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Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]: Geo-
metrical problems and computations; G.1.6 [Optimization]:
Integer and Linear Programming; I.2.10 [Vision and Scene

Understanding]: 3D/stereo scene analysis

General Terms

Algorithms, optimization
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1. INTRODUCTION
In this video, we illustrate how one of the classical areas of

computational geometry has gained in practical relevance,
which in turn gives rise to new, fascinating geometric prob-
lems. In particular, we demonstrate how the robot platform
IRMA3D can produce high-resolution, virtual 3D environ-
ments, based on a limited number of laser scans. Computing
an optimal set of scans amounts to solving an instance of
the Art Gallery Problem (AGP): Place a minimum number
of stationary guards in a polygonal region P , such that all
points in P are guarded.

As first proven by Chvátal [2] and shown by Fisk [6] in
a beautiful and concise proof, ⌊n

3
⌋ guards are sometimes

necessary and always sufficient for a simple polygon P with
n vertices. See O’Rourke [9] for an early overview.
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Algorithmically, the AGP is NP-hard, even for a sim-
ply connected polygonal region P [8]. Eidenbenz et al. [4]
showed that for a region with holes, finding an optimal set
of vertex guards is at least as hard as Set Cover, so there
is little hope of achieving a better approximation guarantee
than Ω(log n). It seems unlikely that this gets any easier
when allowing general point guards, as there is no known
simple characterization of a discrete candidate set of guard
locations. All this show the difficulty of the AGP, but it does
not rule out methods that combine structural insights with
powerful mathematical tools in order to achieve provably
optimal solutions for instances of interesting size.

Figure 1: A real-life AGP instance with 15 holes and

332 vertices: the city center of Bremen.

Computing optimal solutions for general AGP instances
is not only relevant from a theoretical point of view, but
has also gained in practical importance in the context of
modeling, mapping and surveying complex environments,
such as in the fields of architecture, robotics and medicine.



2. OUR WORK
Irma3D (Intelligent Robot for Mapping Applications in

3D) is an autonomous robot; see Fig. 2. Its main sensor
is a Riegl VZ-400 laser scanner. A typical 3D laser scan
needs 3 minutes, producing up to 20 million highly precise
3D measurements of the surrounding. A globally consistent
scan matching is used to merge the 3D scans to a single
scene [1]. Irma3D is built of a Volksbot RT-3 chassis; it uses
the Xsens MTi IMU and odometry to sense its own position.

Figure 2: IRMA3D in front of the town hall scan-

ning the city square of Bremen.

Lately, the groups in Campinas and Braunschweig have
independently started to combine methods from integer (IP)
and linear programming (LP) with non-discrete geometry in
order to obtain optimal solutions; first for the discrete case
of vertex guards [3], but now also for general point guards.

The algorithm in [10] computes lower and upper bounds
for the AGP, based on computing finite set-cover instances
with the help of a state-of-the-art IP solver. To generate a
lower bound, a finite set of witness candidates is chosen and
a restricted AGP is solved, in which only the witnesses have
to be covered. For this, it suffices to extract a finite set of
potential guard positions from the visibility arrangement of
the witness set in order to ensure optimality. Similarly, finite
sets of potential witness positions for a given finite guard
set can be extracted from the visibility arrangment of the
guards. This allows it to compute upper and lower bounds
for the optimal AGP value by solving discrete set cover in-
stances. The algorithm of [10] iterates between generating
tighter lower and upper bounds by refining the witness and
guard candidate sets along the iterations. It stops when
lower and upper bounds coincide. Although no theoretical
convergence has been established, in tests, the approach is
able to yield optimal solutions for a large variety of instance
classes, even for polygons with up to a thousand vertices.

An approach presented in [7] considers a similar primal-
dual scheme, but focuses on the linear relaxation of the pri-
mal guard cover, whose dual is the witness packing problem.

min
∑

g∈G

xg (1)

s. t.
∑

g∈G∩V(w)

xg ≥ 1 ∀w ∈ W (2)

0 ≤ xg ≤ 1 ∀g ∈ G (3)

Allowing fractional guard values leads to identical optimal
primal and dual optimal solutions. In order to eliminate
fractional solutions, we can apply appropriate cutting planes
derived from the set cover polytope; see [5] for details.

∑

g∈J2∩G

2xg +
∑

g∈J1∩G

xg ≥ 2 (4)

As it turns out [5], only a small subset of these inequalities
matter in the context of AGP instances. Together with a
similar primal-dual iteration scheme such as the one in [10],
we can find optimal integral solutions for a large range of
benchmark instances, including the one shown in Figure 1.

3. THE VIDEO
The video opens with a city scene, to be scanned by the

robot. This gives rise to the AGP, introduced in the next
sequence. Then an IP approach for general point guards
is presented, based on an analysis of possible guard and
witness positions in the arrangement of visibility polygons.
This is followed by the description of an LP approach, which
is combined with ideas for eliminating fractional vertices by
means of cutting planes; the method is then applied to the
city instance from the introduction. Finally, the resulting
scans are combined into a virtual flight through the city
environment, both in visible light and in infrared.
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