
sensors

Article

Curvefusion—A Method for Combining Estimated
Trajectories with Applications to SLAM and
Time-Calibration

Shitong Du1,2,* , Helge A. Lauterbach 2, Xuyou Li 1, Girum G. Demisse 3 , Dorit Borrmann 2

and Andreas Nüchter 2,*
1 College of Intelligent Systems Science and Engineering, Harbin Engineering University,

Harbin 150001, China; lixuyou@hrbeu.edu.cn
2 Informatics VII: Robotics and Telematics, Julius-Maximilians-University Würzburg, Am Hubland,

97074 Würzburg, Germany; helge.lauterbach@uni-wuerzburg.de (H.A.L.);
dorit.borrmann@uni-wuerzburg.de (D.B.)

3 Faculty of Sciences, Technology and Communication, University of Luxembourg, 4, rue Alphonse Weicker,
L-2721 Luxembourg; girumdemisse@gmail.com

* Correspondence: dushitong@hrbeu.edu.cn (S.D); andreas@nuechti.de (A.N.)

Received: 10 October 2020; Accepted: 30 November 2020; Published: 3 December 2020
����������
�������

Abstract: Mapping and localization of mobile robots in an unknown environment are essential
for most high-level operations like autonomous navigation or exploration. This paper presents
a novel approach for combining estimated trajectories, namely curvefusion. The robot used in
the experiments is equipped with a horizontally mounted 2D profiler, a constantly spinning 3D
laser scanner and a GPS module. The proposed algorithm first combines trajectories from different
sensors to optimize poses of the planar three degrees of freedom (DoF) trajectory, which is then
fed into continuous-time simultaneous localization and mapping (SLAM) to further improve the
trajectory. While state-of-the-art multi-sensor fusion methods mainly focus on probabilistic methods,
our approach instead adopts a deformation-based method to optimize poses. To this end, a similarity
metric for curved shapes is introduced into the robotics community to fuse the estimated trajectories.
Additionally, a shape-based point correspondence estimation method is applied to the multi-sensor
time calibration. Experiments show that the proposed fusion method can achieve relatively better
accuracy, even if the error of the trajectory before fusion is large, which demonstrates that our method
can still maintain a certain degree of accuracy in an environment where typical pose estimation
methods have poor performance. In addition, the proposed time-calibration method also achieves
high accuracy in estimating point correspondences.

Keywords: mapping; continuous-time SLAM; deformation-based method; time calibration

1. Introduction

Autonomous mobile robots have a wide range of applications, including planetary exploration,
rescue, disaster scenarios and other tasks that are hazardous or unfeasible for humans. In unknown
environments, localization and mapping are crucial tasks. Mobile mapping is defined as the data
acquisition of the surrounding environment employing a mobile platform with several sensors.
Data registration, i.e., merging the acquired scans or images into a common coordinate system,
is an essential step in mobile mapping. The poses from the positioning sensors cannot be used
directly due to imprecise measurements. Generally, four main sensors have been developed for robot
localization, namely, global navigation satellite systems (GNSSs), inertial navigation systems (INSs),
vision-based and laser-based methods. The GNSS is a simple and widely used solution for localization
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of outdoor robots [1]. However, some drawbacks, such as multipath errors, latency and lacking signal
in indoor environments, limit its application [2]. INS acquires pose information by integrating inertial
sensors, which are subject to unbounded accumulation errors due to bias and noise [3]. Vision-based
methods can obtain robust and accurate motion estimation; however, they are vulnerable to ambient
lighting conditions [4].

As an active sensor, the lidar is invariant to light. On the other hand, a typical 3D lidar, such as
the Velodyne VLP-16, can acquire environmental information at around a 10 Hz scanning rate
with a horizontal field of view (FOV) of 360 degrees and 30 (±15) degrees in the vertical direction.
High resolution allows the lidar to capture a large amount of detailed information in an environment
with long ranges. These advantages make lidar widely used in robot systems. Popular laser-based
algorithms, such as Iterative Closest Point (ICP) [5] or Normal Distribution Transform (NDT) [6],
use scan matching to estimate poses. Recently, semantic information has been integrated into scan
matching, employing a deep neural network to improve registration [7].

Although the aforementioned methods can achieve excellent results, the pose estimation suffers
from error accumulation in the long-term or large-scale scenes [8]. A solution is to fuse multiple sensors.
Multi-sensor fusion techniques explore advantages of each sensor and compensate for drawbacks from
one of them. The most common way is to integrate GNSS with INS [9]. Fusion strategies with vision or
laser and inertial sensors have also become popular in recent years [10–13]. Bry [14] presents a novel
extension of the Gaussian particle filter to estimate robot pose with an IMU (Inertial measurement
unit) and a planar laser. In [15], a loosely coupled system based on an extended Kalman filter (EKF)
combining stereo vision and IMU is proposed for pose estimation. However, updating all landmarks
and the joint covariance matrix lead to a large computational burden with the number of landmarks.

Simultaneous localization and mapping (SLAM) utilizing the lidar or camera to generate a globally
consistent mapping is a hot research area [16]. Typically, SLAM includes two parts, i.e., the frontend
and backend. The frontend consists of an initial estimation of pose and data association. In the backend,
a filtering or graph optimization framework is employed to further optimize the trajectory. In recent
years, more and more researchers have tended to use graph optimization technology in the SLAM
field. A graph-based network consists of nodes and edges. The nodes represent the pose information
of the robot, while the edges reflect the mathematical relationship between adjacent nodes [17]. It is
well known that many SLAM systems are equipped with multiple sensors. Moreover, autonomous
driving data sets employ cameras, lidars and GPS/IMU for data acquisition, e.g., the KITTI [18] and
the Malaga Urban [19] data sets. Time calibration and fusion methods are key steps in multi-sensor
fusion SLAM.

This paper presents a curve shape-based method called curvefusion for combining estimated
trajectories with applications to mobile mapping and time-calibration. There are four contributions
in this paper. First, a coarse registration that combines two pose curves from 2D lidar and GPS to
optimize poses of the planar three degrees of freedom (DoF) trajectory is carried out. While typical
multi-sensor fusion methods mainly focus on the filter framework, we provide a new perspective,
i.e., curve deformation, to deal with trajectory fusion. The proposed fusion method does not
rely on a sensor model, i.e., we require only the trajectories themselves, which improves the
computational efficiency.

Secondly, the output of curvefusion is fed into continuous-time SLAM, which is considered as a
fine registration process. In [20], HectorSLAM is fed to continuous-time SLAM as an initial trajectory.
Our system follows a similar framework. The difference is the initial trajectory of continuous-time
SLAM, i.e., HectorSlam is replaced by curvefusion in our system. Since the essence of curvefusion is
deformation, the trajectory after fusion is smoother than HectorSLAM. After applying continuous-time
SLAM, a globally consistent 3D mapping is achieved.

Furthermore, a deformation-based time synchronization approach that does not rely on the
timestamp and other hardware-based methods is proposed. We introduce the curve deformation
in [21] into the time calibration problem of multiple sensors. The previous method is well suited to our
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problems without major changes, except in shape representation, which should be considered as a
contribution. In addition, the proposed algorithms are in general applicable to trajectory optimization
and time calibration and are not limited to SLAM and mobile robots.

The hardware platform for the proposed algorithm is shown in Figure 1, which system is equipped
with a horizontally scanning SICK LMS100, a 3D laser scanner Riegl VZ-400 and a GPS module.

Figure 1. Images of the mobile robot mapping system.

2. Related Work

There is an increasing body of scholarly work regarding autonomous vehicles with different
mapping and time calibration solutions. In this section, we present a brief literature review that is
related to our current work.

Traditional multi-sensor fusion methods are based on a filtering framework. Researchers have
proposed a series of filtering algorithms in the inherent framework by using different sensors,
improving dynamic models and state estimation methods [22]. However, the convergence of the
updated probability distribution is not guaranteed. In addition, the difficulty of obtaining accurate
sensor models and uncertainties are the main drawbacks of these methods [23]. In our approach,
the fusion optimization problem of two trajectories is considered as the problem of deforming
one curved shape to the other in a deformation space. To improve the accuracy of fused poses,
a deformation-based multi-sensor fusion method is introduced in this paper. The proposed fusion
method does not rely on the sensor model. As long as the trajectories of the sensor to be fused are
given, we can easily obtain an optimized fusion trajectory, which greatly improves the computational
efficiency compared to the filter-based sensor fusion method.

Time synchronization between different sensors is critical for multi-sensor fusion. Unfortunately,
there is currently no explicit framework for time synchronization. Universal synchronization algorithms,
such as the network time protocol (NTP), require the cooperation of each code, and are sometimes not
applicable, for example, if one does not have access to the software embedded in a sensor, e.g., to the
Riegl VZ-400 [24] used in this paper. In KITTI data sets [18], the GPS/IMU data were synchronized to
the lidar time frame by their timestamp. Then, the nearest values were selected as the synchronization
results. Olson [25] pioneered a passive synchronization method to reduce the synchronization error,
like a clock correction-based approach. Recently, a pure software synchronization framework via ROS
(Robot Operating System) nodes has been proposed to achieve low latency and low synchronization
errors [26], but their system still works with the time queue using the nearest values. However,
timestamps do not accurately represent the exact environmental information due to unknown sensor
time delays. Moreover, if the sensor data are not from the same clock or a different processor,
a timestamp-based method cannot be used to synchronize data. We present a novel deformation-based
time synchronization approach that does not rely on the timestamp and other hardware-based methods.

SLAM technology has been widely applied to the robot community in recent years. Laser-based
2D SLAM techniques are a mature research area. Gmapping is currently the most widely used 2D slam
method, which is a Rao-Blackwellized particle filter (PF) approach [27]. However, PF-based algorithms
require a large number of particles to achieve excellent performance, which inevitably increases the
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computational complexity. In addition, this method relies on odometry and cannot be applied to
drones and uneven areas. HectorSLAM does not require odometer information, which extends its
application scenarios. HectorSLAM [28] represents the environment with a multi-resolution map,
which avoids getting stuck into a local minimum. In a scan matching process, the newly acquired scan
is matched with the existing map. The optimization of scan matching is solved using a Gauss–Newton
approach. However, the method requires a lidar with a higher update frequency and low measurement
noise. Hence, accurate mapping is often achieved when the robot speed is relatively low. Furthermore,
the lack of loop close also leads to a large accumulation error. In [20], a backpack-mounted 3D
mobile scanning system is proposed. In this system, HectorSLAM generates an initial trajectory of
the backpack. The trajectory is then used to “unwind” the data of the Riegl VZ-400. Our system
follows a similar framework. The difference mainly focuses on the acquisition of the initial trajectory.
Instead of the single HectorSLAM, our algorithm utilizes a deformation-based method to fuse GPS
and HectorSlam as the initial trajectory.

The frontend of SLAM involves data association and sensor pose initialization. Feature-based
methods extract feature descriptors from two consecutive images or scans. These descriptors are then
used to calculate point correspondences for relative pose estimates [29,30]. However, feature-based
methods may fail in an unstructured environment, such as a highway. Another category is ICP,
which works on the raw point-sets regardless of their intrinsic properties. ICP iteratively finds
point correspondences between two consecutive point sets and minimizes a distance costfunction [5].
However, the algorithm relies on good initial pose guesses and may easily fall into a local minimum.
Moreover, there is a drawback in the frontend estimation, i.e., incremental registration leads to the
error accumulation. In the backend, a filtering or graph optimization framework is employed to
further optimize the trajectory. In terms of the filtering method, extended Kalman filters (EKFs) [31]
and particle filters (PFs) [27] are the most widely used technologies in the SLAM field. For an EKF,
the observation update step needs to update all landmarks every time, which leads to an exponential
increase in computational complexity with the number of landmarks. In addition, EKF is extremely
vulnerable to incorrect data association. Unlike an EKF, a PF has no linear Gaussian assumption.
By applying Rao-Blackwellization to reduce the sample space, this method makes it possible to
directly use a particle filter to calculate high-dimensional state space problems in SLAM. However,
the drawback is that a PF consumes more computing resources in large scenes with more particles [16].

In recent years, an increasing number of researchers have tended to use graph optimization
technology in the SLAM field [32,33]. A graph-based network consists of nodes and edges. The nodes
represent the pose information of the robot, while the edges reflect the mathematical relationship
between adjacent nodes. The study of shapes has many applications in art, computer vision,
engineering and bioinformatics. Arena et al. [34] demonstrate the universal role that cellular nonlinear
networks (CNNs) play in shape analysis, which could be extended towards surfacefusion. Deformation
has also been introduced into the slam field. Ref [35] proposed ElasticFusion, a seminal map-centric
approach that builds a globally consistent map utilizing a deformation graph without a pose graph.
Although ElasticFusion improves the global consistency of the map, some features in the algorithm,
such as confidence-based fusion, cannot be extended to other sensor models beyond RGB-D. Inspired by
ElasticFusion, a novel approach was proposed in [36], which fuses inertial measurements into the
map. However, deformation is primarily used as a constraint to eliminate the drift from the inertial
sensors. Furthermore, the authors of [37] presented an extension of the ElasticFusion SLAM algorithm
to lidar sensors. However, non-rigid deformation is applied in the backend, i.e, global relaxation,
not in the frontend.

Our algorithm still follows a general SLAM framework. In the frontend, a coarse registration
that utilizes a deformation-based representation to obtain the fused pose of two sensors is proposed.
The output of the frontend is fed into the backend, i.e, a continuous-time SLAM framework to achieve
a globally consistent mapping.
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3. Methodology

3.1. System Overview

The architecture of the system is shown in Figure 2. First, the 2D lidar data are fed into
HectorSLAM. The trajectories of HectorSLAM and GPS are then fused by curvefusion. After this
step, the output and 3D lidar points serve as the input of the continuous-time SLAM framework.
In addition, a time-calibration algorithm is then presented, which is another application of our
curvefusion. The detailed algorithm principle will be introduced in the following sections.

Figure 2. Overview of the proposed system architecture.

3.2. Curvefusion

Shape representation based on deformation is the basis of our method. Curvefusion is actually
the mathematical transformation of the shape representation. Therefore, an introduction about the
shape representation is necessary.

3.2.1. Shape Representation

In this section, a representation of curved shapes, adapted from [38], is introduced. The method
represents a curved shape by finitely many rigid transformation matrices in the deformation space
rather than a series of point coordinates. Previous publications have discussed shape representation in
detail. However, the representation is mainly used for shape similarity metrics in computer graphics,
which cannot be directly used to solve our problem. To clearly illustrate our method, we will re-discuss
this shape representation and some improvements will be clearly mentioned here.

A curve S is represented by a series of coordinate points on the curve, i.e., S = (p1, · · · , pk),
where pi is a coordinate point, i.e., pi ∈ Rn. C is defined as the set of all possible continuous curved
shapes in Rn approximated by k points, i.e., S ∈ C. In the previous work, the authors demonstrated that
some deformations are not shape altering, such as translation and uniform scaling. These deformations
preserve both the shape and the order of points, which cause redundancy in the shape similarity
metric and need to be filtered out. In our problem, the curve is represented by a series of ordered
position coordinates. Once the filtering procedure is done, the position and scale of each moment will
be changed. Hence, the filter module in the original shape representation is removed.

After removing the filter procedure, the remaining part still follows the original framework.
We define Ĝ = (ĝ1, · · · , ĝk) ∈ SE(n)k. Here SE(n) denotes the special Euclidean group and SO(n)
denotes the special orthogonal group. Consider the mapping function f defined on C as follows:

f (S) =
{
Ĝ = (ĝ1, · · · , ĝk) if S is a closed curve.

Ĝ = (ĝ1, · · · , ĝk−1) if S is an open curve.
(1)

such that

ĝipi = pi+1 (2)
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where ĝi is the transformation matrix between pi and pi+1. Note the difference between open curves
and closed curves. S = (p1, · · · , pk) is defined as an open curve when p1 6= pk. A curve S =

(p1, · · · , pk) is a closed curve when p1 = pk.
Assuming that a starting reference position p1 and a fixed direction are available, S = (p1, · · · , pk)

are defined equivalently as

S = f−1(Ĝ) =
(

p1, ĝ1p1, ĝ2ĝ1p1, · · · ,

(
k

∏
i=1

ĝi

)
p1

)
(3)

Equation (3) is for closed curves. We define open curves in a similar fashion:

S = f−1(Ĝ) =
(

p1, ĝ1p1, ĝ2ĝ1p1, · · · ,

(
k−1

∏
i=1

ĝi

)
p1

)
(4)

Thus, S = (p1, · · · , pk) can be represented by the corresponding Ĝ. As a result, a final expression
of the novel curved shape representation is defined in Equation (1).

Consequently, a curved shape is represented by finitely many rigid transformation matrices, i.e., Ĝ.
Given a starting reference position and a fixed direction, the curved shape can be constructed using Ĝ
according to Equations (3) or (4), cf. Figure 3.

p1

p2 = ĝ1p1

pk = ĝk−1 · · · ĝ1p1

Figure 3. Given a fixed starting position p1, the curve is reconstructed by the successive application of
the transformations (ĝ1, · · · , ĝk−1).

To accurately represent the curved shape, it is necessary to obtain the optimal ĝi ∈ SE(n) between
two consecutive positions pi, pi+1 ∈ Rn. The optimal rotation matrixR is computed by first estimating
the rotation plane and then using Equation (5). First, an orthonormal basis B is obtained from pi and
pi+1 using singular value decomposition (SVD); the plane spanned by the two eigenvectors with the
largest eigenvalues is taken as the rotation plane. Next, R ∈ SO(2) is estimated by

min
R∈SO(2)

‖Rp̃i − p̃i+1‖2
2, (5)

where p̃i and p̃i+1 correspond to the two-dimensional parts of pi and pi+1, respectively. Further,
R ∈ SO(2) is expressed in homogeneous coordinates as Rh ∈ SO(n). Finally, the optimal rotation
matrixR is given as

R = BRhBT. (6)

With the optimal rotationR, the optimal translation vector is determined by

t = pi+1 −Rpi. (7)
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3.2.2. Trajectory Fusion

The approach developed in this paper extends the prior work of [21,38]. The previous work is
designed for calculating the similarity metric of curved shapes. Specifically, a similarity metric with an
explicit geodesic distance based on the shape representation in Section 3.2.1 is proposed. This aims
to characterize the intermediate process of deforming one curved shape to the other. We regard the
intermediate processes of deformation as fusion trajectories. Hence, the method is introduced to solve
the trajectory optimization problem.

However, some improvements have to be made. First, the previous algorithm is only designed
to characterize a deformation process. Therefore, the translation and uniform scaling are filtered out
at the beginning, which we have mentioned in Section 3.2.1. In fact, the intermediate curved shape
obtained in previous work is similar to Equation (1). By Equation (3) or (4), we can easily calculate the
point representation of the curve. However, if the filter module is utilized, these reconstructed points
do not represent the position information of the trajectory. To preserve location consistency, the filter
module is not enabled in our algorithm.

Furthermore, after removing the filter module, the published algorithm can calculate a series of
intermediate curves, but these curves only contain position information not rotation. We aim to obtain
pose fusion instead of one of these. To address this, an approach to calculate the rotations of the fusion
curves is presented, which is an extension of previous work.

Additionally, as mentioned above, the previous work aimed to characterize the intermediate
process of deforming one curved shape to the other, which results in several intermediate curves.
The goal of our algorithm is to obtain the optimal fusion curve. Hence, a selection criterion for the
optimal intermediate curve is proposed in this paper. A detailed discussion is presented as follows.

Given two trajectories from the same system with different sensors or algorithms, e.g., GPS and
HectorSLAM [28], our method regards these two trajectories as two curves that represent the same
shape. The fusion optimization problem of two trajectories is then considered as the problem of
deforming one curved shape to the other in a deformation space. In the process of deformation,
several intermediate curves are generated. By selecting the optimal intermediate curve, the optimal
fusion trajectory that combines the advantages of the two input curves is obtained. In the following we
devise the algorithm using curves from GPS trajectories and HectorSLAM trajectories as an example.
However, curvefusion is applicable in general setups. Next, we discuss how to combine two curve
trajectories to get a new trajectory that includes poses. The following discussion mainly focuses on
closed curves. The main idea of the algorithm is to calculate the geodesic path that shows how a
curved shape deforms into another shape.

Assume there are two curves S1 and S2. As described in Section 3.2.1, every curve S ∈ C has a
corresponding representation in Ĝ. Thus, we can get Ĝ1 and Ĝ2:

Ĝ1 = (ĝ1
1, · · · , ĝ1

k), (8)

Ĝ2 = (ĝ2
1, · · · , ĝ2

k), (9)

where the homogeneous form of ĝi is given as

ĝi =

(
Ri υi
0 1

)
, s.t., Ri ∈ SO(n), υi ∈ Rn. (10)

Geodesic curves in SE(n) between two points, are denoted as

β(t)i = R1
i ((R

1
i )
−1R2

i )
t (11)

α(t)i = υ1
i + (υ2

i − υ1
i )t, (12)

where t ∈ [0, 1]. R1
i and R2

i represent the rotation parts of ĝ1
i and ĝ2

i respectively while υ1
i and υ2

i are the
translation parts. Then, the geodesic curve connecting two points of two curves is defined as follows:
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g(t)i =

(
β(t)i α(t)i

0 1

)
, (13)

where g(t)i ∈ SE(n). By applying Equation (13), the geodesic curve, i.e., intermediate curve ζ(t)
between S1 and S2 is given as follows:

ζ(t, Ĝ1, Ĝ2) = (g(t)1, · · · , g(t)k), (14)

where k is the number of position coordinates in a curve. By setting t, the different intermediate
curves are obtained. Note that t ranges from 0 to 1 and the denominator of t determines the number
of intermediate curves. Equation (14) characterizes how S1 deforms into S2 with intermediate steps.
ζ(t) represents an intermediate curve with finitely many rigid transformation matrices. Substituting
ζ(t) into Equation (3), the intermediate curve represented by a series of position coordinates is
reconstructed. Since several intermediate curves are obtained, a selection criterion for the optimal
intermediate curve is necessary, which is the extension of previous work. Here, the position error of
the start point and the endpoint of the fusion trajectory is used as the selection criterion of the optimal
intermediate curve. Further discussions on the selection criterion will be presented in Section 6.1.

It should be noted that the intermediate curve reconstructed by Equation (3) only includes
positional information but no orientation. g(t)i in ζ(t) is only a curved shape representation in space
not including rotation. Subsequently, an approach to calculate the rotation of the curve is presented,
which is an extension of previous work. Although the following discussion mainly focuses on the
2D space, it is easily extendable to 3D. Let R2o

i denote a 2D matrix that represents the orientation
information for the ith point of S2. R2o

i is considered a tangent vector of the corresponding ĝ2
i . If ĝ2

i , R2o
i

and ĝ1
i are known, we can push the tangent vector R2o

i to the tangent space of S1. Then, the orientation
at ĝ1

i can be recovered. The pushforward to the tangent space of ĝ1
i is given by

Pi = R1
i (R

2
i )

T log
(
(R2

i )
TR2o

)
. (15)

Consequently, the orientation at ĝ1
i is calculated by

R1o
i = R1

i exp(Pi). (16)

Subsequently, if the starting point p1 is known, the positions of the intermediate curves are
computed by using Equation (3), while the orientation is obtained by Equations (15) and (16).
Thus, by selecting the optimal intermediate curve, the optimal fusion trajectory that combines the
advantages of the two input curves is obtained.

4. Continuous-Time SLAM

The fusion trajectory from our curvefusion algorithm is fed into the continuous-time SLAM to
further improve the trajectory and the 3D map quality. Specifically, the output of curvefusion is used
to discretize time and provide an initial trajectory for the continuous-time SLAM. More mathematical
details of our continuous-time SLAM algorithm are are given in [39]. To clearly discuss the application
of curvefusion in this part, the basic idea of the continuous-time SLAM is summarized as follows.

This method is similar to ICP. The corresponding point is found using the nearest neighbor search,
and the optimal trajectory is estimated by iteration. The difference of continuous-time SLAM is that it
was developed for mobile mapping where no separate terrestrial 3D scans exist. In mobile mapping,
applying rigid pose estimation to this non-rigid problem directly is problematic. A solution is to
coarsely discretize the time. This results in a partition of the trajectory into sub-scans that are treated
rigidly. Then, rigid registration algorithms, like the ICP and other solutions to the SLAM problem,
are employed. Obviously, trajectory errors within a sub-scan cannot be improved in this fashion.
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For the continuous-time SLAM, a much finer discretization of the time, at the level of individual
2D scan slices or individual points, is utilized. In this paper, time is discretized according to the
update frequency of curvefusion, which is consistent with HectorSLAM. The robot moves from
t0 to tn, generating a trajectory T = (V0, · · · , Vn), where Vi denotes the pose of the robot at
moment ti. M = (m0, · · · , mn) is the set of lidar measurements, where mi = (mx,i, my,i, mz,i) is
a point acquired at ti in the local coordinate system of Vi. If Vi represents more than one point, Vi is
assigned to the first point and the remaining points are motion compensated using pose interpolation.
P = (p0, · · · , pn) represents the points set in the global coordinate frame. Given M and T, pi is
calculated by pi = Vi ⊕mi = Ri ∗mi + ti. The optimal trajectory T̂ = (V̂0, · · · , V̂n) is obtained so
that P generated via T̂ more closely resembles the real environment.

For each pi, the closest point pj is found via the nearest neighbor search based on |ti − tj| > δ,
where δ is again the minimal amount of time that must have elapsed for the laser scanner to have
measured the same point again, that is, the point matching procedure starts to run only when the time
interval between two points is greater than δ. After the corresponding points are established, the pose
differences and their respective covariances are calculated, T̂ is optimized iteratively. This process is
stopped until the change in the trajectory falls below a threshold. The positional error of two poses,
Vi and Vj, is defined as follows:

Ei,j =
i+N

∑
k=i−N

‖Vi ⊕mk −Vj ⊕m
′
k‖2 (17)

where mk and m
′
k are the corresponding point pairs, and N represents a small neighborhood of points

taken in the order of hundreds of milliseconds that is assumed to have negligible pose error.
It can be seen from the above that continuous-time SLAM needs an initial trajectory T and a

time-discrete method. In [20], the initial trajectory is determined by HectorSLAM. Here, we use
cuvefusion to integrate GPS with HectorSLAM as the initial trajectory T. Time is discretized according
to the update frequency of curvefusion.

5. Time Calibration

Data synchronization between different sensors is critical for multi-sensor fusion. Two strategies
exist for time synchronization. First, a hardware trigger is used for data acquisition at the expense of
requiring additional cables. However, even in the presence of a hardware trigger, one does not know
when the sensors have acquired the data due to unknown delays within the sensors, for example
a laser scanner might need to wait for a mirror rotation. The second approach is to set the sensors
into a continuous data streaming mode and record the data using time stamping. Time stamping
requires all recording devices to be synchronized, which is sometimes not possible, and even if it
is possible, the timestamps do not accurately represent real-time environmental information due to
sensor time delays.

In this section, a point correspondence estimation method in computer vision for the parametrization
of curves is applied to our data synchronization. The method is proposed in [21] for point correspondence
between two curved shapes, which is a prerequisite of the calculation of shape similarity. Since this
method can easily be adopted to solve the time calibration problem, we just keep the complete original
model. However, as far as we know, there is no relevant literature that considers the time calibration
problem from the view of the curve shape. Next, we will present in detail how the method is applied
to time calibration.

Now, assume there are two curves, S1 which consist of k positions in a fixed order and S2 with l
positions respectively, where k < l. Since the order of the positions on the curve is fixed, the time
calibration between two curves can be considered as finding the optimal samplers that are described
as follows:
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S1
a = S1 ◦ ξa, (18)

S2
b = S2 ◦ ξb, (19)

where ξa and ξb represent the optimal samplers for S1 and S2, respectively, S1
a and S2

b are the curves
that are optimally sampled with corresponding points.

Since the reading frequency of the GPS receiver is lower than the laser scanning rate, i.e., k < l,
the point correspondence estimation based on optimal sampling for the calculation of shape similarity
is applied to our problem. The main idea is to fix curve S1 as a reference that is represented by
f (S1) = (ĝ1

1, · · · , ĝ1
k), and then find the optimal sampler ξb of S2, with respect to S1. Please note that

a series of the mathematical operations in this part is based on Sections 3.2.1 and 3.2.2. The general
form is described as

S2 ◦ ξb = (pb
1, pb

2, · · · , pb
k) pb

i ∈ Ui (20)

where pb
i=1,··· ,k are the sampled positions using sampler ξb, and the size of Ui=1,··· ,k denotes the search

space of pb
i . The whole curve S2 is covered by sliding a window along the trajectory to get Ui=1,··· ,k.

The optimal sampler ξb is obtained by optimizing Equation (21), which is written as follows:

arg min
ξb

k

∑
i=2

φi(pb
i−1, pb

i ), (21)

where φi is defined as

φi(pb
i−1, pb

i ) = αd(ĝ1
i , ĝ2

i )
2 + β(AS2(p∗i−1, p∗i )− AS2(pb

i−1, pb
i )), (22)

where pb
i−1 and pb

i are sampled positions of S2 using a candidate sampler for the (i− 1)th and ith
positions, such that ĝ2

i pb
i−1 = pb

i , p∗i−1 and p∗i are sampled points of S2 for the (i − 1)th and ith
positions by a uniform sampler ξ∗. Generally, d(ĝ1

i , ĝ2
i )

2 is the cost functional that is used to calculate
the point matching between two curves. However, the cost functional assumes the sampling functions
preserve shape. On the contrary, if the sampling function does not preserve shape then the result will
deviate from the target shape. To this end, a constrained objective functional A(·) that attempts to
enforce shape preservation is added to d(ĝ1

i , ĝ2
i )

2. A(·) is a function that computes the area of a given
curve in R2, which is a strong shape preservation constraint. Assume S = (p1, · · · , pk), AS is defined
as follows:

AS =
1
2

k

∑
j=1

(py
j − py

(j+1)modk)(p
x
j − px

(j+1)modk) (23)

where px
j and py

j denote the x and y coordinate components of the positions pj. Note that AS2(p∗i−1, p∗i )
is evaluating Equation (21) per sequential points. Thus, Equation (22) is obtained. α and β are
weighting factors. ĝ1

i and ĝ2
i are representatives of the corresponding points of the curves S1 and S2,

respectively. d(ĝ1
i , ĝ2

i ) is the geodesic distance connecting two points of two curves that is given in the
following form:

d(ĝ1
i , ĝ2

i ) = (‖ log((R1
i )

TR2
i )‖2

F + ‖υ2
i − υ1

i ‖2
2)

1/2 (24)

where R1
i and R2

i represent the rotation parts of ĝ1
i and ĝ2

i , respectively, while υ1
i and υ2

i are the
translation parts. Please refer to Equation (12).

Here, a procedure relating to how curvefusion is applied to time-calibration is described. Since the
mathematical operations involved in this part are based on Sections 3.2.1 and 3.2.2, we regard this



Sensors 2020, 20, 6918 11 of 25

part as a direct application of curvefusion. Assume there are two curves: S1, which consists of k
position coordinates in a fixed order, and S2 with l position coordinates, where k < l. The main idea is
to fix curve S1 as a reference and then find the optimal sampler ξb of S2 with respect to S1. Hence,
the problem of time calibration is transformed into obtaining the optimal sampler ξb by minimizing
Equation (21).

6. Experimental Results

6.1. Trajectory Fusion Evaluation

To evaluate the performance of the proposed approach, two data sets from the campus of
Julius Maximilian University of Würzburg (Bavarian Center for Applied Energy Research (ZAE)
and parking lot) were collected by our mobile robot, Achim3D. Achim3D is a VolksBot robot with
Ackermann-like steering and is equipped with a horizontally scanning SICK LMS100, the high-end 3D
laser scanner Riegl VZ-400 and a GPS module. In the first data set, the robot was driven starting in
front of the robotics hall around the old ZAE building (Bavarian Center for Applied Energy Research).
The complete loop took 429 s and was 280 m long. The trajectory around the parking lot was acquired
as the second data set, which was 150 m long and took 258 s. Figure 4 is the satellite map of the two
data sets.

Parking ZAE

Figure 4. The corresponding satellite images for the Bavarian Center for Applied Energy Research
(ZAE) and parking lot data sets. Red curves are the trajectories the robot traveled [40].

To improve the accuracy of the 3D point cloud, we combined the trajectories from HectorSLAM
and GPS by applying our curvefusion approach. Note that the outputs of both HectorSLAM and
curvefusion are 2D trajectories. In the first part of the experiments, the results of HectorSLAM and
curvefusion were used to “unwind” the data of the Riegl VZ-400. Some intuitive 3D point cloud
displays are presented, which will show that our curvefusion outperforms HectorSLAM.

In the second part of experiments, HectorSLAM and curvefusion were first fed into the
continuous-time SLAM. Then the output trajectories were used to “unwind” the data of the Riegl
VZ-400. Similarly, some intuitive 3D point cloud displays are presented, which will show that our
curvefusion + continuous-time SLAM outperforms HectorSLAM + continuous-time SLAM. In addition,
some quantitative error analysis relative to the ground truth using cloudcomare is also presented
in this part. In this paper, the ground truth is obtained with 3DTK—The 3D Toolkit [41], which is
designed for the automatic high-precise registration of terrestrial 3D scans, i.e., globally-consistent
scan matching. When the robot equipped with the Riegl VZ-400 moves along the same environments,
we enable a scan-go-stop fashion to collect several terrestrial laser scans, which are registered with
3DTK—The 3D Toolkit. Here, 12 terrestrial 3D laser scans were acquired around the old ZAE building
and the parking lot.

Before carrying out the experiments, some questions about the intermediate curve are first
discussed. As discussed earlier, several intermediate fusion curves were obtained in Section 3.2.2.
Figure 5 shows the intermediate curve results from the ZAE data set. By setting t in Equation (14),
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the different intermediate curves are obtained. Note that t ranges from 0 to 1 and the denominator of t
determines the number of intermediate curves. The larger the denominator of t, the more intermediate
curves, which will increase the calculation burden of the system, and few intermediate curves cannot
fully highlight the characteristics of fusion curves. In our experiments, we set the intermediate curve
as eight, which means that t changes from 0/8 to 8/8. Here, the position error between the start point
and the endpoint of the fusion trajectory is used as the selection criterion of the optimal intermediate
curve. Specifically, the position error of a certain intermediate curve is minimal, we assume that the
curve is the optimal fusion curve, which also intuitively measures the degree of closure of a loop.
As seen from Figure 5, for the pure HectorSLAM trajectory, i.e., t = 1, the endpoint lies outside of
the trajectory polygon due to error accumulation, while curves (b)–(d) have the endpoint inside the
polygon and are more similar to the GPS trajectory. According to the selection criterion, t = 4/8 is the
optimal fusion curve in the ZAE data sets and t = 3/8 is the optimal fusion curve in the parking lot
data sets. To demonstrate the performance of the proposed approach, curves (d)–(h) are also selected
as fusion curves.

-20

 0

 20

 40

 60

 80

-30 -20 -10  0  10  20  30  40  50  60

y 
[m

]

x [m]

Sequence Start

(a) t = 0
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(h) t = 7/8
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Figure 5. Fused trajectories. The box marks the starting point. t = 0: original GPS trajectory. t = 1:
initial trajectory from HectorSLAM. The rest of the figures are a series of fusion trajectories. All curves
are from the ZAE data sets.

Figure 6 compares the 3D point cloud result using only the HectorSLAM trajectory with the
trajectories from our curvefusion approach from the bird’s eye and perspective views of the ZAE data
sets. The 3D point cloud results are generated by using the trajectories to unwind the data of the Riegl
VZ-400, where t = 0 refers to GPS trajectory and t = 1 represents HectorSLAM trajectory. The larger t
indicates the fusion curve is closer to HectorSLAM. The left column visualizes results from the bird’s
eye view while the right column shows perspective views that correspond to the loop closure in the
left column, i.e., the areas marked with red rectangles in the left column. The red arrows mark some
examples for the improvements by our curvefusion approach.
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1

(k) t = 0 (GPS)

33

22

44

(l) t = 0 (GPS)

Figure 6. Visual inspection of the ZAE data sets. Left column: 3D point cloud results from bird’s eye
view. Right column: the corresponding perspective views. The right column shows perspective views
that correspond to the areas marked with red rectangles in the left column.

For the ZAE data set, the quality of the point cloud from the pure HectorSLAM trajectory
suffers from large errors, especially at the loop closure, i.e., Arrow 1 in Figure 6a. As the marked
areas with Arrow 2 in Figure 6b show, a large gap occurs at the intersection of the two walls of
the building and the street signs (Arrows 3 and 4) in the real scene are mistakenly turned into two.
When t = 7/8, i.e., Figure 6c,d, the large gap marked by Arrows 1 and 2 is slightly closed and the street
signs are slightly revised compared to HectorSLAM. However, the performance does not improve
significantly since the curve is so close to the original HectorSLAM trajectory, thus preserving many of
the characteristics of the HectorSLAM trajectory including the errors. As t decreases, which indicates
the curve is closer to the GPS trajectory, the quality of the point cloud improves. When t = 4/8,
the large gap (Arrow 1) in Figure 6i is closed correctly and the rotation errors at the street signs (Arrows
3 and 4) in Figure 6j are eliminated. When t = 0, the large gap (Arrow 1) in Figure 6k is closed, however,
the border is also largely missing. Moreover, the street signs (Arrows 3 and 4) in Figure 6l remain
rotated. Consequently, our fusion curve t = 4/8 achieves the optimal result in the ZAE data set.

After applying continuous-time SLAM, a descent map quality is achieved. Figure 7 shows visual
results after running continuous-time SLAM for a fixed number of iterations. Here, HectorSLAM
and curvefusion are first fed into the continuous-time SLAM. Then the output trajectories are used to
unwind the data of the Riegl VZ-400. Compared with Figure 6, the gaps, i.e., Arrow 1 in the left column
of Figure 7, are completely closed regardless of our fusion approach or the HectorSLAM trajectory.
The corresponding 3D views of the red rectangle in the left column are shown in the right column,
where two walls of this building are well connected (Arrow 2). As Figure 7b shows, the optimized point
cloud quality of the HectorSLAM trajectory still suffers from large errors, e.g., the street signs (Arrows 3
and 4). Instead, our fusion approach eliminates the rotational error cf. Figure 7d,f,h,j, though the street
sign (Arrow 3) remains slightly rotated. By comparison, t = 4/8, i.e., Figure 7i,j, achieves the optimal
results among our fusion trajectories. Compared with Figure 7a, some errors in corners (Arrows 5
and 6) are corrected completely. In conclusion, although point cloud quality both from our fusion
trajectories and HectorSLAM have been significantly improved after applying continuous-time SLAM,
our fusion approach achieves higher point cloud accuracy both locally and globally.
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1

(k) t = 0 (GPS+C-T SLAM)

4

22

3

(l) t = 0 (GPS+C-T SLAM)

Figure 7. HectorSLAM + C-T SLAM and curvefusion + C-T SLAM denote HectorSLAM and
curvefusion are first fed into the continuous-time SLAM. Then the output trajectories are used to
unwind the data of the Riegl VZ-400. GPS + C-T SLAM has a similar definition.

Figures 8 and 9 show results similar to Figures 6 and 7, but from the parking lot data set.
Figure 8 shows visual inspections using only the HectorSLAM trajectory and the trajectories from our
curvefusion approach, where the Arrows 1 and 2 in the left column indicate the starting position and
the final position, respectively. The right column corresponds to the red rectangle in the left column,
i.e., the loop closure. As Figure 8a shows, the start and end points are far apart due to errors. Figure 8b
is the corresponding 3D view, which shows a large gap (red arrow). With t = 5/8, the rotation between
Arrows 1 and 2 is slightly improved cf. Figure 8g and the gap (Figure 8h) is slightly smaller with
respect to Figure 8a,b). When t = 3/8, i.e., Figure 8i,j, the gap between Arrows 1 and 2 is further closed
compared to Figure 8a,b. Compared with t = 0, i.e., the pure GPS, Figure 8i,j, in t = 3/8 achieves
better results, although the results are only slightly better with respect to pure GPS.
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Figure 8. Visual inspection of the parking lot data sets. Left column: 3D point cloud results from
bird’s eye view. Right column: corresponding perspective views marked with the red rectangle on the
left column.

Overall, our fusion method improves the quality of the point cloud, especially in the final
part of the curve, where the loop closure happens. The gap caused by the trajectory error from
HectorSLAM is closed or improved after using our fusion trajectory, since GPS does not suffer from
global error accumulation.
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Figure 9 shows visual results after running continuous-time SLAM for the parking lot data set.
Compared with Figure 8, the gaps between Arrows 1 and 2 are closed completely regardless of our
fusion approach or HectorSLAM trajectory, cf. the left column. However, an additional rotation
error has occurred (Arrow 4) with respect to Figure 8. Compared with Figure 9a, the rotation errors
(Arrow 4) are improved cf. Figure 9e. From the 3D view, Figure 9b (Arrow 3), i.e., pure HectorSLAM,
outperforms our fusion result, cf. Figure 9d,f. However, the comparison results with the ground truth
in Figure 10 and Table 1 show that our fusion trajectories achieve higher accuracy. For reference, which
we define ground truth as several terrestrial laser scans acquired with the Riegl VZ-400 and registered
with 3DTK—The 3D Toolkit [41].
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Figure 9. The results are optimized by continuous-time SLAM, and only four trajectories are selected.
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(a) t = 1 (b) t = 6/8 (c) t = 4/8

Figure 10. The visual inspection of computed errors from the ZAE data set: (a) indicates the result of
pure HectorSLAM + continuous-time SLAM and (b,c) are from our curvefusion + continuous-time
SLAM. Compared to Figure 7, only the three best results are given.

Table 1. The proposed method for ground truth error and its standard deviation error. (a), (b), (c)
correspond to the parameters in Figures 10 and 11.

Data Sets
(a) (b) (c)

E (m) σ (m) E (m) σ (m) E (m) σ (m)

ZAE 0.6611 0.7487 0.7142 0.6625 0.4698 0.5282
Parking 0.7116 0.8166 0.6874 0.8039 0.5813 0.6876

(a) t = 1 (b) t = 6/8 (c) t = 3/8

Figure 11. Same as Figure 10 but for parking lot data set.

Cloud to cloud distance error is used to evaluate the accuracy of point clouds by
CloudCompare [42]. Figures 10 and 11 are visual inspections of the ZAE and parking lot data
sets, respectively. Yellow indicates high point to point distances and blue colors represent low errors.
The color scale ranges from 0 to 12 m. The errors of point clouds optimized by continuous-time SLAM
to ground truth are given in Table 1. As the results show, for the ZAE data set, t = 4/8 shows better
results than others, cf. Figures 7 and 10c and Table 1. t = 3/8 achieves the optimal point cloud quality
in the parking lot data set, cf. Figures 9 and 11c and Table 1.

6.2. Time-Calibration Evaluation

Time synchronization is performed to obtain the correspondence of data representing the same
attributes from different sensors. These attributes mainly refer to direct or indirect position or attitude
information. Sensor data acquisition suffers from time delays during the data transfer. In scenarios
where more than one clock is available, synchronization of time stamps helps to improve the results.
A typical example is our hardware platform, i.e., Achim3D, where all sensors such as the GPS, 2D laser
scanner, IMU and the 3D laser scanner Riegl VZ-400 are connected to the same roscore, thus receiving
ROS time stamps. However, the Riegl has its own clock, that is, the Riegl clock and the ROS clock
are unrelated. Several mathematical models are used to synchronize the data of Riegl and other
sensors [39].
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In this part, four data sets are used to test our time calibration method using curvefusion. One of
them was collected from a UAV (Unmanned Aerial Vehicle) sensor payload featuring a GNSS and a
lightweight laser scanner, cf. Figure 12. The payload consists of a Velodyne VLP16 Lite laser scanner.
For positioning and localization, we mounted an XSens Mti-G 700. The trajectory was acquired
around the computer science building [43]. The GPS trajectory and integrated position information
from the IMU are synchronized by timestamp, which is also considered as ground truth in Figure 13.
The left column shows the ground truth of point correspondence, while the right is calculated by our
time-calibration method.

Figure 12. Prototype of the mapping module.
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Figure 13. Data synchronization results. (Left): Synchronizing data by GPS timestamps (ground truth).
(Right): Synchronizing data by the proposed time-calibration method. The trajectory is from the
computer science building data set.

To further test the performance of the proposed method on our platform, we carried out two
simplified experiments where two GPS modules were mounted, one on the robot and one connected to
the Riegl, both having their own clock. Two data sets around the old ZAE building and the parking lot
near the computer science building were collected by our hardware platform. The synchronized data
from the two experiments is displayed in Figures 14 and 15. To verify the performance of our time
calibration method over long distances, the fourth data set was acquired around the campus. The first
author walked around the campus in a large circle that took around 16 min and the total length was
1.3 km. In this experiment, two GPS modules were connected to two different computers which were
put into a backpack. The visual display of the synchronized data is shown in Figure 16.
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Figure 14. Data synchronization results. (Left): Synchronizing data by ground truth. (Right):
Synchronizing data by the proposed time-calibration method. The trajectory is from the ZAEG data set.
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Figure 15. Data synchronization results. (Left): Synchronizing data by ground truth. (Right):
Synchronizing data by the proposed time-calibration method. The trajectory is from the ParkingG
data set.
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Figure 16. Data synchronization results. (Left): Synchronizing data by timestamps (ground truth).
(Right): Synchronizing data by the proposed time-calibration method. The trajectory is from the
Campus data set.

Intuitively, compared with the ground truth, our time calibration method achieves high point
correspondence accuracy. To be able to quantitatively demonstrate the accuracy of the proposed
method, some numerical values, i.e., mean, standard deviation and root mean square error (RMSE) of
our time calibration results to the ground truth are given in Table 2. Table 2 shows that with correctly
set parameters α and β in Equation (22), our time calibration method achieves a high accuracy on
synchronizing data from different sensors. Parameter α is set to 1 according to [21]. For parameter β,
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assigning a large value leads to an objective functional that favors samplers that preserve area even
with a high deformation cost and vice versa for a small β. However, large β also means point matching
is not very elastic. If β is small, a highly flexible matching result is obtained but it might lose the
original geometric moment of the curve S2. In our experiment, β ranges from 0 to 1.

Table 2. Time calibration error.

Data Sets Mean [s] std [s] RMSE [s]

Computer Science −0.0374 0.0278 0.0466
ZAEG −0.0126 0.2518 0.2516

ParkingG −0.0236 0.1977 0.1984
Campus −0.0216 0.1967 0.1975

7. Conclusions and Future Work

We have presented a novel approach called curvefusion for combining estimated trajectories with
applications to SLAM and time-calibration. The state-of-the-art for SLAM methods mainly focuses
on pose graphs or probabilistic methods, whereas our approach instead adopts a deformation-based
method to optimize the map. The fusion trajectory output from our curvefusion algorithm is
then fed into continuous-time SLAM to further improve the trajectory and the 3D map quality.
Furthermore, a novel deformation-based time synchronization approach that does not require
timestamps was presented.

Experiments carried out with a mobile robot, equipped with a horizontally scanning laser scanner,
a GPS module and a high-end 3D laser scanner as well as with a UAV sensor payload featuring a
GNSS and a lightweight laser scanner, showed that the proposed approach achieves high 3D map
quality and accurate time synchronization results.

Some factors that affect accuracy improvement have to be explained. Typically, GPS is more
accurate on the global scale, while HectorSLAM is more accurate on the local scale. Hence, the loops
close better by curvefusion. However, 2D lidar LMS100 is mainly applied in indoor environments,
hence, HectorSLAM inevitably outputs trajectories with large errors. Furthermore, the lack of a loop
eventually leads to a large gap between the starting position and end point, which is especially bad
in outdoor environments. For the above reason, the final fusion result has not been significantly
improved. However, one advantage of curvefusion is that even if the two worst trajectories are fused,
they will be improved to a certain extent, which shows that our method can still maintain a certain
accuracy in harsh environments.

In terms of fusion, GPS only contains position information, so that the final fusion result improves
the accuracy in terms of position, but the fusion of rotation is actually a mapping of HectorSLAM
pose information. In this case, the large pose error of HectorSLAM will have a negative impact on
the fusion trajectory. In future work, we will consider the full integration of the position and attitude
information of the two curves, e.g., combing visual odometry and lidar.

For the optimal curve selection criteria, when the position error between the start point and the
endpoint of a certain intermediate curve is minimal, we think that the curve is the optimal fusion
curve. This criterion is only applicable to scenarios with loops. The optimal fusion curve selection
without loops is the problem we have to solve in the future.

In addition, since the proposed time calibration method is based on curve deformation,
the trajectory shape of each sensor needs to be similar before calibration. If a curve has a large
error, the final time calibration result is not satisfactory, however, this does not affect the practical
significance of the proposed method since this precondition is not difficult to implement in the current
popular trajectory algorithm.
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