Mapping of Rescue Environments with Kurt3D

A. Niichter, K. Lingemann, J. Hertzberg

University of Osnabriick
Institute for Computer Science
Knowledge-Based Systems Research Group

Albrechtstrale 28
D-49069 Osnabriick, Germany
nuechter @informatik.uni-osnabrueck.de

Abstract— Deploying rescue workers in an urban setting is
often a perilous, time-, power-, and force-consuming job, and
systems to assist in this effort are needed. A fundamental task
for rescue is to localize injured persons. To this end, robotic
systems are used for mapping a site and for remote inspection
of suspicious objects. The mobile robot Kurt3D is the first
rescue robot that is capable of mapping its environment in 3D
and self localize in all six degrees of freedom, i.e., considering
its x, y and z positions and the roll, yaw and pitch angles.

I. INTRODUCTION

For protecting humans, it is nowadays important to build
robots that are able to operate in earthquake, fire, explosive
and chemical disaster areas. The community of Urban
Search and Rescue Robotics (USAR) grows very fast. Many
robots are manufactured, both from research institutes
and from industry. However, until now, there have been
no systems that can reliably map their environment. The
mobile robot Kurt3D was presented at RoboCup Rescue
2004 in Lisbon (Fig. 1). The robot is capable of mapping
its environment in 3D and self localize in six degrees of
freedom, i.e., considering its x, y and z positions and the
roll, yaw and pitch angles (6D SLAM).

Kurt3D’s mapping system consists of three major parts.
First is the precise planar pose tracking algorithm HAYAI
Using 2D laser scans, features that correspond to natural
landmarks are extracted and paired with features of previ-
ous scans. Second, a fast and reliable 3D scan matching
procedure, employing a sophisticated point reduction and
approximate nearest neighbor search, is used to generate
3D maps and relocalize the robot. The basis of the 3D scan
matching is the well know iterative closest points (ICP) al-
gorithm. The third module is an interactive, semi-automatic
control program that enables the operator to interfere with
the mapping process for corrections. This paper focusses
on Kurt3D’s mapping and localization modules and their
interaction in the rescue context, devising the similarities
between HAYAI and 6D SLAM.

A. State of the Art

1) Rescue Robotics Systems: Current rescue robots are
mainly designed for searching for victims and paths through
rubble that would be quicker to excavate, for structural
inspection and for detection of hazardous material [7]. The
robots are designed to go a bit deeper than traditional search
equipment, i.e, cameras mounted on poles [7]. The actual

H. Surmann, K. Pervélz, M. Hennig,
K. R. Tiruchinapalli, R. Worst, T. Christaller

Fraunhofer Institute for
Autonomous Intelligent Systems (AIS)

Schloss Birlinghoven
D-53754 Sankt Augustin, Germany
hartmut.surmann @ais.fraunhofer.de

Fig. 1. The mobile robot Kurt3D equipped with the 3D laser range finder
as presented at RoboCup 2004. The scanners technical basis is a SICK
2D laser range finder (LMS-200).

operating range of current rescue robots is 5 —20 m. The
robots, e.g., the microtracs “micro-VGTV” and “Solem”
[8], are small tanks that are connected with the operator by
wire for transmitting a video signal. In fact, cameras are
the only sensors, thus mapping the environment is basically
impossible. Other rescue robot systems are based on tank-
like chassis, too. While mapping environments is a large
research field in mobile robotics, only a little work has been
done in the automatic mapping of rescue environments, as
presented in [4].

2) 3D Mapping: Instead of using 3D scanners which
yield consistent 3D scans in the first place, some groups
have attempted to build 3D volumetric representations of
environments with 2D laser range finders. E.g., Thrun et
al. [13] use two 2D laser range finders for acquiring 3D
data. One laser scanner is mounted horizontally, the other
vertically. The latter one grabs a vertical scan line which
is transformed into 3D points based on the current robot
pose. The horizontal scanner is used to compute the robot
pose. The precision of 3D data points crucially depends on
that pose and on the precision of the scanner. The same
argument applies to the work of Wulf et al. who let the
scanner rotate around the vertical axis [14].

A few other groups use high accurate, expensive 3D
laser scanners [5], [10]. The RESOLV project aimed at
modeling interiors for virtual reality and tele-presence [10].
They used a RIEGL laser range finder on robots and the
ICP algorithm for scan matching [3]. The AVENUE project
develops a robot for modeling urban environments [5],

using a CYRAX laser scanner. Nevertheless, in their recent
work they do not use data of the laser scanner in the robot
control architecture for localization [5]. The research group
of M. Hebert has reconstructed environments using the
Zoller+Frohlich laser scanner and aims to build 3D models
without initial position estimates, i.e., without odometry
information [6].
II. THE EXPLORATION ROBOT KURT3D

Kurt3D! (Fig. 1) is a mobile robot platform with a size
of 45 cm (length) x 33 cm (width) x 26 cm (height)
and a weight of 15.6 kg, both indoor as well as outdoor
models exist. Equipped with the 3D laser range finder,
the height increases to 47 cm and the weight increases
to 22.6 kg. Two 90 W motors (short-term 200 W) are
used to power the 6 wheels. Compared to the original
Kurt3D robot platform, the outdoor version has larger
wheels, where the middle ones are shifted outwards. Front
and rear wheels have no tread pattern to enhance rotating.
Kurt3D operates for about 4 hours with one battery charge
(28 NiMH cells, capacity: 4500 mAh) charge. The core
of the robot is an Intel-Centrino-1400 MHz with 768 MB
RAM and a Linux operating system. An embedded 16-
Bit CMOS microcontroller is used to process commands to
the motor. A CAN interface connects the laptop with the
microcontroller.

The 3D laser range finder (Fig. 1) is built on basis of a 2D
range finder by extension of a mount and a standard servo
motor [11]. The 2D laser range finder is attached to the
mount in the center of rotation for achieving a controlled
pitch motion. The servo is connected on the left side (Fig.
1). The 3D laser scanner operates for up to Sh (Scanner:
17 W, 20 NiMH cells with a capacity of 4500 mAh, Servo:
0.85 W, 4.5 V with batteries of 4500 mAh) on one battery
pack. The area of 180°(h) x 90°(max. 120°)(v) is scanned
with different horizontal (181, 361, 721) and vertical (128,
176, 256, 400, 500) resolutions. A plane with 181 data
points is scanned in 13 ms by the 2D laser range finder
(rotating mirror device). Planes with more data points, e.g.,
361, 721, duplicate or quadruplicate this time. Thus a scan
with 361 x 176 data points needs 4.5 seconds. In addition
to the distance measurement the 3D laser range finder is
capable of quantifying the amount of light returning to the
scanner, resulting in a black/white reflectance image of the
scene. Scanning the environment with a mobile robot is
done in a stop-scan-go fashion.

Kurt3D is equipped with 2 x 4 super bright LEDs and two
fluorescent tubes to illuminate the surroundings. The LEDs
are attached to the two pan-and-tilt Logitech QuickCam
4000 cameras. Additional 8 NiMH cells are used to power
the light.

II1. POSE TRACKING WITH HAYAI
This section describes the newly developed algorithm
HAYAI (Highspeed And Yet Accurate Indoor/outdoor-

Videos of explorations with Kurt3D can be found at:
http://www.ais.fraunhofer.de/ARC/kurt3D/index.html

tracking). The matching algorithm is based on the following
scheme:
1) Detect features within scan ® , yielding feature set M
(model set). Likewise compute set D (data set) from
a previous scan S.
2) Search for pairwise corresponding features from both
sets, resulting in two subsets M CM and D CD.
3) Compute the pose shift Ap = (Ax,Ay,A8)7 as the
optimal transformation for mapping D onto M.
4) Update the robot’s pose p,— p,,| accor-
ding to formula (1). Ap
5) Save the current scan as new reference scan ® <« S.
Given a pose p,, = (xn,Vn,0,) and a transformation Ap =
(Ax,Ay,AB), the transition Pn — Dnsl is
calculated as follows: Ap

Xnt1 Xn cos®, sinB, O Ax
Ypt1 | = | + | —sin6, cos6, O] [Ay (1)
6n+ 1 en 0 0 1 AO

A. Data Filtering

Scanning is noisy and small errors may occur, namely
Gaussian noise and salt and pepper noise. The latter one
arises for example at edges where the laser beam of the
scanner hits two surfaces, resulting in a mean and erroneous
data value. Furthermore reflections, e.g., at glass surfaces,
lead to suspicious data. We propose two fast filtering
methods to modify the data in order to enhance the quality
of each scan, typically containing 181 data points. The
data reduction, used for reducing Gaussian noise, works as
follows: The scanner emits the laser beams in a spherical
way, such that the data points close to the source are more
dense. Multiple data points located close together are joined
into one point. The number of these so-called reduced
points is one order of magnitude smaller than the original
one. For eliminating salt and pepper noise, a median filter
removes the outliers by replacing a data point with the
median value of the n surrounding points (here: n = 7).
The neighbor points are determined according to their index
within the scan, since the laser scanner provides the data
sorted in a counter-clockwise direction. The median value is
calculated with regard to the Euclidian distance of the data
points to the point of origin. In order to remove noisy data
but leave the remaining scan points untouched, the filtering
algorithm replaces a data point with the corresponding
median value if and only if the Euclidian distance between
both is larger than a fixed threshold (e.g., 200 cm).
B. Extraction and Matching of Features

As described above, the scan matching algorithm com-
putes a transformation Ap such that a set of features,
extracted from the first scan, is mapped optimally to a
feature set of the second scan. In order to be usable for
a pose tracking algorithm, these features have to fulfill two
requirements: First, they have to be invariant with respect to
rotation and translation. Second, they have to be efficiently
computable in order to satisfy real time constraints.

Using the inherent order of the scan data allows the
application of linear filters for a fast and reliable feature

600

scan signal —
gradient —

Scan 2 —
matching
feature

distance [cm]
N
g
g

distance [cm

2

o i T

600

transformed ___
Scan 2

Scan 2 —
matching
features

0 20 40 60 80 100 120 140 160 180 0g 05 1 15 2

angle angle

Fig. 2. From left to right: (1) Application of the feature detection filters.
the euclidian one (3). (4) Transformed scan.

detection. HAYAI chooses extrema in the polar representa-
tion of a scan as natural landmarks. These extrema correlate
to corners and jump edges in Cartesian space. The usage of
polar coordinates implicates a reduction by one dimension,
since all operations deployed for feature extraction are fast
linear filters, operating on the sequence of range values
(ri)iey of a scan § = (((p,-,r,'))i:h_"N.

Given a one dimensional filter ¥ = [\p_l, Vo, Y1], the
ﬁltered value r of a scan point r; (i = —1) is defined
as r):k__l Vi rit. For feature detectlon the scan signal
is ﬁltered as follows:

1) Sharpen the data in order to emphasize the significant

parts of the scan, i.e., the extrema, without modifying
the residual scan, by applying a sharpen filter of the

form ¥ = [—1, 4, —1].
2) Compute of the derivation signal by using a gradient
filter ¥, = [—4, 0, 3].

3) Smooth the gradient signal to simplify the detection
of zero crossings with a soften filter W3 =[1, 1, 1].
Fig. 2 (left) illustrates the effects of the used filters.

After generating the sets of features M,D from both
scans, a matching between both sets has to be calculated.
Instead of solving the hard optimization problem of search-
ing for an optimal match, we use a heuristic approach,
utilizing inherent knowledge about the problem of matching
features, e.g., the fact that the features’ topology cannot
change fundamentally from one scan to the following. The
basic aim is to build a matrix of possible matching pairs,
based on an error function defining the distance between
two points m;,d;, with m; = (m?,m’)T in Cartesian, or
(m?,m!)T in polar coordinates, resp. (d; analogously):

diSt(mi,dj) = \/((‘)1 : (m:P

s/ — 2+ () —)2
+®(ml-7dj)

2
—d}))” + o (mf —d5)?

(@)

with constants ()ie{1 23}, implementing a weighting
between the polar and Cartesian distances. The function ®
inhibits matchings between two features of different types:

O(mj,d;) = {

with a classification function I': (M U D) — {max.,
min., inflection point}. The resulting matrix w; ; denoting fea-
ture correspondences is simplified until the match is non-
ambiguous. Fig. 2 shows the match of two scans.

0 I(m;) =T(d;)

o else

200 300
[em] [em]

100 200 300

(2) and (3) Pairing of corresponding features. (¢,r) representation (2) vs.

C. Pose Calculation

Given two sets of features M = {m;| m; € R?, i =
1,...,Nu} and D= {d; |d; € R?* i=1,...,N; }, the cal-
culation of the optimal transformation for mapping D onto
M is an optimization problem of the error function:

Ni Na
ZZWUHmL (Rd;+1)[|” 3)
i= l]

(Rd;+1)|1%, &)

O(Ni:Z:lei_

since the matching is non-ambiguous. The first step of the
computation is to decouple the calculation of the rotation
R from the translation ¢ using the centroids of the points
belonging to the matching.

1 i 1 i
= — mi, Cq = — d,’ (5)
N = NS
and M' = {m}=m;—cm}1. N, (6)
D' ={dj =d;i —cq}.., O
After replacing (5), (6) and (7) in the error function (4),
E(R,t) becomes:
E(R.1) x_zum —Rd,— (t —cm+Reg)||”
i=1 —
=t
N
yLlbi-rdlPe RiE s
2 N (ol R
-5 Z (m}—Rd}) (8b)

1

In order to minimize the sum above, all terms have to be
minimized. The third sum (8b) is zero, since all values refer
to centroid. The second part (8a) has its minimum for 7 = 0
or t = ¢, — Rcg. Therefore the algorithm has to minimize
only the first term, and the corresponding error function is:

J / 7112
R) o<) ||mi = Rdi[| "
i=1

By solving the equation %E(RAO) =0 for a 2D rotation
Rpp = R, the optimal rotation is calculated as

©))

N
¥ (3l

A® = arctan | =1 (10)
Y (nd’} —nd?)

i=1

With given rotation, the translation is calculated as follows:

Ax cosAO
(Ay> =m= (~sinA® an
——

—Ar

sinA@
cosA9 | €@

=Rao

IV. 3D MAPPING AND 6D ROBOT RELOCALIZATION

Multiple 3D scans are necessary to digitalize environ-
ments without occlusions. To create a correct and consistent
model, the scans have to be merged into one coordinate sys-
tem. This process is called registration. If the localization
of the robot with the scanner were precise, the registration
could be done directly based on the robot pose. However,
relative self localization is erroneous, even with HAYAI, so
the geometric structure of overlapping 3D scans has to be
considered for registration.

A. 6D Registration of 3D Scans

The following method for registration of point sets is part
of many publications, so only a brief summary is given
here. The complete algorithm was invented in 1992 and
can be found, e.g., in [3]. The method is called Iterative
Closest Points (ICP) algorithm. The procedure considers
all six degrees of freedom, i.e., the roll, yaw and pitch
orientation and the x, y, and z position of the robot

Given two independently acquired sets of 3D points, M
(|M| = N,,) and D (|D| = N,), which correspond to a single
shape, we aim to find the transformation consisting of a
rotation R and a translation ¢ which minimizes the cost
function (3). Note: This time the vectors are in 3D space
and R has to be an orthonormal 3 x 3 matrix. Now, w; ; is
assigned 1 if the i-th point of M describes the same point in
space as the j-th point of D. Otherwise w; ; is 0. Two things
have to be calculated: First, the corresponding points, and
second, the transformation (R,) that minimize E(R,t) on
the base of the corresponding points.

The ICP algorithm calculates iteratively the point cor-
respondences. In each iteration step, the algorithm selects
the closest points as correspondences and calculates the
transformation (R,t) for minimizing equation (3). The as-
sumption is that in the last iteration step the point cor-
respondences are correct. In every iteration the optimal
transformation (R, #) has to be computed. Like before,
eq. (3) can be reduced to eq. (4). The difficulty of the
minimization problem is to enforce the orthonormality of
matrix R. The following method, first published by Arun
et al, is based on singular value decomposition (SVD) [1].
It is robust and easy to implement, thus we give a brief
overview here:

The conversion of (3) to (4) holds in 3D space, too.
The algorithm computes the optimal rotation by R = VU
Hereby the matrices V and U are derived by the singular
value decomposition H = UAVT of a correlation matrix H.
This (3 x 3) matrix H is given by

N Sx Sxy sz
H=Y mldi=| Sy Sy S: |, (12)
i=1 Sx Szy Szz

: N ! gl N ! g/
with S = Y0y md;y, Soy =YL, myd, ...
Since rotations are length preserving, i.e., ||Rd}[*=

||d’||?, the error function (9) is expanded to

al 112 ul / / ul /112
E(R) = Y][2 ¥Rl]
i=1 i=1 i=1

The rotation affects only the middle term, thus it is sufficient

to maximize

N N
Zmi -Rd) = Zm: Rd..
i=1

i=1

13)

Using the trace of a matrix, (13) can be rewritten to obtain
N
tr (Z Rd§m§T> =tr(RH).
i=1

Hereby, matrix H has to be defined as in (12). Now we have
to find the matrix R that maximizes tr (RH). Assume that
the singular value decomposition of H is H = UAVT, with
U and V orthonormal 3 x 3 matrices and A a 3 x 3 diagonal
matrix without negative elements. Suppose R = VU7 . Then,

R is orthonormal and
RH vuTuavT

VAVT

is a symmetric, positive definite matrix. Arun, Huang and
Blostein provide a lemma to show that

tr(RH) > tr (BRH) ,

for any orthonormal matrix B. Therefore the matrix R is
optimal. Proving the lemma is straightforward, using the
inequation of Chauchy-Schwarz [1]. The optimal translation
is calculated as (cf. (8b) and (11)): t = ¢;;, — Rey.

B. ICP-based 6D SLAM

To digitalize environments, multiple 3D scans have to be
registered. After registration, the scene has to be globally
consistent. A straightforward method for aligning several
3D scans is pairwise matching, i.e., the new scan is
registered against the scan with the largest overlapping
areas. The latter one is determined in a preprocessing step.
Alternatively, incremental matching could be used, i.e., the
new scan is registered against a so-called metascan, which
is the union of the previously acquired and registered scans.
Each scan matching has a limited precision. Both methods
accumulate the registration errors such that the registration
of a large number of 3D scans leads to inconsistent scenes
and to problems with the robot localization.

After matching multiple 3D scans, errors have accu-
mulated and a closed loop will be inconsistent. Our 6D
SLAM algorithm detects a closing loop by registering the
last acquired 3D scan with earlier acquired scans. If a
registration is possible, the computed error is distributed
over all 3D scans. A second step minimizes the global error.
The registration of one scan is followed by registration of
all neighboring scans, such that the error is minimized. In
an iterative fashion a consistent model is produced. Details
of the full algorithm can be found in [9], [12].

Fig. 3.
Subsampled version (points have been enlarged, 6700 data points).

Left: A view of a 3D scene (66785 3D data points). Right:

C. ICP Speedups

The computational requirements are reduced by two
methods: First we reduce the 3D data, i.e., we compute
point clouds that approximate the scanned 3D surface and
contain only a small fraction of the 3D point cloud. Second
is the fast approximation of the closest point with kd-trees
for the ICP algorithm.

Data reduction for the ICP algorithm is done using the
proposed filters of subsection III-A. Without filtering, a
few outliers may lead to multiple wrong point pairs during
the 3D matching phase and results in an incorrect 3D
scan alignment. Reduction and filtering are done in every
single 2D scan slice while scanning, they are implemented
as online algorithms and run in parallel to the 3D scan
acquisition. In the end, the data for the scan matching
are collected from every third scan slice. This fast vertical
reduction yields a good surface description (cf. Fig. 3).

kD-trees are a generalization of binary search trees.
Every node represents a partition of a point set to the two
successor nodes. The root represents the whole point cloud
and the leafs form a disjunct partition of the set. These
leafs are called buckets. Furthermore, every node contains
the limits of the represented point set. Searching in kd-trees
is done recursively. For a given 3D point p,, a comparison
with the separating plane has to be performed in order
to decide on which side the search must continue. This
procedure is executed until the leafs are reached. There, the
algorithm has to evaluate all bucket points. However, the
closest point may be in a different bucket, iff the distance
to the limits is smaller than the one to the closest point in
the bucket. In this case backtracking has to be performed
(Fig. 4, left).

Arya et al. introduce the following notion for approxi-
mating the nearest neighbor [2]: Given an € > 0, then the
point p € D is the (1 + €)-approximate nearest neighbor
of the point p, iff ||[p—gq|| < (1 +¢€)[[p"—ql|, whereas
p* denote the true nearest neighbor, i.e., p is within a
relative error of € of the true nearest neighbor. In every
step the algorithm records the closest point p; the search
finishes if the distance to the unanalyzed leafs is larger
than Hpq—p||/(1 +¢). Fig. 4 (right) shows an example
where the gray cell doesn’t have to be analyzed, since the
point p satisfies the approximation criterion. Fig. 5 shows
the computation time for matching two 3D scans using kd-
trees (left) and approximate kd-trees (right) with € = 50 for

o | first partition

o ° - second pattition

——————— third partition

b
& Ball-Within-Bounds| Fousthpartition
& L
L]

Fig. 4. Left: Construction of a kd-tree. Right: The (1 + €)-approximate
nearest neighbor. The search algorithm doesn’t have to analyze the gray
cell, since the point p satisfies the approximation criterion.

[ms] [ms] e=50
10000 kd—tree mmm 10000 |- kd—tree wm—
8000 8000 |-

5000 6000 |-

5 10 [20 25 3050 5 10 [20 25 3050
points per bucket points per bucket

Fig. 5. Left: Run time of the ICP algorithm using kd-trees with different
bucket sizes. The minimal time is reached for 10 points per bucket. Right:
Computing time for Approximate kd-tree search.

different bucket sizes. In [9] we show that the quality of the
scan matching is not affected by the approximation, due to
the large number of points and the iterative fashion of the
3D scan matching.

V. THE SOFTWARE ARCHITECTURE

Fig. 6 sketches the software architecture. It is a client-
server architecture where client and server are connected
by wireless LAN. On the robot’s side a 100 Hz control
loop is running, adjusting the motor velocities. In this loop
odometry and HAYAI are processed and merged with a
Kalman filter. The processing time of HAYAI is around 3%
of the CPU load. Thus there is enough time to compress
the camera images to jpeg and to transmit the data.

At the operator station the robot is teleoperated. Three
processes are executed in parallel: The communication
between remote joystick control and robot, the 3D mapping,
and the interactive, OpenGL-based map viewer. The latter
enables the operator to intervene in the map generation
process, e.g., manually correcting the initial 6D pose of an
acquired 3D scan and restarting the matching algorithm.
During competition, the operator tried to minimize the
number of acquired 3D scans to save time for victim
detection. The virtual camera pose in the 3D mapping
window is freely adjustable, though a view from top is used
by default, since it provides the best situation awareness.

TCP
Robot /IP

Camera Images
Laser Data

Status(odo. sensors)

PI control and HAYAI
(single task 100 Hz loop)

Op. station

Joystick and
Camera Cmds

o

Result
Mapping |Visualization

Commu-— 3D
nication

Fig. 6. System Overview: The robot runs a 100 Hz loop for motor
control, scan processing, image encoding and transmission. The Kurt3D
server executes three threads that are responsible for communicating, 3D
mapping and result visualization.

VI. RESULTS AND CONCLUSION

The proposed algorithms have been evaluated at
RoboCup Rescue 2004 in Lisbon. Fig. 7 shows an online
generated 3D map (top view). Two 3D views are given
in Fig. 8. An offline-rendered animation of the acquired
data can be found at http://www.ais.fhg.de/ARC/kurt3D/
rr.html.

Based on the principles of 3D scan matching, we have
designed a SLAM algorithm in six dimensions using loop
closing and global error minimization [9]. This global
error minimization is currently too slow to be deployed
on a rescue system. The computing time of this relaxation
algorithm is in the order of several minutes for a typical
rescue arena, thus in the designated scenario we use pure
3D scan matching for mapping. Since 3D scans potentially
provide a lot of information and the area is small, i.e., 6 m
X 6 m, scan matching is sufficient for mapping.

This paper has presented a mobile robotic system for
teleoperated 3D mapping of environments. The mapping
is done by means of a fast pose tracking algorithm and
3D scan matching. We have demonstrated our 3D mapping
capabilities at the RoboCup Rescue 2004 in Lisbon, were
our team won the 2nd prize. The aim of future work is com-
bining the mapping algorithms with mechatronic robotic
systems, i.e., building a robot system that can actually
go into the third dimension and can cope with the red
arena in RoboCup Rescue. Furthermore, we concentrate on
enhancing the system’s autonomy: In addition to automatic
mapping, autonomous driving and exploration are planned.

REFERENCES

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least square fitting of
two 3-d point sets. IEEE PAMI, 9(5), 1987.

[2] S. Arya et al. Approximate nearest neigbor queries in fixed
dimensions. In Proc. 4th ACM Symp. on Discrete Algorithms, 1993.

[3] P. Besl and N. McKay. A method for Registration of 3-D Shapes.
IEEE PAMI, 14(2), 1992.

[4] St. Carpin, H. Kenn, and A. Birk. Autonomous Mapping in the Real
Robots Rescue League. In Proc. RoboCup 2003, 2004.

[5] A. Georgiev and P. K. Allen. Localization methods for a mobile
robot in urban environments. IEEE TRO, 20(5), 2004.

[6] M. Hebert, M. Deans, D. Huber, B. Nabbe, and N. Vandapel.
Progress in 3-D Mapping and Localization. In Proc. SIRS, 2001.

[71 R. R. Murphy. Activities of the rescue robots at the world trade
center from 11-21 September 2001. [EEE Robotics & Automation
Magazine, 11(3), 2004.

[8] R. R. Murphy. Rescue robotics for homeland security. Com. of the
ACM, Special Issue on Homeland Security, 27(3), 2004.

[9] A. Niichter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM
with Approximate Data Associoation. In Submitteed to ICAR, 2005.

[10] V. Sequeira et al. Automated 3D reconstruction of interiors with
multiple scan—views. In Proc. SPIE 99, USA, 1999.

[11] H. Surmann et al. A 3D laser range finder for autonomous mobile
robots. In Proc. 32nd ISR, 2001.

[12] H. Surmann, A. Niichter, K. Lingemann, and J. Hertzberg. 6D SLAM
A Preliminary Report on Closing the Loop in Six Dimensions. In
Proc. IFAC Symp. IAV, Lisbon, Portugal, 2004.

[13] S. Thrun, D. Fox, and W. Burgard. A real-time algorithm for mobile
robot mapping with application to multi robot and 3D mapping. In
Proc. IEEE ICRA, San Francisco, USA., 2000.

[14] O. Wulf, K. O. Arras, H. 1. Christensen, and B. A. Wagner.
2D Mapping of Cluttered Indoor Environments by Means of 3D
Perception. In Proc. IEEE ICRA, New Orleans, USA, April 2004.

Fig. 7. A 3D map of the rescue arena (orange) during RoboCup 2004
as a point cloud (top view). The points on the ground have been colored
in light grey. The 3D scan positions (blue) and a found victim (red) are
marked.

Fig. 8. A 3D view of the map of Fig. 7 rendered from a pose slightly
above the arena. The 1 m? grid is superimposed in the first map.

