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Abstract— This paper presents a novel approach to create several scans of an unknown environment. The acquired scans
polygonal maps from 3D point cloud data. The gained map is are registered into a global coordinate system by a 6D SLAM
augmented with an interpretation of t_he scene. Our procedue algorithm. Based on the resulting point cloud, a polygonapm
produces accurate maps of indoor environments fast and redbly. . . o . .

These maps are successfully used by different robots with wging 'S 9°mp“t?d using a modified Marching Cubes a'go“t_hm [9_]'
sensor configurations for reliable self localization. This map is used by another, larger robot to localize itself i
the mapped environment.

Our solution focuses on reducing the computational costs

Robotic maps are the basis for all actions of a mobile robeind exploits the inherent structure of scenes scanned by a
They are needed for the integral purposes of self locatinatimobile robot: Commonly, robotic mapping operates in envi-
and path planning. Since manual environment mapping is@nments with mainly planar surfaces. This planarity caist
tedious job, the robotic mapping problem has drawn a I@ utilized by the Marching Cubes algorithm. The resulting
of attention in the research community. Recently, the focusap consists of planar polygons that are labeled as walls,
shifted from planar 2D maps towards 3D mapping. 3D mafi®ors and ceilings. The geometrical information can be used
outperform 2D maps for many purposes, such as obstafie localization using ray tracing techniques. Besidess¢he
avoidance, object recognition and scene understanding. algorithmic advantages, the surfaces can be rendered with

The rapid development of mobile 3D laser scanners prstandard textures according to their classification tovdeli
vided the basis for mapping large areas accurately. The tiee operator a more realistic impression of the explored are
sulting 3D maps are point clouds, sampling the surfaces thfan the original point cloud.
the environments. Although the sampling density of modernin the remaining text, section Il presents previous and
laser scanners increases, the point clouds do not represetdted work, section lll describes the map generation and
continuous surfaces. Related to that, the amount of celiectabeling algorithm. Sections IV and V present experimental
data becomes difficult to handle. Modern scanners produesults and an application example. Section VI concludes.
several millions of data points per scan. One approach to
compress the information obtained from laser scanners is to
represent the scanned surfaces by means of mathematsaRobotic Mapping
descriptions or primitive shapes like triangles or quads. Mapping algorithms differ in the type of maps used. State

Most commonly, surfaces are approximated by polygonaf the art for metric maps are probabilistic methods that use
meshes, particularly triangle meshes, a standard data- sttwo dimensional grid maps, where the robot has probalailisti
ture in computer graphics to represent 3D objects. In thisotion and perception models [15]. Localization then works
community, various automatic mesh generation procedui®s integrating these two distributions with a Bayes filter,
have been developed. A wide variety of applications app#/g., Kalman or particle filters. Closed loops, i.e., a sdcon
these algorithms, e.g., model generation for video gamesescounter of a previously visited area in the environment,
movies, the accurate documentation of architectural it play a special role in mapping. Once detected, they enable
and reverse engineering. These algorithms generate higitlg algorithms to bound the error by deforming the already
accurate polygonal models whose appearance has to bemadped area such that a topologically consistent model is
close as possible to the original object, requiring a lot afreated.
computation power. In robotics, however, computing time is Building 3D maps by means of 3D laser scanners requires
critical. Furthermore, high level of detail is not needediany to have some version of geometrically consistent 3D point
robotic algorithms, such as localization. cloud of the environment. In our work, we use a 6D SLAM

This paper presents an approach to generate polygonsthod and software, described, e.g., in [13]. The 6D SLAM
environment maps that can be used for localization as welkes 3D scans of the complete environment and registers the
as for visual inspection of the scanned environments. Weo a globally consistent and correct 3D map. Registration
demonstrate the usability of these maps in a rescue-likas to compensate the fact that every single scan pose is
scenario: A small robot equipped with a 3D laser scannestakgiven in 6 degrees of freedom (DoF), i.e., registration has

. _ to consider three translation and three rotation dimeission
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|I. INTRODUCTION

Il. RELATED AND PREVIOUS WORK
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Fig. 2. The construction of the signed distance function escdbed by

Fig. 1. Mapping system overview. The input of our algorithsnai globally Hoppe. For each data point, a so called “tangent plane” isutzted by a

consistent 3D point cloud acquired by a mobile robot SONBGAM. least square fit to it nearest points (left). Each plane is defined by its
centroid o and surface normah (middle). The signed distance of a query

point is the distance of its projection onto the nearest @éahglaned(q;)
) ) ) ) ) and itself. The sign depends on which side of the surface tieeygpoint is
loops in the given trajectory are detected in an offline pogtight).

processing step that distributes the pose differenceg usin

3D version of Lu and Milios’ technique [3], [10].
The polygonalization procedure itself consists of three di

B. Surface Reconstruction ferent steps: First, a triangle mesh, based on a consisient 3

For surface reconstruction from point cloud data, two maipint cloud, is generated using the Marching Cubes method.
approaches are in use: Detection of primitive shapes or medhs initial mesh is then optimized by detecting connected p
based approaches. Most shape based approaches use fe@@irgurfaces. The triangles of such areas are fused to pwygo
descriptors to detect instances of predefined objects, [6]g. Shapes. This way a compact 3D polygonal representation of
Other approaches use Hough transformations to detectrplaif@ scanned environment is created that is suitable fortimbo
surfaces in 3D laser scans [2]. purposes like localization. After simplification the extrad

Mesh based approaches create triangle meshes to appR$itygons are finally semantically classified into the catego
imate the scanned surfaces. The de-facto standard is feor”, “ceiling” and “wall”. These three steps detailed ihe
Marching Cubes method introduced by Lorensen et al. [Pllowing sections.

This algorithm sub—divid.es the spanned volume into cubj&_ Initial Mesh Generation
cells. For each cell the intersections between the cell £dge

and the surface are calculated. Pre-calculated surfaterpmt !N the first step, we generate a triangle mesh approximation
are then used to generate a local triangle mesh approximatﬁf the scanned surfaces using the Marching Cubes method and

To interpolate the intersections, implicit continuousface HOPPE's distance function [8]. The idea of Hoppe’s approach
representations like planes or splines are fitted to thel lod% [0 @Ssign a tangent plari&(p;) to each data point using a
data using least squares fits [1], [8]. local Iea_lst squares fit to thienearest pomtsl{(-nelghborhoqqi.

A feature of the Marching Cubes algorithm is that it NeS€ fit planes are represented by the center of grayity

produces far more triangles than are needed to representﬂ:‘;ﬁ#'ne'(-:]hborhood and the surface normaf
object. Hence, several mesh simplification algorithms have T(p;) = 0; - n;.
been introduced over the past years. Most of them define error ) ) ) _
metrics that indicate the error that a certain operatioseato 1h€ signed distance of any spatial popnts defined as
the model, i.e., the removal_of an_e_dge [5], [11]. To optimize dr(p) = s(p) - d(p, T),
the model, the edges causing minimal error to the topology
are removed iteratively. Since after each edge removal n@ere d(p,T) is the distance of this point to the nearest
vertices have to be inserted into the mesh, the initial togypl tangent plane
can be altered.
Mesh based surface representations are flexible and able
to approximate arbitrary surfaces since they are not luhitends(p) is the sign of the signed distance function according
to predefined object classes. In the following section we the relative position op. This sign is determined by using
will present a fast and reliable mesh based map generatibe orientation of the normal of the tangent planeg 1f; > 0,
procedure that is based on Marching Cubes and Hopp#iens(p) = +1, otherwises(p) = —1. The whole process is
interpolation method. illustrated in Fig. 2.
To build a system of equations for plane fitting using
a least squares fit, at leas8t data points are needed. In
Fig. 1 shows the basic architecture of our mapping systepractice, a larger number is used depending of the density an
The single laser scans are registered using ICP and laogise of the data set. Two issues remain to be solved: First,
closing techniques. After the whole scene is scanned, te estimation algorithm has to compute consistent normal
output of the 6D SLAM process (i.e. a consistent point cloudyientations. In our application, where the single 3D scans
is post-processed to a polygonal map. are taken by a mobile robot, the solution to this problem is

d=(p—o0i)-n

IIl. THE POLYGONALIZATION PROCEDURE



Fig. 3. An example of the varying point density in the useaiascans. The point density in the center of the scene isfisigmily higher than in the outer
regions. In these areas the data points are aligned on bnesc-shaped.
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Fig. 5. Adaption of the number of nearest neighbors in regiaith low
point density. Ifk is too small, all data points will be on a straight line. In
this case the fit of a plane will fully depend on the local naethe data.
To ensure a good fit, we analyze the shape of the bounding box.

Fig. 4. Influence of the normal estimation quality. Consisteormals result
in connected surfaces (right) while inaccurate estimatiproduce holes in
the triangle mesh (left).

trivial: All normals are oriented towards the scanning fiosi
A second problem is that the resulting distance function
not differentiable per se. The latter issue is not criticathis
application, since the scanned environments are not rexigss
smooth, due to sharp angles between, e.g., walls and floc |
In fact, in robotics we exploit the ability to represent ghar
features and the computational efficiency of Hoppe’s apgitoa
The quality of the fitted tangent planes (and the correspor‘\f\\?l‘e\\q‘ Y
ing surface normals and surface approximations) strongly
depends on the number of chosen approximation pdintsrig. 6. Comparison between normal calculation withéusdaption and
(cf. Fig. 4). The choice of is essential for the quality of interpolation (left) with the adaptive algorithm (right).
the calculated normal. The smaller the valuekofthe lower
the needed processing time, since fever tree traversals are
necessary. However, loiwvalues are sensitive to noise. Higher Thus we aim to find & with a value as small as possible that
values may compensate sensor noise in the approximatsifi allows an accurate approximation. Therefore, we &dap
process, but they increase the processing time and migtht léadynamically to the data density. To detect ill formée
to wrong results, because sharp features will be “smoothatighborhoods, we analyze the shape of their bounding boxes
out. Handling real 3D laser scanner data as input showsitical configurations will result in elongate boundingves.
another difficulty: With increasing object distance thentoi If we detect such a configuratio, is increased until this
density decreases. In the case of our tilted 2D laser scanmsiape criterion is fulfilled. Since the laser scanner sholes a
this results in line or arc-shaped artefacts of data poihts & sensor noise, the resulting normals are still fluctuatimg
high distances (cf. Fig. 3). These artefacts will causeuin,t some degree, although their basic alignment is consistent.
incorrect results in the fitting process since the orieatatf reduce this effect, we average all normals with their neaghb
the calculated plane is solely dependent on local noise.  Fig. 6 shows the results of these optimization steps.




B. Extraction of Planar Surfaces indoor environments. The used knowledge describes general

The aim of the second processing step is to detect ppélributeg _of the domain, i.e., architectural features lang
nar areas in the mesh and to represent them as polygdalls, ceilings and floors.
The triangles in the initial mesh are stored in a half edge The planarity constraint used to generate the polygonal
representation. This data structure allows to efficiendjedt fepresentation is exploited to label the found surfacesrby a
all neighboring triangles of any triangle in the mesh. Thalyzing the surface normal orientations. In orthogonahese
simplification algorithm fuses patches in the mesh that alfé€ orientation of the normals is nearly discrete: Floor and
connected and share the same surface normal. The algoriffing normals point in the direction of thg-axis, walls
starts with an arbitrary triangle and recursively checks, @€ perpendicular to them. Using these considerationsreve a
its surrounding triangles have a similar surface normate Table to label the found surfaces according to these categori
recursion is carried on until a bend in the surface is dedectdVith textured rendering, realistic reproductions of tharsted
The edge between such triangles marks a boundary of §&vironments can be created (cf. Fig. 8).
initial surface. All these edges are collected and lateedus ] ] )
using a line following algorithm to create an optimal polpgd D- Implementation Considerations
representation (cf. Algorithm 1). Fig 7 shows the resulthe&f ~ The performance of the initial mesh generation procedure
process. strongly depends on the efficiency of theneighbor search.
The same problem is addressed during ICP scan matching
Algorithm 1 The mesh simplification algorithm. Faces withinn the SLAM 6D process. Furthermore the surface normal
the mesh that have similar surface normals are detected. Be@imation for each point is a purely local operation and can
border edges of these planar areas are fused to polygons.pe done independently for each data point, i.e., in parallel
function SIMPLIFY Therefore we use search trees that are optimized for paralle

for all facesdo queries. See [7], [12] for implementation details.
current face« visited
Fusg(current normal, current face, currentList)
borderLists« currentList
CREATEPOLYGON(border list)
currentList< empty

IV. EXPERIMENTAL RESULTS

Fig. 9 shows an example of our automated polygonalization

end for
end function

function Fuskg(start normal, current face, list of borders)
current face« visited
for all neighbors of current facdo
angle + start normal- neighbor normal
if angle< e and neighbor not visitethen
Fusg(start normal, neighbour, listOfBorders)
else
list of borders«+ border edge to neighbor
end if
end for
end function

C. Semantic Labeling

Since architectural shapes of environments follow stathda
conventions arising from tradition or usage [4], we explbis v
knowledge for semantic labeling of the polygonalization of

Fig. 7. Detailed view of a room corner. The triangles in thdiahmesh are
removed, only the borders of planar surfaces remain.

process. The left picture displays a registered point clyerdt
erated from 12 single laser scans taken in an empty classroom
The middle picture is the initial triangle mesh based on the
input data, created by our Marching Cubes implementation.
The right picture shows the polygonal representation ghine
from the triangle mesh. The procedure has automatically
extracted a polygonal representation of the large planésein
initial mesh without changing the geometry of the model.éNot
that in areas with high curvature the triangle represesmnas
preserved, since these surfaces are not fused by our method.

Fig. 8. Example of semantic labeling. Top row: The point ddieft) was
captured by the Kurt3D robot. In the reconstruction (righ® polygons are
rendered with colors corresponding to their classificatiBottom: Another
example. This time textures were added according to thaseidlassification.



Fig. 9. The three steps of 3D map generation: The first step geherate a consistent 3D point cloud of the robot's enwiremt (left). This cloud is used
to create a regular triangle mesh, using the Marching Culgesithm (middle). The third step is to detect planar suefam the mesh. The borders of these

regions deliver a polygon representation of the envirortngeght).

TABLE |
RUN TIME AND COMPRESSION FOR THE DATASETS SHOWN IFFIG 8
(SINGLE SCAN) AND FIG. 9 (MULTIPLE REGISTERED SCANS.

Dataset No. Points  Initial Faces No. Polygons  Time

Single Scan 271,288 66,374 23,670 5.47s

Multiple Scans 1,834,599 44,740 3,029 8.25s
TABLE Il

RUN TIME COMPARISON BETWEEN OUR OPTIMIZATION ALGORITHM AND
OTHER MESH REDUCTION METHODYREMOVAL OF THE SHORTEST EDGES
AND USING QUADRIC ERROR METRICY5]).

TABLE Il
COMPARISON OF THE ORIGINAL AND RECONSTRUCTED GEOMETRIES

Ceiling  Width Depth  Door Width
Original Dimensions  2.99m 5.89m 7.09m 0.94m
Reconstruction 296m 585m 7.06m 0.90m

height, wall width and height of a room and door width. The
results are shown in Table Ill. The reconstructed valuesvsho
a deviation of about 3 to 4 cm from the original values due to
interpolation errors and noise in the original scans. Coegba

to the size of the mapped area these inaccuracies are idgligi

Dataset Map Gen. Shortest Quadric Compression
Single Scan 0.25s 1.02s 2.37s 65 % V. APPLICATIONS
Multiple Scans ~ 0.47s 172s  2.35s 39% We have tested the usability of our 3D polygonal maps

for localization purposes in different contexts. One exiEmp
was the LiSA (Life Science Assistant) project. In this pobje

Table | displays the running times of the map generatiqfiethods for localization in 3D polygonal maps were devetope
procedure for the presented examples. The experiments Wekg successfully applied. The used robot is equipped with
performed on an Intel Core2 Quad Q6600 with 4GB RAMseveral laser scanners at different orientations, thatsalthe
Due to the parallel implementation we were able to achievesgme polygonal map. Localization is done using particlerfilt
load of nearly 100% on this machine. The normal estimatigfpse estimations for each sensor were generated based on
procedure scales well with the number of used threads. Th§itracing in this model [14]. Fig. 9 shows the benefits ofigsi
first row shows the statistics for a single scan taken Wibyeral sensors: The left picture shows the positions osaim
our Kurt3D robot (see [13] for technical details), the setonne |aser scanners. The right picture compares the lotaliza
row the results for a set of 12 registered scans. In botBsyits between conventional 2D self localization (ye)land
cases, the number of initial polygons (triangles) was reducthe 3D approach (green). The pose estimation becomes more
considerably. Even in case of the large dataset (about h&urate when the additional information derived from tbe 3
million points) the running time was lower than the timfbolygonal map is used.
needed to acquire the scan data. Furthermore we were able to apply a similar technique

Additionally, we have compared our method to standakgd realize real time 6D localization of a mobile robot with
mesh reduction algorithms (see Table Il). To create stahdar PMD time-of-flight camera. For this experiment a pinhole
triangle meshes from our optimized representation, we useésimera model was used together with raytracing to generate
the OpenGL tesselator to re-triangulate the boundary olgg an expectation of incoming sensor data under a given pose
Afterwards, we measured the time needed by the iteratigetimation. The expected data was then transformed to match
methods to achieve an equal compression. In all tests, @hé real data via ICP. This transformation was finally used to
method was faster, but did not change the geometry of tberrect the initial estimation. [16] reports preliminassults.
initial triangle mesh. These examples show that 3D maps can improve the results

To evaluate the accuracy of the generated map, we hafdocalization and can be used with different kinds of sesso
compared the reconstructed geometry shown in Fig. 9 wi®ur current research focuses on tracking full 6D trajeetori
manual measurements in the original environment of ceilinging IMUs and multi modal pose estimations.



Fig. 10. Application example: Raytracing for localizationpolygonal maps. The used robot us equipped with sevesal Iscanners that point in different
directions. A Raytracing technique is used to calculate rs@emodel (left). The right figure shows the improvementhef self localization. The yellow
area marks the estimated pose error without the use of ted sicanners. The green area shows the result using théondbinformation from the other
scanners. The localization improves considerably.

VI. CONCLUSION AND FUTURE WORK [3] D. Borrmann, J. Elseberg, K. Lingemann, A. Niichter, dnéHertzberg.
) Globally consistent 3d mapping with scan matchinfy. Robotics and
This paper has presented a novel approach to extract polyg- Auton. Syst.65(2):130-142, 2008.

; ; ] R. B. Fisher. Applying Knowledge to Reverse Engenierifrgblems. In
onal maps from a 3D point clouds. Such point clouds ar&‘ Proc. Int. Conf. Geom. Modeling and Procegsages 149 — 155, 2002.

the common output Of_ a 3D mapping 5y5tem- As severgh) w. Garland and P. S. Heckbert. Surface SimplificationrigsQuadric
approaches from the field of computer graphics cannot be Error Metrics. Computer Graphics31:209-216, 1997.

used in robotics, due to sensor noise and time constraiets, Wl A Golovinskiy, V. Kim, and Thomas Funkhouser. ShapeenhRecogni-
’ ! tion of 3D Point Clouds in Urban Environments. Rroc. International

developed a simple and robust met.hod to create prac_:tically Conference on Computer VisioBeptember 2009.
usable 3D polygon maps. The mapping algorithm exploits thE] M. Greenspan and M. Yurick. Approximate k-d Tree SeamhHfficient

; ; ; ; ICP. In 4th Int. Conf. 3D Digit. Imaging and Modelin@003.
inherent scene structure of indoor environments. The pilgna 8] H. Hoppe, T. DeRose. T. Duchamp. J. McDonald. and W, Steet

constraint is flj"ﬁ"ed in _mOSt_rObO_tiC applicatiqns, indl_UQ Surface reconstruction from unorganized poin@Gomputer Graphics
rescue scenarios (consider biological or chemical actsjlen 26(2):71-78, 1992.

o W. E. Lorensen and H. E. Cline. Marching cubes: A High Retion
The usablllty of the generated maps was shown for sever[‘fﬂ] 3D Surface Construction Algorithm. IRroc. ACM SIGGRAPH1987.

localization tasks USing.the same map, but Qiﬁerent Kinfds @o] F. Lu and E. Milios. Robot Pose Estimation in Unknown Brimments
sensors. Future work will focus on the following aspects: by Matching 2D Range Scand. of Intell. and Robotic Syst18(3):249-
275, 1997.
« Fuse the purely mesh based approach with object recéjgl] S. Melax. A Simple, Fast, and Effective Polygon ReduttAlgorithm.
.. . e . . Game Dev. Mag.pages 47—-49, Nov. 1998.
nition methods. Our simple classification according t@2] a. Nuchter, K. Lingemann, and J. Hertzberg. 6D SLAM WiEached
planarity can be used to isolate non-planar regions in &-d Tree Search. IrProc. 13th IASTED Inil. Conf. Robotics and
; ; ; Applications pages 181.—186, Wirzburg, Germany, Aug. 2007.

the Scar.]S’ Where pOte.ntlal Ob.]eCts of interest are locat 1%] A. Nuchter, K. Lingemann, J. Hertzberg, and H. Surma6b SLAM
Recognized objects (like chairs, tables, etc.) could then” _3p mapping Outdoor Environments. of Field Robotics24(8/9):699

be replaced with pre-calculated models. — 722, August/September 2007.

; i ; ; 4] S. Stiene and J. Hertzberg. Virtual Range Scan for Awgid3D
« Use the gamed geometric information  to improve th@ Obstacles Using 2D Tools. IRroc. 14th Intl. Conf. Advanced Robotics

sensor data, e.g., fill laser shadows. (ICAR), June 2009.
 Improve scan matching. Our 6D SLAM procedure cuifd5] S. Thrun. Robotic Mapping: A Survey. In G. Lakemeyer @hd\ebel,

rently depends on point-to-point references onIy. Using ﬁ(ililtjcf):’:élﬁi(]pltz)(r)igg Artificial Intelligence in the New MilleniunMorgan
additional geometric information gained from the polygne; J. wiilfing, J. Hertzberg, K. Lingemann, A. Nichter, Stiene, and
onalization could improve the scan matching results. T. Wiemann. Towards Real Time Robot 6D Localization in a Bohal

Indoor Map Based on 3D ToF Camera Data.Froc. 7th IFAC Symp.

Intell. Auton. Vehicles (IAV 20105ep. 2010.
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