
sensors

Article

Dynamic Point Cloud Compression Based on Projections,
Surface Reconstruction and Video Compression

Emil Dumic 1,* , Anamaria Bjelopera 2 and Andreas Nüchter 3

����������
�������

Citation: Dumic, E.; Bjelopera A.;

Nüchter, A. Dynamic Point Cloud

Compression Based on Projections,

Surface Reconstruction and Video

Compression. Sensors 2022, 22, 197.

https://doi.org/10.3390/

s22010197

Academic Editor: Steve Vanlanduit

Received: 26 September 2021

Accepted: 14 December 2021

Published: 28 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, University North, 104. Brigade 3, 42000 Varaždin, Croatia
2 Department of Electrical Engineering and Computing, University of Dubrovnik, Cira Carica 4,

20000 Dubrovnik, Croatia; anamaria.bjelopera@unidu.hr
3 Department of Informatics VII—Robotics and Telematics, Julius-Maximilians-University Würzburg,

97074 Würzburg, Germany; andreas.nuechter@uni-wuerzburg.de
* Correspondence: edumic@unin.hr

Abstract: In this paper we will present a new dynamic point cloud compression based on different
projection types and bit depth, combined with the surface reconstruction algorithm and video
compression for obtained geometry and texture maps. Texture maps have been compressed after
creating Voronoi diagrams. Used video compression is specific for geometry (FFV1) and texture
(H.265/HEVC). Decompressed point clouds are reconstructed using a Poisson surface reconstruction
algorithm. Comparison with the original point clouds was performed using point-to-point and
point-to-plane measures. Comprehensive experiments show better performance for some projection
maps: cylindrical, Miller and Mercator projections.

Keywords: 3DTK toolkit; map projections; point cloud compression; point-to-point measure; point-
to-plane measure; Poisson surface reconstruction; octree

1. Introduction

A point cloud represents a set of discrete points in a given coordinate system, usually
in a three-dimensional Cartesian system. It can represent different objects, urban settings
and landscapes, or any other physical entities in different use cases such as: computer
graphics and gaming, virtual reality, 3D content creation, medical applications, construction
and manufacturing, consumer and retail, cultural heritage, remote sensing, autonomous
vehicles, surveillance etc. [1]. Point clouds, together with light fields and digital holography
are described as plenoptic representations of the visual scene, that are used in many im-
mersive applications [2]. Point cloud processing algorithms can be considered in different
scenarios, such as acquisition [3,4], coding and transmission [5,6] and (re)presentation and
display [7,8].

Due to the data size of a static and dynamic point cloud, it is important to define
efficient compression techniques for storage and compression. In this paper, we will
present a dynamic point cloud compression that can be used in a point cloud transmission
system. A basic overview has been presented in [9], while in [10] several static point clouds
(with different sizes, e.g., number of points) have been compressed and decompressed
using the equirectangular projection with a similar number of points as in the other used
octree-based compression. In this paper we will present a comprehensive comparison
of 10 different projection types, combined with the video compression algorithms for
geometry and texture, and finally test surface reconstruction algorithms to fill the holes
present after the lossy point cloud decompression process.

The structure of this article is as follows. Section 2 presents a related overview of
point cloud compression algorithms. Section 3 presents different projection types that are
used for projecting 3D point cloud to the image and vice versa. Section 4 describes the
creation of the panorama image from a point cloud and how to recreate a point cloud from

Sensors 2022, 22, 197. https://doi.org/10.3390/s22010197 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0262-5595
https://orcid.org/0000-0003-4795-9510
https://orcid.org/0000-0003-3870-783X
https://doi.org/10.3390/s22010197
https://doi.org/10.3390/s22010197
https://doi.org/10.3390/s22010197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s22010197
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22010197?type=check_update&version=2

Sensors 2022, 22, 197 2 of 31

a panorama image. Section 5 gives the results from different projection types described in
the previous section, using different objective quality measures and finally Section 6 gives
the conclusions.

2. Related Work

Several static and dynamic point cloud coding solutions have been proposed recently.
In [11] the authors describe an efficient octree implementation that is used to store, compress
or visualize large point clouds. Storing is done without loss of precision, while reducing
the size of a point cloud to half the original size. Also, 3D scan matching has been tested
using the proposed method, by implementing the octree for nearest neighbor search (NNS)
algorithm. The Random Sample Consensus (RANSAC) algorithm is also sped up by using
the octree data structure. In the related work [12], shape registration algorithms have
been compared using different NNS strategies, with the octree-based method being one
of them. The Octree implementation (with arbitrarily chosen octree depth) is given in the
“3DTK—The 3D Toolkit” [13].

Different from octree-based compression, in [14] the authors presented a point cloud
compression algorithm based on projections. Different panorama generation methods
have been tested, using several projection types: equirectangular, cylindrical, Mercator,
rectilinear, Pannini, stereographic and Albers equal-area conic projections. It is shown that
the reduced point clouds are useful for feature based registration on panorama images.
In [15] point cloud compression scheme is proposed using panorama generated images and
an equirectangular projection type. Range, color and reflectance information is encoded for
each point, by using 24 bits for range (and storing it in an RGB image), 24 bits for color and
8 bits for reflectance. Also, lossless and lossy compression methods have been tested for
obtained panorama images. In the case of lossy JPEG compression, an additional method
is needed to remove artefacts from the decompressed point cloud.

Similarily, MPEG recently proposed two new point cloud compression codecs, named
G-PCC (Geometry based Point Cloud Compression) codec [16] and V-PCC (Video based
Point Cloud Compression) codec [17]. The G-PCC was created by merging two previously
defined codecs, the L-PCC (LIDAR point cloud compression for dynamic point clouds)
and the S-PCC (Surface point cloud compression for for static point clouds). Currently,
G-PCC supports only intra prediction, so it does not use temporal redundancies. G-PCC
compresses point clouds directly in 3D space. Currently, lossless mode provides up to a
10:1 compression ratio, while in lossy mode it is possible to obtain up to a 35:1 compression
ratio with acceptable quality. In the MPEG’s V-PCC codec, the basic idea is to project point
cloud from 3D to 2D, so that 2D projections are encoded using existing 2D video encoders
such as H.265/HEVC video compression [18]. The current V-PCC encoder compresses
dynamic point cloud with a compression ratio up to 125:1, with acceptable quality. More
details about G-PCC and V-PCC are given in [19,20]. A comprehensive overview of
G-PCC and V-PCC rate-distortion coding performance can be also found in [21]. A quality
evaluation study of point cloud codecs G-PCC and V-PCC is presented in [22], showing the
superior compression performance of the MPEG V-PCC compared to the MPEG G-PCC,
for the selected static contents.

Neural network based point cloud compression schemes have also been proposed
recently. In [23], the authors present point cloud compression using neural networks for
separate and joint compression of geometry and texture. Better results are obtained for
geometry and competitive results for color coding at low bitrates, comparing with CWI-
PCL, the MPEG anchor codec is presented in [24]. In the paper [25], authors presented
a new method for static point cloud geometric compression. It is based on the learned
convolutional transform and uniform quantization. Compared to the MPEG reference
software, the proposed algorithm achieves on average 51.5% BD-Rate (Bjöntegaard Delta
Rate) savings, using the Microsoft Upper Body dataset [26]. The updated algorithm is
presented in [27]. In the paper [28] a learned point cloud geometry compression is proposed,
utilizing deep neural network-based variational autoencoders. The proposed algorithm

Sensors 2022, 22, 197 3 of 31

shows higher compression efficiency than that of MPEG’s G-PCC, having at least 60%
BD-Rate savings, tested on several datasets. The updated algorithm is proposed in [29].
Similar to [27] authors in [30] present the deep-learning coding approach to static point
cloud geometry coding where a voxelized input point cloud is divided into 3D coding
blocks of a fixed size and only non-empty 3D blocks are coded. The encoder transforms
the input data into latent representations with lower dimensionality forcing a network to
extract important features. The autoencoder learns the transform and its inverse operation
suitable for the target data compared to image-transform coding where the transform
basis functions are fixed. Performance results show improvements over the PCL (Point
Cloud Library) [31]. The proposed compression from [30] is improved in [32] by adding
the variational autoencoder which captures structure information still present on latent
features and therefore entropy coding model parameters can be estimated on the encoder
side and replicated on the decoder side more accurately. More importantly the authors
add the resolution scalability via interlaced sub-sampling which not only increases the
number of decoded points but also gives a good point cloud quality from a subjective point
of view. Furthermore, these authors proposed adaptive deep learning-based static point
cloud geometry coding which can adapt to any generic point cloud content to maximize the
RD performance [33]. The author in [34] presents an adversarial autoencoding strategy for
voxelized point cloud geometry where the main idea is to code each point cloud element
independently and to decode it using a lower resolution reconstruction as side information.
The encoder generates hash bytes, and the decoder combines them with side information to
reconstruct the original block. The reconstructed block can be classified with an adversarial
discriminator which is a regularizer for the reconstruction process thus improving the
coding performance. A neural network architecture using a predictive coding module
at the decoder stage for bit-rate reduction of geometry only point clouds is described
in [35]. In this approach a block can be encoded independently or predicted using its
neighbors based on the quality of the reconstructed block and the local topology of the
model. Alternative to the mentioned block-by-block processing approaches point based
models are used. In [36] the authors create an architecture consisting of a pointnet-based
encoder, an uniform quantizer, an entropy estimation block and a nonlinear synthesis
transformation module and in [37] a hierarhical autoencoder with multiscale loss function
is presented. These architectures are insufficient for the processing of large point cloud
data. VoxelDNN was proposed in [38] which combines the octree and voxel domains.
Inference in this lossless compression is slow, and the occupancy probabilities are predicted
sequentially, voxel by voxel, while the improved MSVoxelDNN models voxel occupancy
and achieves rate savings over G-PCC up to 17% on average [39]. One of the new methods
is presented in [40] and it brings a solution that can be applied to both static and dynamic
point cloud compression. It employs the voxel context based entropy model and for
dynamic PC compression temporal dependency is exploited. In the work of [41] detachable
learning-based residual coding solution is created where the residual module enhances the
decoded model quality at the expense of added bitrate.

3. Projection Types and Their Description

In this section, we describe different projection types and their inverse solutions that
is later used in the process of obtaining 2D image projection from point clouds. Several of
them are adopted from [15,42,43]. For each projection type, example panorama images for
the geometry and texture are created using the point cloud “longdress_vox10_1060.ply”
from Longdress dynamic point cloud dataset [44].

A point cloud geometry is first transformed from a Cartesian to a spherical coordinate
system. Afterwards, 2D geometry panorama image coordinates (row number x and column
number y) are calculated from the angle information (longitude θ and latitude ϕ), while
the intensity (bit depth) of the 2D geometry panorama represents radius in spherical
coordinates. An attribute panorama image, i.e., a 2D image representing color information

Sensors 2022, 22, 197 4 of 31

in our case, is created by using the same row number x and column number y as for the
geometry, with the same color as the point cloud point that it represents.

3.1. Lambert Azimuthal Equal-Area Projection

Transformation equations and the inverse formulas are given in Equations (1) and (2).
ϕ1 is the standard parallel, while θ0 is the central longitude.

x = k′ cos ϕ sin(θ − θ0),

y = k′(cos ϕ1 sin ϕ− sin ϕ1 cos ϕ cos (θ − θ0)),

k′ =

√
2

1 + sin ϕ1 sin ϕ + cos ϕ1 cos ϕ cos (θ − θ0)
. (1)

The inverse formulas are given in Equation (2):

θ = arctan
x sin C

ρ cos ϕ1 cos C− y sin ϕ1 sin C
+ θ0,

ϕ = arcsin
(

cos C sin ϕ1 +
y sin C cos ϕ1

ρ

)
,

ρ =
√

x2 + y2,

C = 2 arcsin
ρ

2
. (2)

An example of panorama images is given in Figure 1.

(a) (b)

Figure 1. Panorama images created using point cloud “longdress_vox10_1060.ply” from the Lambert
azimuthal equal-area projection, for the geometry (a) and texture (b).

3.2. Albers Equal-Area Conic Projection

Transformation equations and the inverse formulas are given in Equations (3) and (4).
Usually, (ϕ0, θ0) = (0◦, 0◦), while ϕ1 and ϕ2 represent minimum and maximum latitude.

x = ρ sin (N(θ − θ0)),

y = ρ0 − ρ cos (N(θ − θ0)),

Sensors 2022, 22, 197 5 of 31

where:

N =
1
2
(sin ϕ1 + sin ϕ2),

C = cos 2 ϕ1 + 2N sin ϕ1,

ρ0 =
1
N
√

C− 2N sin ϕ0,

ρ =
1
N
√

C− 2N sin ϕ. (3)

The inverse formulas are given in Equation (4):

θ = θ0 +
1
N

arctan
x

ρ0 − y
,

ϕ = arcsin
C− (x2 + (ρ0 − y)2)N2

2N
. (4)

An example of panorama images is given in Figure 2.

(a) (b)

Figure 2. Panorama images created using point cloud “longdress_vox10_1060.ply” from the Albers
equal-area conic projection, for the geometry (a) and texture (b).

3.3. Cylindrical Projection

Cylindrical projection is similar to the equirectangular projection, however vertical
coordinate is tangent of the latitude. Transformation equations and the inverse formulas
are given in Equations (5) and (6). Usually, (ϕ0, θ0) = (0◦, 0◦). Later in the experiments,
we will “compress” all ϕ latitude angles before creating panorama images, i.e., multiply ϕ
with 0.825, and “decompress” (divide by 0.825) after recreating point cloud. This is because
tangent function is not defined for angles near ±90◦.

x = θ − θ0,

y = tan ϕ− tan ϕ0. (5)

The inverse formulas are given in Equation (6):

θ = x + θ0,

φ = arctan(y + tan ϕ0). (6)

An example of panorama images is given in Figure 3.

Sensors 2022, 22, 197 6 of 31

(a) (b)

Figure 3. Panorama images created using point cloud “longdress_vox10_1060.ply” from the cylindri-
cal projection, for the geometry (a) and texture (b).

3.4. Cylindrical Equal-Area Projection

Transformation equations and the inverse formulas are given in Equations (7) and (8).
θ0 is the standard longitude, while ϕs is the standard latitude, e.g., for ϕs = 0 it is called
Lambert cylindrical equal-area projection.

x = (θ − θ0)cosϕs,

y =
sin ϕ

cos ϕs
. (7)

The inverse formulas are given in Equation (8):

θ =
x

cos ϕs
+ θ0,

ϕ = arcsin(y cos ϕs). (8)

An example of panorama images is given in Figure 4.

(a) (b)

Figure 4. Panorama images created using point cloud “longdress_vox10_1060.ply” from the cylindri-
cal equal-area projection, for the geometry (a) and texture (b).

3.5. Equidistant Cylindrical Projection

Transformation equations and the inverse formulas for equidistant cylindrical pro-
jection are given in Equations (9) and (10). An equirectangular projection, one of the
most common projection types, is a type of cylindrical equidistant projection. Horizontal
coordinate x in this projection type is the longitude θ, while the vertical coordinate y is
the latitude ϕ. ϕ1 represents standard parallels (north and south of the equator) where

Sensors 2022, 22, 197 7 of 31

the scale of the projection is true. For (ϕ0, θ0) = (0◦, 0◦) and cos ϕ1 = 0 it is called the
equirectangular projection, Equation (9).

x = (θ − θ0) cos ϕ1,

y = ϕ− ϕ0. (9)

The inverse formulas are given in Equation (10):

θ =
x

cos ϕ1
+ θ0,

φ = y + φ0. (10)

An example of panorama images is given in Figure 5.

(a) (b)

Figure 5. Panorama images created using point cloud “longdress_vox10_1060.ply” from the equirect-
angular projection, for the geometry (a) and texture (b).

3.6. Mercator Projection

Transformation equations and the inverse formulas are given in Equations (11) and (12).
Problems may arise at latitudes ϕ near ±90◦. Usually, (ϕ0, θ0) = (0◦, 0◦). Similar to
the cylindrical projection, later in the experiments we will “compress” all ϕ latitude angles,
multiplying them with the factor 0.825, to create a panorama image (and “decompress”—divide
them with the factor 0.825 to recreate point clouds).

x = θ − θ0,

y = ln
(

tan ϕ +
1

cos ϕ

)
− y0,

y0 = ln
(

tan ϕ0 +
1

cos ϕ0

)
(11)

The inverse formulas are given in Equation (12):

θ = x + θ0,

ϕ = 2 arctan ey+y0 − π

2
. (12)

An example of panorama images is given in Figure 6.

Sensors 2022, 22, 197 8 of 31

(a) (b)

Figure 6. Panorama images created using point cloud “longdress_vox10_1060.ply” from the Mercator
projection, for the geometry (a) and texture (b).

3.7. Miller Projection

The Miller projection is a modified Mercator projection. Transformation equations and
the inverse formulas are given in Equations (13) and (14). Problems that may arise using
the Mercator projection for latitudes φ near ±90◦ are not present in the Miller projection.
Usually, (φ0, θ0) = (0◦, 0◦).

x = θ − θ0,

y =
5
4

ln
[

tan
(

π

4
+

2ϕ

5

)]
− y0.

y0 =
5
4

ln
[

tan
(

π

4
+

2ϕ0

5

)]
. (13)

The inverse formulas are given in Equation (14):

θ = x + θ0,

ϕ =
5
2

arctan e
4(y+y0)

5 − 5π

8
. (14)

An example of panorama images is given in Figure 7.

(a) (b)

Figure 7. Panorama images created using point cloud “longdress_vox10_1060.ply” from the Miller
projection, for the geometry (a) and texture (b).

3.8. Rectilinear Projection

Transformation equations and the inverse formulas are given in Equations (15) and (16).
θ0 and ϕ1 are the longitude and latitude of the center of the projection. It is recommended

Sensors 2022, 22, 197 9 of 31

to use this projection for the horizontal and vertical angles of less than 120◦. Therefore, the
panorama has to be divided into smaller subsets, e.g., minimum 3 (later we will use 4). In
addition, for greater vertical angles, all angles are scaled to fit in less than ±90◦. Later in
the experiments, similar to the cylindrical and Mercator projections, we will “compress”
and “decompress” all of the ϕ latitude angles, by multiplying and dividing them by 0.825.

x =
cos ϕ sin (θ − θ0)

sin ϕ1 sin ϕ + cos ϕ1 cos ϕ cos (θ − θ0)
,

y =
cos ϕ1 sin ϕ− sin ϕ1 cos ϕ cos (θ − θ0)

sin ϕ1 sin ϕ + cos ϕ1 cos ϕ cos (θ − θ0)
. (15)

The inverse formulas are given in Equation (16):

θ = θ0 + arctan
x sin C

ρ cos ϕ1 cos C− y sin ϕ1 sin C
,

ϕ = arcsin
(

cos C sin ϕ1 +
y sin C cos ϕ1

ρ

)
,

ρ =
√

x2 + y2,

C = arctan ρ. (16)

An example of panorama images is given in Figure 8.

(a) (b)

Figure 8. Panorama images created using point cloud “longdress_vox10_1060.ply” from the rectilin-
ear projection, for the geometry (a) and texture (b).

3.9. Pannini Projection

Transformation equations and the inverse formulas are given in Equations (17) and (18).
θ0 and ϕ1 are the longitude and latitude of the center of the projection. Parameter d can
be any non-negative number. For d = 0 we have a rectilinear projection, while d = 1 is
the usual Pannini projection, used in the later experiments. It is recommended to use this
projection for horizontal and vertical angles of less than 150◦. Therefore, the panorama has
to be divided into smaller subsets, e.g., minimum of 3 (later we will use 4). In addition,
for greater vertical angles, all angles are scaled to fit in less than ±90◦. For this projection
type, later in the experiments we will “compress” and “decompress” all ϕ latitude angles,
multiplying and dividing them with the factor 0.825.

x =
(d + 1) sin (θ − θ0)

d + sin ϕ1 tan ϕ + cos ϕ1 cos (θ − θ0)
,

y =
(d + 1) tan ϕ(cos ϕ1 − sin ϕ1(

1
tan ϕ) cos (θ − θ0))

d + sin ϕ1 tan ϕ + cos ϕ1 cos (θ − θ0)
. (17)

Sensors 2022, 22, 197 10 of 31

The inverse formulas are given in Equation (18):

A =
y

x cos ϕ1
,

B = tan ϕ1,

C = Ax sin ϕ1 − d− 1,

D = Bx sin ϕ1 + x cos ϕ1,

E = −xd. (18)

Finally we yield, Equation (19):

C sin (θ − θ0) + D cos (θ − θ0) = E

θ = θ0 + arccos
(

E√
C2 + D2

)
+ arctan

(
C
D

)
ϕ = arctan (A sin (θ − θ0) + B cos (θ − θ0)). (19)

An example of panorama images is given in Figure 9.

(a) (b)

Figure 9. Panorama images created using point cloud “longdress_vox10_1060.ply” from the Pannini
projection, for the geometry (a) and texture (b).

3.10. Stereographic Projection

Transformation equations and the inverse formulas are given in Equations (20) and (21).
θ0 and ϕ1 are the longitude and latitude of the center of the projection. It is advisable to
use a 120◦ longitude, e.g., to divide the image into at least 3 subsets (later we will use 4).

x =
2R cos ϕ sin (θ − θ0)

1 + sin ϕ1 sin ϕ + cos ϕ1 cos ϕ cos (θ − θ0)
,

y =
2R(cos ϕ1 sin ϕ− sin ϕ1 cos ϕ cos (θ − θ0))

1 + sin ϕ1 sin ϕ + cos ϕ1 cos ϕ cos (θ − θ0)
. (20)

The inverse formulas are given in Equation (21):

θ = θ0 + arctan
x{inC

ρ cos ϕ1 cos C− y sin ϕ1 sin C
,

ϕ = arcsin
(

cos C sin ϕ1 +
y sin C cos ϕ1

ρ

)
,

ρ =
√

x2 + y2,

C = 2 arctan
(ρ

2R

)
. (21)

Sensors 2022, 22, 197 11 of 31

An example of panorama images is given in Figure 10.

(a) (b)

Figure 10. Panorama images created using point cloud “longdress_vox10_1060.ply” from the stereo-
graphic projection, for the geometry (a) and texture (b).

4. Creation of Panorama Images from Point Clouds and Recreation of Point Clouds

In this section we will describe how to calculate panorama images from point clouds,
as well as how to recreate point clouds from obtained panorama images. Programs that
were used are 3DTK toolkit [13], MeshLab [45], CloudCompare [46], FFmpeg [47] and
MATLAB for scripts.

For this example, we will use the Miller projection, although any other projection
described earlier can be used in a similar way. Also, we will use Longdress point cloud, first
20 frames [44]. This point cloud is a voxelized point cloud with a bounding box size of
1024 × 1024 × 1024, i.e., with 10-bit precision per each coordinate. Additionally, texture
(color) for each point is represented with 24-bit RGB format, i.e., with 8 bits per color
channel. Overall, 3× 10 + 3× 8 = 54 bits per point are used, in the ideal case; however,
depending on the used format, even the binary format might occupy much more space,
as we present later.

The input point cloud is read in MATLAB and an offset is added to all its points, so
that the bounding box center is at (0, 0, 0). Afterwards, it is scaled so that the maximum
distance between any point and the origin (0, 0, 0) does not exceed 2bit_num − 1 = 65, 535
for a 16 bit panorama grayscale image, Equation (22).

scale_factor =
K · (2bit_num − 1)

max
(√

(xx(i)2 + yy(i)2 + zz(i)2)
)

bit_num = 16 (in the later case, but could be also 24 for some other point clouds)

K = 0.01 (due to the later scaling made by the 3DTK toolkit)

i ∈ {1, . . . , N}, N = number of points

xx(i), yy(i), zz(i) are Cartesian coordinates of the point i (22)

Both geometry and texture are represented using the same projection. In the case
of geometry, we use 16 bit input grayscale .png for the later compression. However,
approximately 9 bits may be enough for the tested point cloud: the maximum distance
from the center is 512, before scaling, but the number may not be integer, so some precision
loss may occur for the 9 bit representation. For larger point clouds, 24-bit representation
may also be used, which is also implemented in the 3DTK toolkit, storing geometry in an
RGB image [15]. In the case of texture, we additionally create a Voronoi diagram using
OpenCV “distanceTransform” function and L2 norm (while creating the texture image
in the 3DTK toolkit), Listing 1. A Voronoi diagram (tessellation, decomposition) is the
partitioning of a plane with n points into convex polygons with exactly one generating

Sensors 2022, 22, 197 12 of 31

point in each polygon and every point in a particular polygon being closer to its generating
point than any other generating point [48]. By creating a “full” texture image, instead of
originally sparse, additional video compression efficiency may be achieved later.

Listing 1. Voronoi diagram creation.

// create geometry and texture image using 3DTK
// get mask as the inverse of the existing pixels from~geometry

distanceTransform(mask, distance, labels, CV_DIST_L2,
CV_DIST_MASK_PRECISE, CV_DIST_LABEL_PIXEL);

// map labels to indices
std :: vector<cv::Vec2i> label_to_index;

// reserve memory for faster push_back
label_to_index.reserve(sum(~mask)[0]);

for (int row = 0; row < mask.rows; ++row)
for (int col = 0; col < mask.cols; ++col)
if (mask.at<uchar>(row, col) == 0) // this pixel exist
label_to_index.push_back(cv::Vec2i(row, col));

// create ‘‘ full ’’ image
for (int row = 0; row < mask.rows; ++row) {
for (int col = 0; col < mask.cols; ++col) {
if (mask.at<uchar>(row, col) > 0) { // so this pixel needs to be filled
colorImage.at<cv::Vec3b>(row,col)=
cv :: Vec3b(colorImage.at<cv::Vec3b>(label_to_index[labels.at<int>(row, col)])[0],
colorImage.at<cv::Vec3b>(label_to_index[labels.at<int>(row, col)])[1],
colorImage.at<cv::Vec3b>(label_to_index[labels.at<int>(row, col)])[2]);
}
}
}

The previously described algorithm is presented in Figure 11, for the tenth point cloud
“longdress_vox10_1060.ply” and the Miller projection type. The projection area is set to
be about 2,000,000 pixels. We define the ratio for the image size as the ratio between the
first point cloud height and width, and again divided by π. In this example case, this ratio
is 0.8968. Because later video compression expects frame width and height divisible by
8, we also round the final frame width and height to the nearest integer divisible by 8,
Equation (23). Again, for the later video compression, all subsequent point clouds need to
have the same frame size.

ratio =
pc_height

π · pc_width

frame_width = 8 ·
⌊(

1
8
·
√

panorama_area
ratio

)⌉
frame_height = 8 ·

⌊(
1
8
· frame_width · ratio

)⌉
(23)

After the first point cloud has been projected to 2D panorama, all the other subsequent
point clouds are also projected to the panorama for geometry and texture with the same frame
size as the first one. Also, geometry and texture are calculated in the same way as earlier

Sensors 2022, 22, 197 13 of 31

described. Afterwards, we use FFmpeg and different video compressions for geometry and
texture images. For texture, we use the x265 coder (H.265/HEVC) with lossy compression,
while for geometry we use the FFV1 coder with lossless compression. For x265 (for texture)
we use crf 17 (constant rate factor), pixel format rgb24, preset veryslow, while for FFV1 (for
geometry) we use pixel format gray9le (depth of 9 bits per pixel), as well as gray10le (only
in the case of Miller projection). For this case, the texture file size is 11.3× 106 bytes and the
geometry file size is 14× 106 bytes, so overall size is 25.3× 106 bytes.

(a) (b)

(c) (d)

Figure 11. Point clouds to panorama, using Miller projection: (a) original point cloud “long-
dress_vox10_1060.ply” (799,765 points); (b) geometry (1496× 1344 pixels, 16-bit grayscale); (c) texture
(1496 × 1344 pixels, 24-bit RGB); (d) texture with Voronoi (1496 × 1344 pixels, 24-bit RGB).

Point cloud recreation is done by decompressing previously compressed video files,
and afterwards using inverse formulas for used projection type, in this example Miller. For
the color information, we use pixels from the panorama image for color (Voronoi diagram)
that exist in panorama image for geometry. In the final step, we use several algorithms to
oversample the original point cloud and fill holes that may exist in some parts of it:

• normal estimation using CloudCompare version 2.11.1 x64 [46], for the later
screened Poisson reconstruction, in “command line” mode. Specific pa-
rameters used were: -OCTREE_NORMALS auto -ORIENT PLUS_ZERO -MODEL TRI
-ORIENT_NORMS_MST 8 -ORIENT_NORMS_MST 4.

• Surface Reconstruction: Screened Poisson filter using MeshLab 2020.09 [45]: recon-
struction depth 11 and other default values.

• Poisson-disk Sampling filter using MeshLab: using the same number of samples as
the original point cloud, Monte Carlo OverSampling of 20 and other default values.
However, usually somewhat higher number of output points were created.

• Vertex Attribute Transfer filter using MeshLab: using default values.

After the point cloud has been recreated, we need to scale it to its initial size and
also translate it to its original position. Those 4 numbers (1 float for scaling and 3 floats

Sensors 2022, 22, 197 14 of 31

for translation in each direction) have to be transmitted as well. Original point cloud
snapshot and point cloud snapshots before and after the Poisson reconstruction algorithm
are presented in Figure 12.

(a) (b)

(c) (d)

Figure 12. Point clouds to panorama, using Miller projection and 9-bit range depth: (a) Original point
cloud “longdress_vox10_1060.ply” (799,765 points; point size 1 in MeshLab); (b) Decompressed point
cloud after Poisson reconstruction (1,161,124 points; point size 1 in MeshLab); (c) Decompressed point
cloud before Poisson reconstruction (430,793 points; point size 1 in MeshLab); (d) Decompressed
point cloud before Poisson reconstruction (430,793 points; point size 2 in MeshLab).

Sensors 2022, 22, 197 15 of 31

Tested 20 input point clouds have overall 15,900,190 points, on average 795,010 points per
point cloud, while the overall compressed file size is 25.3× 106 B. In this case we use approxi-
mately 25.3× 106 × 8/(20× 795,010) = 12.7 bits per (input) point, or, if compared with the
output number of points, we use approximately 25.3× 106 × 8/(20× 1,154,324) = 8.8 bits
per output point. However, the Poisson reconstruction algorithm at the end of the decom-
pression may produce even higher number of output points (in this case average number of
points is 1,154,324), than the input number of points, so in this case the number of bits per
output point may be misleading. Because of that, later we report only bits per input point.
Poisson reconstruction step is an important part of the proposed algorithm, cf. Figure 12.
Used scripts can be found on the web page [49].

5. Results
5.1. Objective Measures Used for Point Cloud Performance Comparison

Recently, several objective measures have been proposed, based on geometry or/and
attribute information of the tested point clouds [50]. For geometry, two different groups of
measures have been proposed: point-to-point (p2p) and point-to-plane distances (p2pl) [51].
Later in the paper, as point-to-point measures we will use rmsF p2p, rmsFPSNR1 p2p and
rmsFPSNR2 p2p measures defined as:

rmsF p2p =

√
1
n

n

∑
i=1
||Ei,j||22 (24)

rmsFPSNR1 p2p = 10 log10

(
MAX_DIST
(rmsF p2p)2

)
(25)

rmsFPSNR2 p2p = 10 log10

(
3c2

(rmsF p2p)2

)
, c = 2d − 1 (26)

In Equation (24), Ei,j is defined as the difference vector (or point to nearest point
vector) between an arbitrary point from the first point cloud and the corresponding nearest
point from the second point cloud. The first and second point clouds are firstly original
and degraded and then vice versa. Final (symmetric) measure is calculated as the measure
with worse (higher rms) score.

In Equation (25) MAX_DIST is maximal distance between all pairs of closest points
in the first and second point cloud, as defined in [51]. In Equation (26) c is the peak constant
value, depending on the point cloud coordinates precision d (e.g., d = 10 for 10-bit depth
precision), as used in [19] during the development of the MPEG standard.

Similar to the point-to-point measures, point-to-plane measures are defined as:

rmsF p2pl =

√
1
n

n

∑
i=1

(< Ei,j, Nj >)2 (27)

rmsFPSNR1 p2p = 10 log10

(
MAX_DIST
(rmsF p2pl)2

)
(28)

rmsFPSNR2 p2p = 10 log10

(
3c2

(rmsF p2pl)2

)
, c = 2d − 1 (29)

In Equation (27) Ei,j is defined similarly as for the p2p measures. Nj is the unit
normal vector, calculated for each point in the first point cloud. < Ei,j, Nj > is the dot
product between error vector Ei,j and normal vector Nj, obtaining projected error vector. In
Equation (28) parameter MAX_DIST is the same as in Equation (25) and in Equation (29)
parameters c and d are the same as in the Equation (26).

In the next subsection, point-to-point and point-to-plane measures will be calculated
using the software presented in [51].

Sensors 2022, 22, 197 16 of 31

5.2. Point Cloud Compression Using Different Projections—Compression Efficiency

Tables 1–3 present a basic overview of the compression efficiency of point clouds with
different projection area: 1056 × 944 pixels (approximately 1,000,000), 1296 × 1160 pixels
(approximately 1,500,000) and 1496 × 1344 pixels (approximately 2,000,000) respectively.
Separately, we calculated bpp (bits per input point) and Mbps (bpp × average number of
input points per point cloud × 30 point clouds per second × 10−6) for color, range and
color+range compressed video files. Results from all three tables are also summarized
in the Figure 13, which represents average ratio of the input file sizes and the color and
range compressed video file sizes, created from the panorama images, using point cloud
Longdress. Higher ratio does not represent better case (i.e., better objective scores), but
only higher number of used bits per input point, for the same panorama size. It can be
concluded that equirectangular, Miller and Mercator projections have the highest bpp for
the tested point cloud Longdress.

Figure 13. Average ratio of the input file sizes and the color and range compressed video file sizes,
created from the panorama images, using point cloud Longdress. Ratio is presented for all cases, e.g.,
for 1,000,000, 1,500,000 and 2,000,000 points.

Table 1. Information about the compressed file sizes for different projection types, with projection
area of 1056 × 944 pixels (approximately 1,000,000).

1056 × 944 Pixels (Approximately 1,000,000) Azimuthal Conic Cylindrical Equalareacylindrical Equirectangular Mercator Miller 10-Bit Miller 9-Bit Pannini Rectilinear Stereographic

Compressed color average bits per input point (bpp): 2.2018 2.4025 3.0207 2.7203 2.8726 2.9612 2.9618 2.9618 2.826 2.63 2.3026
Compressed range average bits per input point (bpp): 3.0784 2.8992 3.4701 3.6785 4.074 3.9306 4.7362 3.9652 3.1382 2.7561 3.0313
Compressed range+color average bits per input point (bpp): 5.2803 5.3016 6.4908 6.3987 6.9467 6.8918 7.698 6.927 5.9642 5.386 5.3339
Input average bits per input point (binary format) (bpp): 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017
Ratio (input bpp)/(compressed bpp) * 100% 4.4001 4.418 5.409 5.3322 5.7888 5.7431 6.4149 5.7724 4.9701 4.4883 4.4448
Compressed video color (Mbps): 52.514 57.2993 72.0449 64.8792 68.5135 70.626 70.6387 70.6387 67.3999 62.7257 54.9167
Compressed video range (Mbps): 73.4217 69.146 82.7638 87.7325 97.1667 93.7467 112.9608 94.5713 74.8475 65.7331 72.2982
Compressed video range+color (Mbps): 125.9357 126.4452 154.8087 152.6117 165.6802 164.3727 183.5995 165.2101 142.2474 128.4588 127.2149
Input point cloud (binary format) (Mbps): 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774
Ratio (input Mbps)/(compressed Mbps) * 100% 4.4001 4.4180 5.4090 5.3322 5.7888 5.7431 6.4149 5.7724 4.9701 4.4883 4.4448

Table 2. Information about the compressed file sizes for different projection types, with projection
area of 1296 × 1160 pixels (approximately 1,500,000).

1296 × 1160 Pixels (Approximately 1,500,000) Azimuthal Conic Cylindrical Equalareacylindrical Equirectangular Mercator Miller 10-Bit Miller 9-Bit Pannini Rectilinear Stereographic

Compressed color average bits per input point (bpp): 3.2534 3.4712 4.3975 3.9488 4.2032 4.4046 4.3085 4.3085 4.1135 3.8306 3.4746
Compressed range average bits per input point (bpp): 4.4431 4.1957 4.7533 5.1534 5.7746 5.5972 6.6708 5.6485 4.3288 3.8173 4.5586
Compressed range+color average bits per input point (bpp): 7.6965 7.6669 9.1508 9.1022 9.9778 10.0018 10.9793 9.957 8.4423 7.6479 8.0332
Input average bits per input point (binary format) (bpp): 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017
Ratio (input bpp)/(compressed bpp) * 100% 6.4136 6.389 7.6255 7.585 8.3147 8.3347 9.1493 8.2974 7.0352 6.3732 6.6942
Compressed video color (Mbps): 77.5949 82.7901 104.881 94.18 100.2465 105.0509 102.7599 102.7599 98.109 91.36 82.8696
Compressed video range (Mbps): 105.9685 100.0686 113.3672 122.9091 137.726 133.4953 159.1008 134.7181 103.2435 91.0447 108.7247
Compressed video range+color (Mbps): 183.5634 182.8587 218.2482 217.0891 237.9725 238.5462 261.8607 237.4779 201.3525 182.4047 191.5943
Input point cloud (binary format) (Mbps): 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774
Ratio (input Mbps)/(compressed Mbps) * 100% 6.4136 6.3890 7.6255 7.5850 8.3147 8.3347 9.1493 8.2974 7.0352 6.3732 6.6942

Sensors 2022, 22, 197 17 of 31

Table 3. Information about the compressed file sizes for different projection types, with projection
area of 1496 × 1344 pixels (approximately 2,000,000).

1496 ×1344 Pixels (Approximately 2,000,000) Azimuthal Conic Cylindrical Equalareacylindrical Equirectangular Mercator Miller 10-Bit Miller 9-Bit Pannini Rectilinear Stereographic

Compressed color average bits per input point (bpp): 4.2758 4.5804 5.6975 5.1732 5.5685 5.675 5.669 5.669 5.3434 4.9298 4.6411
Compressed range average bits per input point (bpp): 5.5811 5.3118 5.8544 6.3141 7.1576 6.9908 8.2718 7.0543 5.348 4.7428 5.8841
Compressed range+color average bits per input point (bpp): 9.8569 9.8922 11.5519 11.4873 12.7261 12.6657 13.9409 12.7233 10.6913 9.6726 10.5252
Input average bits per input point (binary format) (bpp): 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017 120.0017
Ratio (input bpp)/(compressed bpp) * 100% 8.2139 8.2434 9.6265 9.5726 10.6049 10.5546 11.6172 10.6026 8.9093 8.0604 8.7709
Compressed video color (Mbps): 101.9793 109.2427 135.8868 123.3824 132.8104 135.3498 135.2079 135.2079 127.4406 117.5775 110.6906
Compressed video range (Mbps): 133.1103 126.6887 139.6304 150.594 170.7107 166.7318 197.286 168.2461 127.5504 113.1165 140.3382
Compressed video range+color (Mbps): 235.0896 235.9314 275.5172 273.9764 303.5211 302.0816 332.4939 303.454 254.991 230.6941 251.0288
Input point cloud (binary format) (Mbps): 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774 2862.0774
Ratio (input Mbps)/(compressed Mbps) * 100% 8.2139 8.2434 9.6265 9.5726 10.6049 10.5546 11.6172 10.6026 8.9093 8.0604 8.7709

5.3. Point Cloud Compression Using Different Projections—Objective Measures

This section compares different projection methods with three different panorama
sizes using previously described point-to-point and point-to-plane objective measures.
Specifically, Tables 4–6 present objective measures before Poisson reconstruction, while
Tables 7–9 present objective measures after Poisson reconstruction. Best values are bolded
in all tables. Figure 14 presents point-to-point measure separately per each point cloud, for
cylindrical, equirectangular, Mercator, Miller 10-bit and Miller 9-bit projections, before and
after Poisson reconstruction, for all three panorama sizes, while Figure 15 similarly presents
point-to-plane measure. Finally, Figure 16 compares 9-bit and 10-bit Miller projections
using point-to-point and point-to-plane measures, before and after Poisson reconstruction.

Table 4. Point-to-point (p2p) and point-to-plane (p2pl) objective measures rmsF, rmsFPSNR1 and
rmsFPSNR2, before Poisson reconstruction, using different projections with projection area of
1056 × 944 pixels (approximately 1,000,000), best values are bold; average input and output number
of points and their ratio.

rmsF p2p rmsFPSNR1 p2p rmsFPSNR2 p2p rmsF p2pl rmsFPSNR1 p2pl rmsFPSNR2 p2pl Average Input Points Average Output Points Output/Input·100%

Azimuthal 4.3569 58.5848 −5.7881 1.1374 64.4248 5.8920 795,010 260,522 32.7697
Conic 3.8489 59.1248 −4.7080 1.0048 64.9778 6.9979 795,010 250,454 31.5033
Cylindrical 1.6901 62.7506 2.5435 0.3878 69.1378 15.3180 795,010 318,703 40.0879
Equalareacylindrical 3.2290 59.8909 −3.1758 0.7819 66.0874 9.2171 795,010 283,737 35.6897
Equirectangular 1.8139 62.4501 1.9426 0.4156 68.8628 14.7679 795,010 333,865 41.9951
Mercator 1.6177 62.9459 2.9342 0.3677 69.3777 15.7978 795,010 344,682 43.3557
Miller 10-bit 1.5704 63.0796 3.2017 0.3505 69.5962 16.2347 795,010 345,223 43.4237
Miller 9-bit 1.6200 62.9388 2.9200 0.3686 69.3682 15.7787 795,010 345,223 43.4237
Pannini 1.7741 62.5377 2.1177 0.4092 68.9031 14.8485 795,010 291,890 36.7153
Rectilinear 1.9423 62.1427 1.3278 0.4655 68.3559 13.7542 795,010 260,368 32.7503
Stereographic 3.6261 59.3823 −4.1930 0.8135 65.9116 8.8655 795,010 283,551 35.6663

Table 5. Point-to-point (p2p) and point-to-plane (p2pl) objective measures rmsF, rmsFPSNR1 and
rmsFPSNR2, before Poisson reconstruction, using different projections with projection area of
1296 × 1160 pixels (approximately 1,500,000), best values are bold; average input and output number
of points and their ratio.

rmsF p2p rmsFPSNR1 p2p rmsFPSNR2 p2p rmsF p2pl rmsFPSNR1 p2pl rmsFPSNR2 p2pl Average Input Points Average Output Points Output/Input·100%

Azimuthal 3.4281 59.6300 −3.6976 0.8209 65.8651 8.7725 795,010 313,372 39.4174
Conic 3.0146 60.1911 −2.5754 0.7793 66.0917 9.2258 795,010 300,309 37.7742
Cylindrical 1.1212 64.5158 6.0740 0.2697 70.6845 18.4113 795,010 389,681 49.0159
Equalareacylindrical 2.4257 61.1371 −0.6835 0.5808 67.3735 11.7893 795,010 329,721 41.4738
Equirectangular 1.1851 64.2722 5.5868 0.2797 70.5251 18.0925 795,010 390,058 49.0633
Mercator 1.0756 64.6961 6.4347 0.2590 70.8577 18.7578 795,010 406,907 51.1826
Miller 10-bit 1.0077 64.9852 7.0127 0.2333 71.3168 19.6760 795,010 406,868 51.1777
Miller 9-bit 1.0758 64.6942 6.4308 0.2593 70.8521 18.7466 795,010 406,868 51.1777
Pannini 1.1853 64.2675 5.5774 0.2849 70.4427 17.9277 795,010 359,861 45.2650
Rectilinear 1.3303 63.7622 4.5667 0.3185 69.9618 16.9659 795,010 324,548 40.8231
Stereographic 2.5708 60.8974 −1.1628 0.5539 67.6207 12.2838 795,010 343,921 43.2600

Sensors 2022, 22, 197 18 of 31

Table 6. Point-to-point (p2p) and point-to-plane (p2pl) objective measures rmsF, rmsFPSNR1 and
rmsFPSNR2, before Poisson reconstruction, using different projections with projection area of
1496 × 1344 pixels (approximately 2,000,000), best values are bold; average input and output number
of points and their ratio.

rmsF p2p rmsFPSNR1 p2p rmsFPSNR2 p2p rmsF p2pl rmsFPSNR1 p2pl rmsFPSNR2 p2pl Average Input Points Average Output Points Output/Input·100%

Azimuthal 2.4840 61.0363 −0.8851 0.5858 67.3331 11.7085 795,010 351,469 44.2094
Conic 2.4327 61.1258 −0.7061 0.6254 67.0423 11.1270 795,010 334,183 42.0351
Cylindrical 0.8799 65.5575 8.1574 0.2266 71.4296 19.9015 795,010 441,458 55.5286
Equalareacylindrical 1.8918 62.2127 1.4677 0.4537 68.4265 13.8954 795,010 361,188 45.4319
Equirectangular 0.9269 65.3283 7.6989 0.2354 71.2633 19.5689 795,010 428,221 53.8636
Mercator 0.8436 65.7380 8.5184 0.2199 71.5590 20.1603 795,010 449,793 56.5770
Miller 10-bit 0.7681 66.1541 9.3506 0.1907 72.1825 21.4073 795,010 449,260 56.5100
Miller 9-bit 0.8462 65.7263 8.4950 0.2203 71.5502 20.1427 795,010 449,260 56.5100
Pannini 0.9405 65.2639 7.5701 0.2402 71.1749 19.3922 795,010 410,965 51.6931
Rectilinear 1.0556 64.7615 6.5653 0.2653 70.7451 18.5326 795,010 374,173 47.0652
Stereographic 1.8777 62.2770 1.5964 0.4012 69.0208 15.0840 795,010 386,019 48.5552

Table 7. Point-to-point (p2p) and point-to-plane (p2pl) objective measures rmsF, rmsFPSNR1

and rmsFPSNR2, after Poisson reconstruction, using different projections with projection area of
1056 × 944 pixels (approximately 1,000,000), best values are bold; average input and output number
of points and their ratio.

rmsF p2p rmsFPSNR1 p2p rmsFPSNR2 p2p rmsF p2pl rmsFPSNR1 p2pl rmsFPSNR2 p2pl Average Input Points Average Output Points Output/Input·100%

Azimuthal 3.9483 59.2665 −4.4246 3.7950 59.4562 −4.0451 795,010 1,153,609 145.1062
Conic 3.6778 60.0292 −2.8992 3.4638 60.3884 −2.1809 795,010 1,153,016 145.0316
Cylindrical 1.8932 63.1058 3.2539 1.7200 64.0822 5.2069 795,010 1,155,024 145.2842
Equalareacylindrical 3.6355 59.5268 −3.9040 3.5119 59.6839 −3.5898 795,010 1,153,801 145.1304
Equirectangular 1.7756 63.3958 3.8340 1.6544 64.0645 5.1714 795,010 1,154,894 145.2679
Mercator 1.6122 63.7848 4.6119 1.4535 64.7498 6.5421 795,010 1,154,705 145.2441
Miller 10-bit 1.7871 63.3660 3.7744 1.6477 64.1868 5.4161 795,010 1,156,485 145.4680
Miller 9-bit 1.8834 63.1429 3.3282 1.7325 64.0029 5.0481 795,010 1,155,006 145.2819
Pannini 2.1112 62.6956 2.4336 1.9620 63.4910 4.0243 795,010 1,155,073 145.2904
Rectilinear 2.0828 62.6544 2.3512 1.9141 63.4887 4.0197 795,010 1,154,906 145.2694
Stereographic 3.5426 59.6347 −3.6883 3.4265 59.7821 −3.3934 795,010 1,155,261 145.3140

Table 8. Point-to-point (p2p) and point-to-plane (p2pl) objective measures rmsF, rmsFPSNR1

and rmsFPSNR2, after Poisson reconstruction, using different projections with projection area of
1296 × 1160 pixels (approximately 1,500,000), best values are bold; average input and output number
of points and their ratio.

rmsF p2p rmsFPSNR1 p2p rmsFPSNR2 p2p rmsF p2pl rmsFPSNR1 p2pl rmsFPSNR2 p2pl Average Input Points Average Output Points Output/Input·100%

Azimuthal 3.4226 59.8245 −3.3087 3.2923 60.0029 −2.9519 795,010 1,153,402 145.0802
Conic 3.0916 60.6366 −1.6844 2.9537 60.8878 −1.1820 795,010 1,152,742 144.9972
Cylindrical 1.3590 65.7201 8.4825 1.2248 67.0806 11.2035 795,010 1,154,542 145.2236
Equalareacylindrical 3.3320 60.1398 −2.6780 3.2203 60.3042 −2.3493 795,010 1,153,681 145.1153
Equirectangular 0.9471 66.7002 10.4428 0.8230 67.9619 12.9661 795,010 1,154,483 145.2162
Mercator 0.6504 68.1203 13.2829 0.5124 69.8651 16.7726 795,010 1,154,466 145.2140
Miller 10-bit 0.8328 67.7035 12.4494 0.7035 69.2895 15.6213 795,010 1,156,160 145.4271
Miller 9-bit 0.9335 67.2952 11.6327 0.8016 68.8654 14.7731 795,010 1,154,383 145.2036
Pannini 1.1857 65.9413 8.9250 1.0427 67.3226 11.6876 795,010 1,154,553 145.2250
Rectilinear 1.3954 64.9695 6.9813 1.2327 66.2226 9.4875 795,010 1,154,607 145.2318
Stereographic 2.4495 61.1509 −0.6558 2.3639 61.3091 −0.3394 795,010 1,155,021 145.2838

Table 9. Point-to-point (p2p) and point-to-plane (p2pl) objective measures rmsF, rmsFPSNR1

and rmsFPSNR2, after Poisson reconstruction, using different projections with projection area of
1496 × 1344 pixels (approximately 2,000,000), best values are bold; average input and output number
of points and their ratio.

rmsF p2p rmsFPSNR1 p2p rmsFPSNR2 p2p rmsF p2pl rmsFPSNR1 p2pl rmsFPSNR2 p2pl Average Input Points Average Output Points Output/Input·100%

Azimuthal 3.5851 59.9790 −2.9997 3.4530 60.1616 −2.6345 795,010 1,153,094 145.0414
Conic 4.0596 59.8137 −3.3304 3.9061 60.0175 −2.9226 795,010 1,152,734 144.9962
Cylindrical 0.3314 69.8545 16.7514 0.2215 71.6639 20.3702 795,010 1,154,352 145.1997
Equalareacylindrical 3.1122 60.9044 −1.1489 3.0077 61.0880 −0.7816 795,010 1,153,599 145.1050
Equirectangular 0.9305 67.6623 12.3669 0.8296 69.0639 15.1701 795,010 1,154,520 145.2208
Mercator 0.7053 68.7747 14.5918 0.6102 70.3353 17.7129 795,010 1,154,439 145.2106
Miller 10-bit 0.4555 69.8594 16.7611 0.3619 71.5899 20.2221 795,010 1,156,008 145.4080
Miller 9-bit 0.4522 69.8166 16.6757 0.3492 71.6585 20.3594 795,010 1,154,324 145.1962
Pannini 0.5384 68.7913 14.6249 0.4139 70.5697 18.1817 795,010 1,154,358 145.2004
Rectilinear 1.2472 66.2188 9.4800 1.1264 67.5502 12.1428 795,010 1,154,410 145.2070
Stereographic 2.8045 61.1347 −0.6883 2.6960 61.3675 −0.2226 795,010 1,155,019 145.2836

Sensors 2022, 22, 197 19 of 31

(a) (b)

(c) (d)

(e) (f)
Figure 14. Point-to-point objective measure per point cloud, using cylindrical, equirectangu-
lar, Mercator, Miller 10-bit and Miller 9-bit projections: (a) before Poisson reconstruction, pro-
jection area 1056 × 944 pixels (approximately 1,000,000); (b) after Poisson reconstruction, projec-
tion area 1056 × 944 pixels (approximately 1,000,000); (c) before Poisson reconstruction, projec-
tion area 1296 × 1160 pixels (approximately 1,500,000); (d) after Poisson reconstruction, projection
area 1296 × 1160 pixels (approximately 1,500,000); (e) before Poisson reconstruction, projection
area 1496 × 1344 pixels (approximately 2,000,000); (f) after Poisson reconstruction, projection area
1496 × 1344 pixels (approximately 2,000,000).

Sensors 2022, 22, 197 20 of 31

(a) (b)

(c) (d)

(e) (f)

Figure 15. Point-to-plane objective measure per point cloud, using cylindrical, equirectangu-
lar, Mercator, Miller 10-bit and Miller 9-bit projections: (a) before Poisson reconstruction, pro-
jection area 1056 × 944 pixels (approximately 1,000,000); (b) after Poisson reconstruction, projec-
tion area 1056 × 944 pixels (approximately 1,000,000); (c) before Poisson reconstruction, projec-
tion area 1296 × 1160 pixels (approximately 1,500,000); (d) after Poisson reconstruction, projection
area 1296 × 1160 pixels (approximately 1,500,000); (e) before Poisson reconstruction, projection
area 1496 × 1344 pixels (approximately 2,000,000); (f) after Poisson reconstruction, projection area
1496 × 1344 pixels (approximately 2,000,000).

Sensors 2022, 22, 197 21 of 31

(a) (b)

(c) (d)

Figure 16. Objective measure per point cloud, using Miller projection with 9-bit depth and 10-bit
depth: (a) before Poisson reconstruction, point-to-point measure; (b) after Poisson reconstruction,
point-to-point measure; (c) before Poisson reconstruction, point-to-plane measure; (d) after Poisson
reconstruction, point-to-plane measure.

5.4. Point Cloud Compression—Timing Performance

In this section we will present timing performance for the case of Miller 9-bit pro-
jection with panorama size of 2,000,000 points, Table 10. Point cloud to panorama and
vice versa timing is averaged across 20 point clouds, while for video compression and
decompression we use FFmpeg and different video compressions for geometry and texture
images described earlier. For texture, we use the x265 coder (H.265/HEVC) with lossy
compression, while for geometry we use the FFV1 coder with lossless compression. For
x265 (for texture) we use crf 17 (constant rate factor), pixel format rgb24, preset veryslow,
while for FFV1 (for geometry) we use pixel format gray9le (depth of 9 bits per pixel).
Computer performance is: Intel i7-4770 @ 3.40 GHz, 16 GB RAM, using virtual machine on
Windows 7 x64, running Ubuntu x64 18.04 LTS. It can be seen that Poisson reconstruction
and upsampling process takes most of the overall time, compared with other steps. Minor
steps in between presented were not taken into account (creating readable point clouds for
CloudCompare and Meshlab by adding header in created point clouds from 3DTK and

Sensors 2022, 22, 197 22 of 31

copying files). Due to the overall timing, we did not test all 300 point clouds in a Longdress
sequence, but we used first 20 point clouds. However, we expect similar performance for
the other point clouds as well.

Table 10. Timing performance, for the Longdress point cloud and Miller 9-bit projection with
panorama size of 2,000,000 points.

Timing Performance Seconds per Point Cloud Seconds per 20 Point Clouds

Point cloud to panorama: 1.9030 38.0603
Compression (texture): - 117.3344
Decompression (texture): - 2.0918
Compression (geometry): - 0.9477
Decompression (geometry): - 1.2366
Panorama to point cloud: 4.9350 98.6991
Normal calculation (CloudCompare): 6.2539 125.0783
Poisson reconstruction and upsampling (MeshLab): 97.0496 1941.0

5.5. Point Cloud Compression Using Different Point Clouds

In this section we will present results for two different dynamic point clouds, Redand-
black and Soldier (Figure 17) from the dynamic point cloud dataset [44]. Similar to the previ-
ous test cases, we used 20 point clouds from the beginning (“redandblack_vox10_1450.ply”–
“redandblack_vox10_1469.ply” and “soldier_vox10_0536.ply” – “soldier_vox10_0555.ply”).
Panorama image size of approximately 2,000,000 points and cylindrical, Mercator and
Miller 9-bit projection types have been used. Results for the point-to-point and point-to-
plane measures are shown in Figure 18 for Redandblack and Figure 19 for Soldier point clouds.

(a) (b)

Figure 17. Tested point clouds: (a) Redandblack, “redandblack_vox10_1450.ply”; (b) Soldier, “sol-
dier_vox10_0536.ply”.

Sensors 2022, 22, 197 23 of 31

(a) (b)

(c) (d)

Figure 18. Point-to-point and point-to-plane objective measure (rmsF p2p) per Redandblack point cloud,
using cylindrical, Mercator and Miller 9-bit depth projections with approximately 2,000,000 points:
(a) point-to-point, before Poisson reconstruction; (b) point-to-point, after Poisson reconstruction;
(c) point-to-plane, before Poisson reconstruction; (d) point-to-plane, after Poisson reconstruction.

Figure 20 shows second decompressed point cloud Soldier, using cylindrical projection
with panorama size of 2,000,000 points, “soldier_vox10_0537.ply”. In Figure 20a we don’t
use Poisson reconstruction, while in Figure 20b we use Poisson reconstruction algorithm
described earlier. It can be seen that in Figure 20a there are missing points on the left
leg, which creates wrongly oriented normals and in Figure 20b there exist an artifact, not
present in the original point cloud. Due to this error, there is a noticeable increase (lower
quality) of point-to-point and point-to-plane measures, as it can be seen in Figure 19b,d, for
the point cloud number 2 and cylindrical projection (blue color).

5.6. Comparison with Octree Reduction from 3DTK Toolkit

In this section we will present results using 3DTK toolkit and octree reduction
method, for the previously tested point clouds: Longdress (Tables 11 and 12), Redandblack
(Tables 13 and 14) and Soldier (Tables 15 and 16). Generally, parameter “R” turns on octree
based point reduction with voxels of size R3, while parameter “O” enables randomized
octree based point reduction with O points per voxel. We used “scan_red” and “show”

Sensors 2022, 22, 197 24 of 31

programs from 3DTK toolkit to create reduced point clouds: “scan_red” to create decom-
pressed octree-based reduced point clouds and “show” to create compressed .oct files. With
increasing “R” we create lower number of points, while with increasing “O” we create
higher number of output points. Decompressed point clouds have been compared with the
original point clouds using previously described point-to-point and point-to-plane metrics.
Average size of output .oct file is also reported, as well as their bits per input point (bpp).

(a) (b)

(c) (d)

Figure 19. Point-to-point objective measure (rmsF p2p) per Soldier point cloud, using cylindrical,
Mercator and Miller 9-bit depth projections with approximately 2,000,000 points: (a) point-to-point,
before Poisson reconstruction; (b) point-to-point, after Poisson reconstruction; (c) point-to-plane,
before Poisson reconstruction; (d) point-to-plane, after Poisson reconstruction

Sensors 2022, 22, 197 25 of 31

(a) (b)

Figure 20. Decompressed point cloud Soldier, “soldier_vox10_0537.ply”-second point cloud
used in compression/decompression process, using cylindrical projection with panorama size of
2,000,000 points: (a) before Poisson reconstruction (point size 2 in MeshLab); (b) after Poisson recon-
struction (point size 1 in MeshLab).

Table 11. Octree reduction using 3DTK toolkit, with voxel size “R” = 1 and different parameters for
randomized octree based point reduction with “O” points per voxel, for the Longdress point cloud.

Longdress, R = 1 O = 1 O = 2 O = 3 O = 4 O = 5 O = 6 O = 7 O = 8

Average number of output points: 230,014 427,083 575,585 698,867 761,164 793,732 794,969 795,009
Average size of .oct file, bytes: 3,684,335 6,837,436 9,213,473 11,185,991 12,182,742 12,703,824 12,723,616 12,724,261
Average number of input points: 795,010 795,010 795,010 795,010 795,010 795,010 795,010 795,010
Average bits per input point: 37.0746 68.8035 92.7130 112.5620 122.5921 127.8356 128.0348 128.0413
rmsF p2p: 0.7755 0.4700 0.2766 0.1209 0.0426 0.0016 0.0001 0.0000
rmsFPSNR1 p2p: 66.0727 68.2475 70.5507 74.1436 78.6783 92.9780 108.5374 Inf
rmsFPSNR2 p2p: 9.1877 13.5374 18.1437 25.3295 34.3989 62.9984 94.1172 Inf
rmsF p2pl: 0.2547 0.1700 0.1012 0.0499 0.0178 0.0007 0.0000 0.0000
rmsFPSNR1 p2pl: 70.9081 72.6655 74.9173 77.9851 82.4677 96.4049 112.7170 Inf
rmsFPSNR2 p2pl: 18.8587 22.3734 26.8770 33.0126 41.9778 69.8522 102.4764 Inf

Sensors 2022, 22, 197 26 of 31

Table 12. Octree reduction using 3DTK toolkit, with voxel size “R” = 2 and different parameters for
randomized octree based point reduction with “O” points per voxel, for the Longdress point cloud.

Longdress, R = 2 O = 1 O = 2 O = 3 O = 4 O = 5 O = 6 O = 7 O = 8

Average number of output points: 60,161 116,599 170,613 222,186 270,673 317,488 362,572 406,039
Average size of .oct file, bytes: 966,646 1,869,673 2,733,914 3,559,090 4,334,882 5,083,923 5,805,268 6,500,740
Average number of input points: 795,010 795,010 795,010 795,010 795,010 795,010 795,010 795,010
Average bits per input point: 9.7271 18.8141 27.5107 35.8143 43.6209 51.1583 58.4171 65.4154
rmsF p2p: 1.5428 1.1679 0.9701 0.8358 0.7339 0.6492 0.5757 0.5099
rmsFPSNR1 p2p: 63.0855 64.2946 65.1006 65.7477 66.3126 66.8453 67.3669 67.8937
rmsFPSNR2 p2p: 3.2134 5.6316 7.2437 8.5378 9.6676 10.7330 11.7762 12.8298
rmsF p2pl: 0.3484 0.3121 0.2846 0.2599 0.2369 0.2152 0.1945 0.1748
rmsFPSNR1 p2pl: 69.5486 70.0257 70.4259 70.8213 71.2238 71.6410 72.0803 72.5437
rmsFPSNR2 p2pl: 16.1395 17.0939 17.8941 18.6850 19.4899 20.3244 21.2030 22.1299

Table 13. Octree reduction using 3DTK toolkit, with voxel size “R” = 1 and different parameters for
randomized octree based point reduction with “O” points per voxel, for the Redandblack point cloud.

Redandblack, R = 1 O = 1 O = 2 O = 3 O = 4 O = 5 O = 6 O = 7 O = 8

Average number of output points: 211,582 389,317 517,726 620,888 672,157 699,481 701,144 701,234
Average size of .oct file, bytes: 3,389,106 6,232,878 8,287,429 9,938,021 10,758,325 11,195,502 11,222,110 11,223,546
Average number of input points: 795,010 795,010 795,010 795,010 795,010 795,010 795,010 795,010
Average bits per input point: 34.1038 62.7200 83.3945 100.0040 108.2585 112.6577 112.9255 112.9399
Symmetric rmsF p2p: 0.7591 0.4515 0.2622 0.1146 0.0415 0.0025 0.0001 0.0000
Symmetric PSNR_1 p2p: 66.1656 68.4226 70.7825 74.3788 78.7935 90.9982 103.9500 Inf
Symmetric PSNR_2 p2p: 10.4646 14.9786 19.6983 26.8910 35.7204 60.1298 86.0333 Inf
Symmetric rmsF p2pl: 0.2497 0.1630 0.0955 0.0472 0.0173 0.0011 0.0000 0.0000
Symmetric PSNR_1 p2pl: 70.9956 72.8476 75.1677 78.2340 82.5916 94.4710 108.0630 Inf
Symmetric PSNR_2 p2pl: 20.1246 23.8286 28.4687 34.6014 43.3166 67.0754 94.2595 Inf

Table 14. Octree reduction using 3DTK toolkit, with voxel size “R” = 2 and different parameters for
randomized octree based point reduction with “O” points per voxel, for the Redandblack point cloud.

Redandblack, R = 2 O = 1 O = 2 O = 3 O = 4 O = 5 O = 6 O = 7 O = 8

Average number of output points: 55,189 106,830 156,077 202,877 246,949 289,386 330,106 369,273
Average size of .oct file, bytes: 886,801 1,713,077 2,501,036 3,249,837 3,954,998 4,633,979 5,285,505 5,912,168
Average number of input points: 795,010 795,010 795,010 795,010 795,010 795,010 795,010 795,010
Average bits per input point: 8.9237 17.2383 25.1673 32.7023 39.7982 46.6306 53.1868 59.4928
Symmetric rmsF p2p: 1.5165 1.1475 0.9520 0.8189 0.7171 0.6323 0.5586 0.4924
Symmetric PSNR_1 p2p: 63.1605 64.3712 65.1824 65.8364 66.4132 66.9598 67.4984 68.0461
Symmetric PSNR_2 p2p: 4.4544 6.8758 8.4982 9.8061 10.9599 12.0530 13.1301 14.2255
Symmetric rmsF p2pl: 0.3515 0.3120 0.2826 0.2568 0.2330 0.2106 0.1894 0.1694
Symmetric PSNR_1 p2pl: 69.5091 70.0272 70.4576 70.8731 71.2956 71.7355 72.1946 72.6804
Symmetric PSNR_2 p2pl: 17.1515 18.1877 19.0486 19.8797 20.7245 21.6044 22.5225 23.4941

Table 15. Octree reduction using 3DTK toolkit, with voxel size “R” = 1 and different parameters for
randomized octree based point reduction with “O” points per voxel, for the Soldier point cloud.

Soldier, R = 1 O = 1 O = 2 O = 3 O = 4 O = 5 O = 6 O = 7 O = 8

Average number of output points: 298,525 554,593 753,226 920,279 1,011,060 1,058,928 1,060,749 1,060,770
Average size of .oct file, bytes: 4,781,816 8,878,917 12,057,034 14,729,884 16,182,391 16,948,270 16,977,416 16,977,739
Average number of input points: 795,010 795,010 795,010 795,010 795,010 795,010 795,010 795,010
Average bits per input point: 48.1183 89.3465 121.3271 148.2234 162.8396 170.5465 170.8398 170.8430
Symmetric rmsF p2p: 0.7867 0.4851 0.2906 0.1324 0.0469 0.0017 0.0000 0.0000
Symmetric PSNR_1 p2p: 66.0108 68.1101 70.3362 73.7484 78.2606 92.5742 112.3807 Inf
Symmetric PSNR_2 p2p: 6.5947 10.7933 15.2455 22.0699 31.0944 59.7214 99.3344 Inf
Symmetric rmsF p2pl: 0.2672 0.1826 0.1110 0.0557 0.0199 0.0008 0.0000 0.0000
Symmetric PSNR_1 p2pl: 70.7010 72.3536 74.5152 77.5116 81.9802 95.8459 116.2297 Inf
Symmetric PSNR_2 p2pl: 15.9752 19.2803 23.6035 29.5964 38.5334 66.2649 107.0324 Inf

Sensors 2022, 22, 197 27 of 31

Table 16. Octree reduction using 3DTK toolkit, with voxel size “R” = 2 and different parameters for
randomized octree based point reduction with “O” points per voxel, for the Soldier point cloud.

Soldier, R = 2 O = 1 O = 2 O = 3 O = 4 O = 5 O = 6 O = 7 O = 8

Average number of output points: 78,169 151,269 221,122 287,916 350,702 411,306 469,731 526,048
Average size of .oct file, bytes: 1,256,069 2,425,706 3,543,359 4,612,076 5,616,648 6,586,314 7,521,122 8,422,194
Average number of input points: 795,010 795,010 795,010 795,010 795,010 795,010 795,010 795,010
Average bits per input point: 12.6395 24.4093 35.6560 46.4102 56.5190 66.2765 75.6833 84.7506
Symmetric rmsF p2p: 1.5565 1.1815 0.9842 0.8503 0.7489 0.6649 0.5922 0.5272
Symmetric PSNR_1 p2p: 63.0473 64.2443 65.0378 65.6730 66.2245 66.7409 67.2443 67.7490
Symmetric PSNR_2 p2p: 0.6678 3.0617 4.6487 5.9190 7.0221 8.0549 9.0618 10.0711
Symmetric rmsF p2pl: 0.3544 0.3203 0.2942 0.2705 0.2483 0.2271 0.2067 0.1871
Symmetric PSNR_1 p2pl: 69.4744 69.9128 70.2828 70.6468 71.0190 71.4072 71.8164 72.2488
Symmetric PSNR_2 p2pl: 13.5218 14.3986 15.1387 15.8666 16.6112 17.3875 18.2058 19.0707

5.7. Discussion

From Tables 4–6 e.g., before the Poisson surface reconstruction algorithm, the best
projection is Miller 10-bit, however Miller 9-bit and Mercator (also 9-bit) are similarly
performed. Probably because of the higher bit depth, Miller 10-bit is here the best projection,
however 1 extra bit may not be justified by only a little better objective measures, Figure 16.
From Tables 7–9 e.g., after the Poisson reconstruction algorithm, Mercator projection is the
best in the cases with projection areas of 1056 × 944 pixels and 1296 × 1160 pixels, while
cylindrical projection is the best for the projection area of 1496 × 1344 pixels. In the case of
the bigger projection area, there are more points, so surface reconstruction algorithm gives
better results. Actually, the main problem is the automatic calculation of normal vectors: in
some cases, inverted normal vectors are calculated so Poisson reconstruction algorithm
afterwards creates unwanted artifacts, lowering the overall objective score rmsF. If the
point clouds originate from sensor measurements, then the sensor poses enable a consistent
orientation of the normal vectors. Artifacts from inconsistent normals are noticable in
Figures 14 and 15 as higher scores in those point clouds. It can be seen that in the best
case, e.g., cylindrical projection with a projection area of 1496 × 1344 pixels, Figure 15f,
there are no unexpected errors, so the average score is the best for this case. The Miller
projection also gives very good results, with only 1 larger error for the largest projection
area. However, with smaller projection areas, some of the points in the original point cloud
become occluded by other points, so that they are not visible in the used projection. Because
of that, larger holes appear in the decompressed point cloud, which makes it difficult to
calculate normal vectors and finally surface reconstruction. This can be seen especially
in the smallest projection area that was tested, with a size 1056 × 944 pixels. In this case,
average rmsF objective score measures are the same before and after surface reconstruction,
meaning that the results were not better with the reconstruction algorithm. From Figure 18,
Redandblack point cloud, all proposed projections generally give good results with Poisson
reconstruction. From Figure 19, Soldier point cloud, Mercator and Miller projections give
good results with Poisson reconstruction, while cylindrical projection creates one error for
the second point cloud. Possibly, newer projection maps might be used, for example as in
the irregularly shaped objects in astronomy [52].

In Equation (22) we are using 16-bit precision, newly added in 3DTK toolkit, so that in
this paper we have the best representation for 16-bit precision, which can be also saved in
png file and stored using 3DTK toolkit (which uses OpenCV to store images). However,
later we are compressing geometry using 9-bit (or 10-bit for Miller compression) and FFV1
video compression. FFV1 decoder also creates 16-bit png images, but with maximally
29 (or 210) different intensities. This is different, compared to the reference [9], because
in the reference [9] we used only 24-bit geometry precision, before video compression.
Compared with the reference [9], similar parameters were for 1920x1080 resolution and
equirectangular projection, where 64,160,627 bytes (for the geometry and color) were used,
while in this paper for panorama size of 2,000,000 and equirectangular projection we use

Sensors 2022, 22, 197 28 of 31

12.7261 bits per point or (multiplied by 795,010 average number of input points and 20 point
clouds) 25,293,426 bytes, which is 39.4% from [9]. Separately, in [9] we use 21,378,775 bytes
for the geometry, while in this paper we use 14,225,893 bytes or 66.5% from [9]. For the
color, in [9] we use 43,208,605 bytes, while in this paper we use 11,067,533 bytes or 25.6%
from [9]. Also, somewhat better pixel occupancy is achieved in this paper, compared to the
reference [9]: for the same case (and equirectangular projection), average decompressed
point cloud Longdress has 428,221 points (before Poisson reconstruction) in this paper and
398,905 in [9]. This might be also compared with equirectangular projection and panorama
size of 1,500,000 points, where average decompressed point cloud has 390,058 points (before
Poisson reconstruction). For this case, we use 9.9778 bits per point or 19,831,040 bytes.
which is 30.9% from [9]. Better projection methods, like Miller, gives for the same panorama
size (1,500,000 points) on average higher number of output point cloud points—406,868
and also needs 19,789,828 bytes for the geometry and color, or 30.8% from [9]. In the
reference [10], larger static point clouds were also used with bigger range dynamic, which
might need 24-bit representation. However, in this paper we used only voxelized dynamic
point clouds with the size 1024× 1024× 1024, so 9-bit representation might be enough.

In comparison with the results from octree reduction, the proposed solution gives
better results for a similar size. However, the octree reduction algorithm has not been
designed for dynamic point clouds, and it was designed for other types of point clouds,
such as point clouds created by LIDAR, with non-uniform density and sampling, with
much higher bit-depth, in which case results might be different. Also, in octree-based
reduction, points do not occlude each other, so it creates a uniformly (sub)sampled point
cloud, independent of the final number of points, compared to the proposed solution.

6. Conclusions

In this paper, we have proposed a new projection-based point cloud compression
using different projection types, video compression algorithms, and surface reconstruction
algorithm. Ten different projection types and three different projection area sizes have been
considered, and objective point-to-point and point-to-plane measures were calculated. The
results showed that, overall, the Miller projection can be considered as the best among the
tested projections. The Mercator projection needs to be modified to address the problem
of representing latitudes ϕ near ±90◦. Cylindrical projection has worse objective scores
for smaller panorama size (among tested sizes). Also, although the Poisson surface re-
construction can imply some artifacts due to the missing points in the raw decompressed
point cloud, it is an important step of the proposed point cloud compression which fills the
missing points and usually generates better visual quality of reconstructed point clouds, at
least for larger panorama sizes and tested point clouds.

Future research will consider different projection types which may keep points without
creating larger holes and better algorithms for normal vector calculation which may provide
higher compression ratios. Different empty-pixel color filling methods might also be con-
sidered in future research, such as horizontal filling used by MPEG’s V-PCC compression.

Author Contributions: Conceptualization, E.D.; methodology, E.D. and A.B.; software, E.D. and
A.N.; validation, E.D., A.B. and A.N.; formal analysis, E.D.; investigation, E.D. and A.B.; resources,
A.N.; data curation, E.D.; writing—original draft preparation, E.D.; writing—review and editing, A.B.
and A.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available at http://msl.
unin.hr/ accessed on 13 September 2021.

Acknowledgments: This publication was supported by the Open Access Publication Fund of the
University of Würzburg.

Conflicts of Interest: The authors declare no conflict of interest.

http://msl.unin.hr/
http://msl.unin.hr/

Sensors 2022, 22, 197 29 of 31

References
1. Astola, P.; da Silva Cruz, L.A.; da Silva, E.A.; Ebrahimi, T.; Freitas, P.G.; Gilles, A.; Oh, K.J.; Pagliari, C.; Pereira, F.; Perra, C.;

et al. JPEG Pleno: Standardizing a Coding Framework and Tools for Plenoptic Imaging Modalities. ITU J. ICT Discov. 2020, 3,
1–15. [CrossRef]

2. Perkis, A.; Timmerer, C.; Baraković, S.; Husić, J.B.; Bech, S.; Bosse, S.; Botev, J.; Brunnström, K.; Cruz, L.; Moor, K.D.; et al.
QUALINET White Paper on Definitions of Immersive Media Experience (IMEx). In Proceedings of the European Network on
Quality of Experience in Multimedia Systems and Services, 14th QUALINET Meeting, Online, 25 May 2020; pp. 1–15.

3. Wang, Q.; Tan, Y.; Mei, Z. Computational Methods of Acquisition and Processing of 3D Point Cloud Data for Construction
Applications. Arch. Comput. Methods Eng. 2020, 27, 479–499. [CrossRef]

4. Pereira, F.; da Silva, E.A.; Lafruit, G. Chapter 2—Plenoptic imaging: Representation and processing. In Academic Press
Library in Signal Processing; Chellappa, R., Theodoridis, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 6,
pp. 75–111. [CrossRef]

5. van der Hooft, J.; Vega, M.T.; Timmerer, C.; Begen, A.C.; De Turck, F.; Schatz, R. Objective and Subjective QoE Evaluation
for Adaptive Point Cloud Streaming. In Proceedings of the 2020 Twelfth International Conference on Quality of Multimedia
Experience (QoMEX), Athlone, Ireland, 26–28 May 2020; pp. 1–6. [CrossRef]

6. Han, B.; Liu, Y.; Qian, F. ViVo: Visibility-aware mobile volumetric video streaming. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking, MobiCom 2020, London, UK, 21–25 September 2020; pp. 137–149. [CrossRef]

7. Dumic, E.; Battisti, F.; Carli, M.; da Silva Cruz, L.A. Point Cloud Visualization Methods: A Study on Subjective Preferences. In
Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January
2020; pp. 1–5.

8. Javaheri, A.; Brites, C.; Pereira, F.M.B.; Ascenso, J.M. Point Cloud Rendering after Coding: Impacts on Subjective and Objective
Quality. IEEE Trans. Multimed. 2020, 23, 4049–4064. [CrossRef]

9. Dumic, E.; Bjelopera, A.; Nüchter, A. Projection based dynamic point cloud compression using 3DTK toolkit and H.265/HEVC.
In Proceedings of the 2019 2nd International Colloquium on Smart Grid Metrology (SMAGRIMET), Split, Croatia, 9–12 April
2019; pp. 1–4. [CrossRef]

10. da Silva Cruz, L.A.; Dumić, E.; Alexiou, E.; Prazeres, J.; Duarte, R.; Pereira, M.; Pinheiro, A.; Ebrahimi, T. Point cloud quality
evaluation: Towards a definition for test conditions. In Proceedings of the 2019 Eleventh International Conference on Quality of
Multimedia Experience (QoMEX), Berlin, Germany, 5–7 June 2019; pp. 1–6. [CrossRef]

11. Elseberg, J.; Borrmann, D.; Nüchter, A. One billion points in the cloud—An octree for efficient processing of 3D laser scans.
ISPRS J. Photogramm. Remote Sens. 2013, 76, 76–88. [CrossRef]

12. Elseberg, J.; Magnenat, S.; Siegwart, R.; Nüchter, A. Comparison of nearest-neighbor-search strategies and implementations for
efficient shape registration. J. Softw. Eng. Robot. 2013, 3, 2–12. [CrossRef]

13. 3DTK—The 3D Toolkit. Available online: http://slam6d.sourceforge.net/ (accessed on 13 September 2021).
14. Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A. Panorama based point cloud reduction and registration. In Proceed-

ings of the 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November 2013;
pp. 1–8. [CrossRef]

15. Houshiar, H.; Nüchter, A. 3D point cloud compression using conventional image compression for efficient data transmission. In
Proceedings of the 2015 XXV International Conference on Information, Communication and Automation Technologies (ICAT),
Sarajevo, Bosnia and Herzegovina, 29–31 October 2015; pp. 1–8. [CrossRef]

16. Mammou, K.; Chou, P.A.; Flynn, D.; Krivokuća, M.; Nakagami, O.; Sugio, T. G-PCC Codec Description v2; Technical Report,
ISO/IEC JTC1/SC29/WG11 Input Document N18189; MPEG: Marrakech, MA, USA, 2019.

17. Zakharchenko, V. V-PCC Codec Description; Technical Report, ISO/IEC JTC1/SC29/WG11 Input Document N18190; MPEG:
Marrakech, MA, USA, 2019.

18. Sullivan, G.J.; Ohm, J.; Han, W.; Wiegand, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans.
Circuits Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]

19. Schwarz, S.; Preda, M.; Baroncini, V.; Budagavi, M.; Cesar, P.; Chou, P.A.; Cohen, R.A.; Krivokuća, M.; Lasserre, S.; Li, Z.; et al.
Emerging MPEG Standards for Point Cloud Compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 133–148. [CrossRef]

20. Graziosi, D.; Nakagami, O.; Kuma, S.; Zaghetto, A.; Suzuki, T.; Tabatabai, A. An overview of ongoing point cloud compression
standardization activities: Video-based (V-PCC) and geometry-based (G-PCC). APSIPA Trans. Signal Inf. Process. 2020,
9, e13. [CrossRef]

21. Alexiou, E.; Viola, I.; Borges, T.M.; Fonseca, T.A.; de Queiroz, R.L.; Ebrahimi, T. A comprehensive study of the rate-distortion
performance in MPEG point cloud compression. APSIPA Trans. Signal Inf. Process. 2019, 8, 27. Available online: https:
//www.epfl.ch/labs/mmspg/quality-assessment-for-point-cloud-compression/ (accessed on 13 September 2021).

22. Perry, S.; Cong, H.P.; da Silva Cruz, L.A.; Prazeres, J.; Pereira, M.; Pinheiro, A.; Dumic, E.; Alexiou, E.; Ebrahimi, T. Quality
Evaluation of Static Point Clouds Encoded Using MPEG Codecs. In Proceedings of the 2020 IEEE International Conference on
Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 3428–3432. [CrossRef]

23. Alexiou, E.; Tung, K.; Ebrahimi, T. Towards neural network approaches for point cloud compression. In Proceedings Volume
11510, Applications of Digital Image Processing XLIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2020;
p. 1151008. [CrossRef]

http://doi.org/11.1002/pub/8153d79a-en
http://dx.doi.org/10.1007/s11831-019-09320-4
http://dx.doi.org/10.1016/B978-0-12-811889-4.00002-6
http://dx.doi.org/10.1109/QoMEX48832.2020.9123081
http://dx.doi.org/10.1145/3372224.3380888
http://dx.doi.org/10.1109/TMM.2020.3037481
http://dx.doi.org/10.23919/SMAGRIMET.2019.8720392
http://dx.doi.org/10.1109/QoMEX.2019.8743258
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://dx.doi.org/10.1016/j.isprsjprs.2012.10.004
http://slam6d.sourceforge.net/
http://dx.doi.org/10.1109/ICAR.2013.6766587
http://dx.doi.org/10.1109/ICAT.2015.7340499
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/JETCAS.2018.2885981
http://dx.doi.org/10.1017/ATSIP.2020.12
https://www.epfl.ch/labs/mmspg/quality-assessment-for-point-cloud-compression/
https://www.epfl.ch/labs/mmspg/quality-assessment-for-point-cloud-compression/
http://dx.doi.org/10.1109/ICIP40778.2020.9191308
http://dx.doi.org/10.1117/12.2569115

Sensors 2022, 22, 197 30 of 31

24. Mekuria, R.; Blom, K.; Cesar, P. Design, Implementation, and Evaluation of a Point Cloud Codec for Tele-Immersive Video. IEEE
Trans. Circuits Syst. Video Technol. 2017, 27, 828–842. [CrossRef]

25. Quach, M.; Valenzise, G.; Dufaux, F. Learning Convolutional Transforms for Lossy Point Cloud Geometry Compression. In
Proceedings of the 2019 IEEE International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, 22–25 September 2019;
pp. 4320–4324. [CrossRef]

26. Loop, C.; Cai, Q.; Escolano, S.O.; Chou, P. Microsoft Voxelized Upper Bodies—A Voxelized Point Cloud Dataset; Technical Report,
ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) Input Document m38673/M72012. 2016. Available online: http://plenodb.
jpeg.org/pc/microsoft/ (accessed on 13 September 2021).

27. Quach, M.; Valenzise, G.; Dufaux, F. Improved Deep Point Cloud Geometry Compression. In Proceedings of the 2020 IEEE 22nd
International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland, 21–24 September 2020; pp. 1–6. [CrossRef]

28. Wang, J.; Zhu, H.; Liu, H.; Ma, Z. Lossy Point Cloud Geometry Compression via End-to-End Learning. IEEE Trans. Circuits Syst.
Video Technol. 2021, 31, 4909–4923. [CrossRef]

29. Wang, J.; Ding, D.; Li, Z.; Ma, Z. Multiscale Point Cloud Geometry Compression. In Proceedings of the 2021 Data Compression
Conference (DCC), Virtual, 23–26 March 2021; pp. 73–82. [CrossRef]

30. Guarda, A.F.R.; Rodrigues, N.M.M.; Pereira, F. Point Cloud Coding: Adopting a Deep Learning-based Approach. In Proceedings
of the 2019 Picture Coding Symposium (PCS), Ningbo, China, 12–15 November 2019; pp. 1–5. [CrossRef]

31. Rusu, R.B.; Cousins, S. 3D is here: Point Cloud Library (PCL). In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Shanghai, China, 9–13 May 2011.

32. Guarda, A.F.R.; Rodrigues, N.M.M.; Pereira, F. Deep Learning-based Point Cloud Geometry Coding with Resolution Scalability.
In Proceedings of the 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), Tampere, Finland,
21–24 September 2020; pp. 1–6. [CrossRef]

33. Guarda, A.F.R.; Rodrigues, N.M.M.; Pereira, F. Adaptive Deep Learning-Based Point Cloud Geometry Coding. IEEE J. Sel. Top.
Signal Process. 2021, 15, 415–430. [CrossRef]

34. Milani, S. ADAE: Adversarial Distributed Source Autoencoder For Point Cloud Compression. In Proceedings of the 2021 IEEE
International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 3078–3082. [CrossRef]

35. Lazzarotto, D.; Alexiou, E.; Ebrahimi, T. On Block Prediction For Learning-Based Point Cloud Compression. In Proceed-
ings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021;
pp. 3378–3382. [CrossRef]

36. Yan, W.; Shao, Y.; Liu, S.; Li, T.H.; Li, Z.; Li, G. Deep AutoEncoder-based Lossy Geometry Compression for Point Clouds. arXiv
2019, arXiv:1905.03691. Available online: https://arxiv.org/abs/1905.03691 (accessed on 13 September 2021).

37. Huang, T.; Liu, Y. 3D Point Cloud Geometry Compression on Deep Learning. In Proceedings of the 27th ACM International
Conference on Multimedia, Nice, France, 21–25 October 2019; Association for Computing Machinery: New York, NY, USA, 2019;
pp. 890–898. [CrossRef]

38. Nguyen, D.T.; Quach, M.; Valenzise, G.; Duhamel, P. Learning-Based Lossless Compression of 3D Point Cloud Geometry. In
Proceedings of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Toronto, ON, Canada, 6–11 June 2021; pp. 4220–4224. [CrossRef]

39. Nguyen, D.T.; Quach, M.; Valenzise, G.; Duhamel, P. Multiscale deep context modeling for lossless point cloud geometry
compression. In Proceedings of the 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Shenzhen,
China, 5–9 July 2021; doi:10.1109/ICMEW53276.2021.9455990. [CrossRef]

40. Que, Z.; Lu, G.; Xu, D. VoxelContext-Net: An Octree based Framework for Point Cloud Compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2021, Virtual, 19–25 June 2021; pp. 6042–6051.

41. Lazzarotto, D.; Ebrahimi, T. Learning residual coding for point clouds. In Applications of Digital Image Processing XLIV;
Tescher, A.G., Ebrahimi, T., Eds.; International Society for Optics and Photonics: Washington, DC, USA, 2021; Volume 11842,
pp. 223–235. [CrossRef]

42. Weisstein, E.W. Map Projection. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.
com/topics/MapProjections.html (accessed on 16 April 2021).

43. Houshiar, H. Documentation and Mapping with 3D Point Cloud Processing. Ph.D. Thesis, University of Würzburg, Würzburg,
Germany, 2017; doi:10.25972/OPUS-14449. [CrossRef]

44. d’Eon, E.; Harrison, B.; Myers, T.; Chou, P.A. 8i Voxelized Full Bodies—A Voxelized Point Cloud Dataset; Technical Report,
ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) Input Document WG11M40059/WG1M74006. 2017. Available online:
https://jpeg.org/plenodb/pc/8ilabs/ (accessed on 13 September 2021).

45. Lab, Visual Computing, MeshLab. Available online: http://www.meshlab.net/ (accessed on 13 September 2021).
46. CloudCompare—3D Point Cloud and Mesh Processing Software—Open Source Project. Available online: http://www.

cloudcompare.org (accessed on 6 February 2019).
47. FFmpeg Team. FFmpeg. Available online: https://www.ffmpeg.org/download.html (accessed on 2 May 2021).
48. Weisstein, E.W. Voronoi Diagram. From MathWorld—A Wolfram Web Resource. Available online: https://mathworld.wolfram.

com/VoronoiDiagram.html (accessed on 6 November 2021).
49. Dumic, E. Scripts for Dynamic Point Cloud Compression. Available online: http://msl.unin.hr/ (accessed on 8 November 2021).

http://dx.doi.org/10.1109/TCSVT.2016.2543039
http://dx.doi.org/10.1109/ICIP.2019.8803413
http://plenodb.jpeg.org/pc/microsoft/
http://plenodb.jpeg.org/pc/microsoft/
http://dx.doi.org/10.1109/MMSP48831.2020.9287077
http://dx.doi.org/10.1109/TCSVT.2021.3051377
http://dx.doi.org/10.1109/DCC50243.2021.00015
http://dx.doi.org/10.1109/PCS48520.2019.8954537
http://dx.doi.org/10.1109/MMSP48831.2020.9287060
http://dx.doi.org/10.1109/JSTSP.2020.3047520
http://dx.doi.org/10.1109/ICIP42928.2021.9506750
http://dx.doi.org/10.1109/ICIP42928.2021.9506429
https://arxiv.org/abs/1905.03691
http://dx.doi.org/10.1145/3343031.3351061
http://dx.doi.org/10.1109/ICASSP39728.2021.9414763
http://dx.doi.org/10.1109/ICMEW53276.2021.9455990
http://dx.doi.org/10.1117/12.2597814
https://mathworld.wolfram.com/topics/MapProjections.html
https://mathworld.wolfram.com/topics/MapProjections.html
http://dx.doi.org/10.25972/OPUS-14449
https://jpeg.org/plenodb/pc/8ilabs/
http://www.meshlab.net/
http://www.cloudcompare.org
http://www.cloudcompare.org
https://www.ffmpeg.org/download.html
https://mathworld.wolfram.com/VoronoiDiagram.html
https://mathworld.wolfram.com/VoronoiDiagram.html
http://msl.unin.hr/

Sensors 2022, 22, 197 31 of 31

50. Dumic, E.; da Silva Cruz, L.A. Point Cloud Coding Solutions, Subjective Assessment and Objective Measures: A Case Study.
Symmetry 2020, 12, 1955. [CrossRef]

51. Tian, D.; Ochimizu, H.; Feng, C.; Cohen, R.; Vetro, A. Geometric distortion metrics for point cloud compression. In Proceedings of
the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3460–3464. [CrossRef]

52. Grieger, B. Quincuncial adaptive closed Kohonen (QuACK) map for the irregularly shaped comet 67P/Churyumov-Gerasimenko.
Astron. Astrophys. 2019, 630, A1. [CrossRef]

http://dx.doi.org/10.3390/sym12121955
http://dx.doi.org/10.1109/ICIP.2017.8296925
http://dx.doi.org/10.1051/0004-6361/201834841

	Introduction
	Related Work
	Projection Types and Their Description
	Lambert Azimuthal Equal-Area Projection
	Albers Equal-Area Conic Projection
	Cylindrical Projection
	Cylindrical Equal-Area Projection
	Equidistant Cylindrical Projection
	Mercator Projection
	Miller Projection
	Rectilinear Projection
	Pannini Projection
	Stereographic Projection

	Creation of Panorama Images from Point Clouds and Recreation of Point Clouds
	Results
	Objective Measures Used for Point Cloud Performance Comparison
	Point Cloud Compression Using Different Projections—Compression Efficiency
	Point Cloud Compression Using Different Projections—Objective Measures
	Point Cloud Compression—Timing Performance
	Point Cloud Compression Using Different Point Clouds
	Comparison with Octree Reduction from 3DTK Toolkit
	Discussion

	Conclusions
	References

