low-power system on a chip (SoC)
series with Wi-Fi capabilities. These MCUs are commonly
used within IoT applications and some prior work within the
rescue robot has already been performed by collecting data
and improving the odometry data of a tracked robot [4]. Fig.
4 shows the configuration of the ESP32 board (secondary) to
receive data from multiple ESP32 boards via the ESP-NOW
communication protocol. Espressif’s ESP-NOW protocol is
used for communication, which allows multiple devices to
communicate with each other. The protocol is similar to
the 2.4 GHz wireless connection which is often used in
wireless devices (e.g. mouse, keyboard). All five tactile

Fig. 4. ESP-based sensor communication setup: Each sensor module
(primary) in the flipper system has been equipped with its own power
supply due to the design of the robot and thus acts as a standalone unit.
The rotational movement of the flippers can be adjusted from 0-360°, which
means that support for a tactile sensor is installed at the top as well as at
the bottom side.

sensor ESP32 modules act as senders/primary which receive
an acknowledge message indicating if the message was
successfully delivered or not to the secondary. The ESP32
receiver board (secondary) receives the messages from all
senders with a Wi-Fi frequency band of 2412− 2484MHz
and the message with sensor data is identified with the
MAC address of each board. The ESP-receiver (secondary)
then publishes the pressure distribution onto a ROS topic as
sensor-message using rosserial.

E. Data Acquisition and Prediction

Based on our sensor design in [4] the fundamental princi-
ple of the resistive multi-layer tactile sensor is the transduc-
tion of external pressure into a change in electrical resistance.
The sensor calibration is done by measuring force to output
voltage response and the surface of the multi-layer tactile
sensor for the robot chassis (pchassis) was divided into four
zones. Each zone was weighted with 0−10.2kg metal plates,
see Fig. 5 and Table I. The generated voltage depends on
the amount of deformation; therefore, the magnitude of the
applied pressure can be detected by measuring the voltage.
Conventional resistance sensors that rely on the change in
resistance of the sensor material itself have low sensitivity
and insufficient linearity.

Sensors with high sensitivity are only functional in a
limited pressure range, and sensors that can sense a wide
pressure range suffer from high non-linearity and unstable
responses in the low-pressure range. Therefore, intensive
research has been conducted to increase the sensitivity of
tactile sensors over a wide linear range. The flexible active-
matrix tactile sensor pchassis in 15× 15 arrays (225 contact
points) with an active area of 40.5×30.5cm and the further
sensors for flipper system in 4×4 arrays (16 contact points)
with an active area of 5× 15cm were also developed. To
verify the advantages of a multi-layer structure for high
sensitivity and linearity, we evaluated each sensor area with
different weights.
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Fig. 5. Principle measurement setup with different objects with the flipped
pressure distribution.

TABLE I
MEASURED MAX. VALUE IN EACH ZONE AND THE AVERAGE ZONE

VALUE OF THE TACTILE SENSOR pchassis

weight Max.value and avg. area value per zone
[g] zone 11 zone 12 zone 21 zone 22

max. avg. max. avg. max. avg. max. avg.
0 0 0 0 0 0 0 0 0

1300 138 41 107 37 107 52 58 22
2600 145 67 149 67 117 71 110 48
3900 145 80 150 87 121 81 123 64
5200 144 88 148 94 123 87 124 73
6200 144 95 145 97 125 91 127 80
7200 145 98 146 100 126 94 131 85
8200 146 101 147 102 126 97 135 91
9200 146 103 148 105 127 98 138 94
10200 146 106 148 107 126 98 138 97

V. EXPERIMENTAL RESULTS

We evaluate the proposed terrain traversability framework
in real-world environments (online) with a Velodyne VLP-
16 LiDAR, see Fig. 6 and offline with recorded sensor
data. The method is implemented in C++ and runs with the
ROS [32] Melodic and Noetic distribution in Ubuntu Linux
18.04 and 20.04. The computational hardware is either a
laptop with an i7 2.5GHz CPU and 16GB memory (offline
recorded data) and an INTEL NUC or rather an NVIDIA
Jetson Xavier AGV for robot onboard computing. The de-
veloped rescue robot with a modular payload system [27]
for manipulator and sensor modules is specially designed for
USAR applications and is capable of performing dangerous
and complex manipulation tasks. For terrain detection, all
integrated sensor units are stand-alone devices with their
own battery. After pairing all primary/secondary boards, you
have a secure peer-to-peer connection and no handshake is
required.

A. Large-scale Urban Environment

We evaluate our framework in a large-scale urban area
in a real nuclear power plant (NPP) facility (AKW Zwen-

Fig. 6. Top view of 3D traversability model of an NPP and robot path
(blue line): Traversability terrain prediction as green grid cells and Non-
Traversability marked as red cells;

tendorf). The rescue robot explored the area for about 45
min. The mapped terrain has a maximum elevation change
of approximately 2 meters and spans 50 x 50 meters. The
final traversability map is shown in Fig. 6, which success-
fully distinguishes non-traversable (red) areas and traversable
areas (green).

B. Improved HRI with Tactile Sensors

Fig. 7 and 8 plots the tactile terrain detection as 2D and
3D representations. The profile section shows not an accurate
profile of the ground detection. To obtain a finer resolution
from the area sensor, the 15x15 matrix was enlarged by
defining a query grid with a spacing of 0.25 between the
contact points and approximating each of the newly created

Fig. 7. HRI: Visualization of the tactile sensor data and visual feedback
for the operator.
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Fig. 8. (A) Terrain detection in 2D and 3D is used to verify the map fusion process for a terrain perceived under uncertainty. (B) with a profile section
(blue: max. pressure, orange: average pressure) for the right and left sides of the robot. (C) Probabilistic terrain detection with tactile sensors for a real
tracked search and rescue robot. (D) Enlargement of the matrix representation through a refinement of the mesh grid with a linear, nearest neighbor, and
cubic interpolation for improved sensor feedback.

points by a linear, nearest-neighbor or cubic interpolation,
see Fig 8. The theory and applications of splines are well
studied in previous work [33] and interpolation is a common
method of finding new data points based on the range of
a discrete set of known data points. Interpolation involves
the estimation of values of f (x) at points x in the interval
[x0,xN ] and the approaches are just as widely varied. Cubic
spline interpolation is often used to avoid the problem of
the Runge’s phenomenon that the interpolation of high-
degree polynomials at equidistant points can be problematic.
This method results in an interpolation polynomial that is
smoother and provides an improved interpretation of the
erroneous data, see Fig. 8.

VI. DISCUSSION AND FUTURE WORK

A prerequisite for USAR applications is an all-terrain
platform to perform essential tasks such as rapid exploration
and reconnaissance of injured and trapped persons or the
detection of hazardous materials. In conclusion, the ”Feel
the Point Clouds” method is a promising solution for im-
proving human-robot interaction. By using point clouds to
predict traversability and detect tactile information, robots
can have a more accurate and intuitive understanding of
their environment, which is crucial for enhancing safety and
efficiency in human-robot collaboration. The experimental
results show that tactile sensing and pressure distribution
for the operator can contribute to an improvement in the
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assessment of the safe operation of the robot, indicating the
importance of context. Certainly, there are several unresolved
tasks and improvements that need to be addressed, e.g.:

3D LiDAR-tactile sensor fusion and extended navi-
gation information: The predicted traversability and the
tactile sensor contact information are fused together. This
could further improve the autonomy function of the robot
or draw conclusions about the safely traversed path and a
comprehensive investigation with corresponding experiments
remains future work.

Adaptive flipper control and gripper applications:
Future work will be to integrate the pressure distribution into
the adaptive control of the flipper actuation and to increase
the flipper autonomy of the robot. Furthermore, the sensor
concept can be used for other applications on the robot, such
as the implementation of tactile perception in the gripper or
on the robot arm itself. Safety is an essential prerequisite for
HRI in practical scenarios and cannot be ignored for USAR
applications, since humans and robotic systems are supposed
to do the work together.

Further research is needed to evaluate the proposed method
in more complex scenarios and to explore its potential for
integration into further real-world applications.
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et al., “Anymal-toward legged robots for harsh environments,” Ad-
vanced Robotics, vol. 31, no. 17, pp. 918–931, 2017.

[13] P. Fankhauser and M. Hutter, “A Universal Grid Map Library:
Implementation and Use Case for Rough Terrain Navigation,” in
Robot Operating System (ROS) – The Complete Reference (Volume
1) (A. Koubaa, ed.), ch. 5, Springer, 2016.

[14] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous robots, vol. 34, no. 3, pp. 189–206,
2013.

[15] D. De Gregorio and L. Di Stefano, “Skimap: An efficient mapping
framework for robot navigation,” in 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 2569–2576, IEEE,
2017.

[16] K. Doherty, J. Wang, and B. Englot, “Bayesian generalized kernel
inference for occupancy map prediction,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3118–3124,
IEEE, 2017.

[17] Y. Yuan, Q. Xu, and S. Schwertfeger, “Configuration-space flipper
planning on 3d terrain,” in 2020 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), pp. 318–325, IEEE,
2020.

[18] D. Inoue, K. Ohno, S. Nakamura, S. Tadokoro, and E. Koyanagi,
“Whole-body touch sensors for tracked mobile robots using force-
sensitive chain guides,” in 2008 IEEE International Workshop on
Safety, Security and Rescue Robotics, pp. 71–76, IEEE, 2008.

[19] D. Inoue, M. Konyo, K. Ohno, and S. Tadokoro, “Contact points
detection for tracked mobile robots using inclination of track chains,”
in 2008 IEEE/ASME International Conference on Advanced Intelligent
Mechatronics, pp. 194–199, IEEE, 2008.
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