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Abstract: In the field of autonomous motion and mapping, estimating the position and
orientiation of a moving body is of high significance. This includes in particular the latest
information about acceleration, speed, traveled distance and orientation. A wide range of
different technologies exists that can be applied for this purpose. In case the state determination
requires the use of inertial sensors only, it is well known that these types of sensors tend to drift
with time. This leads to increasing errors in the calculated trajectory, which is unacceptable
if precise position information is required such as for mapping. In this paper we present a
method which significantly enhances the position estimation of inertial sensors by using a 2D
light detection and ranging (LiDAR) sensor.
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1. INTRODUCTION

A variety of different sensors and measurement methods
exist to acquire motion data, such as acceleration, velocity,
position and orientation data. Every technique involves
certain inaccuracies and situations where they fail. A global
navigation satellite systems (GNSS) receiver is only work-
ing precisely in the presence of sufficient radio reception
thus neither underground nor inside buildings. Odometry
is only suitable for a wheeled system on a smooth surface.
Laser scanning localization methods require a known envi-
ronment or at least enough features in their surroundings.

In situations where an absolute localization is not required
and a relative localization towards a predefined position is
sufficient, inertial measurement units (IMUs) are suitable.
Possible use cases include bridging weak GNSS signals,
tracking relative positions underground or any other situ-
ation where conventional techniques are failing. An IMU
combines various inertial sensors for acceleration, angular
rate and magnetism along three orthogonal axes. The
benefit of measuring motion data trough accelerometers
is the constant availability of the measured values, i.e.
accelerating forces initiated by motion. Due to this fact
acceleration is measurable everywhere and there is no dif-
ference between over- and underground or in- and outside
of buildings. Integrating the measured linear acceleration
after compensating gravitational forces results in velocity
respectively relative position.

However, minimal errors in the acceleration measurement
result in large deviations in the calculated relative position
due to double integration. In this paper we present a
method which significantly reduces the drift of low-cost
IMUs using a low-cost LiDAR. At this point, imagine

a UAV that has to navigate or map inside a building.
GNSS will have no reception and cameras will only work
in suitable lighting conditions and with sufficient features.
LiDAR, in combination with an IMU, which is usually
installed anyway, can significantly improve the position
estimation by IMUs. In addition, LiDAR provides the
necessary technology to simultaneously generate a 3D map
of the environment. The following demonstrates how to
accomplish such a task even with inexpensive technology.

First, we introduce an effective calibration method for
IMUs. After that, we present a complementary filter,
which enables a reliable determination of the orientation
using the IMUs even during dynamic motion. Then we
apply our method for improving the position estimation
of an IMU using a LiDAR. Finally, we evaluate the
designed methods by generating 3D point clouds using
the computed trajectories and comparing them to data
acquired with a terrestrial LiDAR.

2. RELATED WORK

Various publications deal with fusion of data acquired by
an IMU and another type of sensor or data to obtain
more precise pose information. The research by Hellmers
et al. (2016) describes the fusion of position data obtained
from an IMU and an ultra wide band (UWB) system to
allow the localization of a mobile platform inside buildings.
For fusion they use a modified version of the extended
Kalman filter (EKF), the so-called iterated Kalman filter
(IKF). In Wendel (2011) the author describes in detail
the fusion of measurement data obtained by IMU and
GNSS. He explicitly discusses the use of an EKF and a
sigma point Kalman filter to obtain a precise position
estimation. Emter and Petereit (2019) present an approach



Fig. 1. Measurement setup in form of a 6-axis jointed-
arm robot manufactured by KUKA and classification
KR16. The IMUs and the LiDAR are mounted on a
3D printed mount (top) and this mount is attached
to the wrist of the robot (middle), respectively to a
backpack (bottom).

to join multiple absolute and relative pose estimates from
various sensors using an EKF. They implement a stochas-
tic cloning to overcome the violation of the independence
assumption when using multiple relative measurements
and demonstrate their approach on data from IMU, GNSS,
wheel odometry and scan matching using 3D LiDAR mea-
surements. While fusion of multiple sensor data is shown
to improve the localization capabilities, this paper presents
a method that produces reliable position estimates even
when odometry and GNSS are not available. In other
publications the fusion of IMU internal measurements,
i. e. acceleration and angular velocity, in order to get
the attitude of the device is discussed. A description and
a review of fusing these data using the complementary
Kalman, Mahony or Madgwick filters is available online 1 .
The orientation filter developed by Madgwick (2010) uses

1 http://www.olliw.eu/2013/imu-data-fusing/

accelerometer-, gyroscope- and magnetism-measurements,
obtained with a single IMU, to estimate attitude infor-
mation. Madgwick’s filter uses, among other information,
the direction of Earth’s gravitational acceleration to deter-
mine the orientation of the IMU. An external acceleration,
triggered by e.g a movement, distorts the direction of the
gravitational acceleration vector, which leads to incorrect
orientation estimations. In our case, the orientation es-
timation must be as accurate as possible for all types
of movements. Therefore, we gratefully use the comple-
mentary filter developed by Valenti et al. (2015), which
overcomes this limitation (cf. section 5). For calibrating
our IMUs, we thankfully use a method envolved by Tedaldi
et al. (2014) (cf. section 4).

Only a few publications deal with trajectory tracking
by using a single IMU or fusion of multiple IMU data.
Wongwirat and Chaiyarat (2010) determine the position of
a robot during a movement using an IMU with moderate
success. Especially because they do not verify if gravity
is compensated correctly during “no motion” periods, the
results for speed and distance are distorted. In our work we
investigate the problem that gravity causes. McCall (2019)
describes the fusion of data obtained from 6 IMUs to track
the position of a moving vehicle. He shows that the fusion
increases the accuracy of acceleration measurements.

3. MEASUREMENT SETUP

For experiments within this work we use two low-cost
IMUs manufactured by Phidgets. Their type definition
is stated as PhidgetSpatial Precision 3/3/3 High Resolu-
tion 2 . In addition, we use a low-cost X2 LiDAR manufac-
tured by YDLIDAR 3 . This sensor has a range of 12 m
and records data in a field of view of 360 degrees. To
record and process the data we use a framework called
Robot Operating System (ROS) 4 , that provides drivers
for the sensors. An industrial robot from KUKA is used to
hold the devices with different orientations and to perform
exact movements on them. Using a 3D printed mount, the
sensors are attached to its wrist as shown in Fig. 1. Note
that we only use the data from one IMU, the other one is
mounted only for backup reasons. One IMU provides us
with linear acceleration measurements in form of:

Sa â = [ ax ay az ]
T

(1)

and angular velocity measurements in form of:

Sω ω̂ = [ ωx ωy ωz ]
T
. (2)

The LiDAR provides us with j distance measurements per
revolution in form of:

Sr = [ r1 r2 . . . rj ]
T
. (3)

The superscript Sa denotes the accelerometer frame, Sω

the gyroscope frame and S the body frame. For simplicity,
we assume that the coordinate system of the LiDAR
already coincides with the body frame S. This assumption
does not introduce a large error due to the fact that the
2D scan plane of the LiDAR is aligned parallel to the XY -
plane of the IMUs. In the following sections, the individual
components of our method, shown in Fig. 2, are explained.

2 https://www.phidgets.com/?catid=10&pcid=8&prodid=1158
3 https://www.ydLiDAR.com/products/view/6.html
4 https://www.ros.org
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Fig. 2. Diagram showing the operation of our system.
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Fig. 3. The x-axis shows the number of measurements.
The y-axis shows the gravitation in m

s2 . Shown are the
measured gravitations at different orientations before
(red line) and after (blue line) calibration. For the sake
of clarity, the acceleration data during the change of
orientation was removed.

4. IMU CALIBRATION

To estimate the position as accurately as possible using
the IMU data, the IMUs must be calibrated in advance. It
is well known that sensors of this construction type suffer
from various sources of error. The following deterministic
errors are treated with the corresponding scaling and
rotation matrices:

• In the ideal case, the three sensor axes of the ac-
celerometer, respectively the gyroscope, will each
form an orthogonal coordinate system and coincides
with the body frame S. Due to assembly inaccu-
racies, both the accelerometer frame and the gyro-
scope frame form two distinct (i.e., misaligned), non-
orthogonal, frames Sa and Sω. In addition, the sensor
coordinate systems of the accelerometer and the gy-
roscope differ from the body frame S. T defines the
orthogonalization of the individual sensor axes to an
orthogonal frame, as well as the rotation of the two
frames to the body frame, whereby the latter only
applies to the gyroscope, since the orthogonalized
accelerometer frame defines the body frame S in our
case.

• The scaling factors for converting the digital mea-
sured value of the sensors into the physical value ac-
celeration, respectively angular velocity, are different

for different instances of the same sensors. K scales
the individual sensor axes.
• Both the accelerometers and the gyroscopes are af-

fected by biases. The bias vector is defined by b.

To minimize these errors, we use the approach developed
by Tedaldi et al. (2014) and refer to their detailed math-
ematical description. In the following, we fundamentally
discuss the procedure.

The corrected measurements are obtained with the follow-
ing functions:

Sa = T aKa(Sa â+ ba) (4)
Sω = T ωKω(Sω ω̂ + bω). (5)

To determine the calibration factors, cost functions are
introduced, which are minimized using the Levenberg-
Marquardt algorithm. A minimum of nine measurements
with different orientations are required for a unique solu-
tion. There were about 30 in our case. The robot shown
in Fig. 1 was used for precise alignment of the sensors. In
addition, efforts were made to ensure that the recorded
measurements were equally distributed over all possible
orientations. The results of the calibration are shown ex-
emplarily in Fig. 3. Gravity was measured at different
orientations. The red line shows the results before calibra-
tion and the blue line after calibration. The positive effect
of the calibration on the measurement data acquisition is
obvious as it leads to gravity remaining almost constant. In
the uncalibrated case, the following gravity was measured,
stated with mean value and associated standard deviation:

|Sa â| = (9.846± 0.5088)
m

s2
, (6)

after calibration:

|Sa| = (9.808± 0.01677)
m

s2
. (7)

The calibration, corrects the measured acceleration values
very close to the actual gravity of g = 9.807 m

s2 . Addition-
ally the measurement error in this example decreased by
a factor of ≈ 30.

5. COMPLEMENTARY FILTER FOR ORIENTATION
DETERMINATION

Later, we use the acceleration measurements to calculate
the velocity and traveled distance of the IMU in its sensor
frame. To do this, it is necessary to eliminate the effects
of Earth’s gravity from the data to obtain the relative ac-
celeration acting on the sensor. This requires knowing the
exact orientation of the sensor with respect to the gravity



vector, even during periods of strong acceleration. We use
the filter of Valenti et al. (2015) for determining the orien-
tation, since it provides reliable results even during highly
dynamic motion. The following deals with the basic func-
tionality of the filter. Consecutively, the filter calculates for
each time step two orientation quaternions, representing
the relative rotation between the global (Earth) coordinate
system and the body frame S, first, from the direction
of the measured acceleration vector directly and second,
by integrating the angular velocities over time together
with an initial orientation. Subsequently, the quaternion
calculated using the gyroscope data is corrected with the
quaternion of the acceleration data, depending on the
acceleration applied. Accordingly, during periods of high
dynamics, the values of the gyroscope are trusted more,
and in the static case, the values of the accelerometer. The
resulting orientation quaternion is referred to as G

S q and
defines the rotation from the body frame S to the global
coordinate system G. Interested readers are referred to the
work of Valenti et al. (2015) for a detailed description of
the algorithm.

6. USING A LIDAR TO REDUCE THE IMU DRIFT

The main objective of this work is to reduce the drift
of IMUs with the help of data acquired by a LiDAR.
This section presents the logic we developed for reliably
detecting standstill phases based on the LiDAR data and
demonstrates how this improves IMU position estimation.

6.1 Evaluation of LiDAR data

The LiDAR provides us with j distance measurements Sr
per revolution, hence dim(Sr) = j. For each time step t,
the changes in the j distances compared to the previous
step t − 1 are evaluated and accumulated to the last i
values:

rΣ,t =

t∑
k=t−i

Srk−1 − Srk. (8)

The last i vectors rΣ are stored. Following each time t,
it is then determined how many components of the last
i vectors rΣ were within a margin ε. In our case we
set ε = 0.1. Thus, we count the number of distances,
which have not changed or barely changed in the last i
measurements of the LiDAR. Let this quantity be jε.

It can occur that all i last distance measurements of an
index j were faulty, hence rΣ,t,j = 0. A faulty measurement
occurs when the LiDAR receives no return signal and
thus determines no distance value. These measurements
are not being counted in jε. Let jfaulty be the number of
unevaluable measurements. As a result, we calculate now a
factorm that allows us to determine the type of movement:

m =
jε

j − jfaulty
. (9)

It now holds for m ≈ 1 with a high degree of certainty
that the LiDAR is at a standstill. Whereas for m ≈ 0 it
is assumed that the LiDAR is moving. In our case, we
assume a standstill for m > 0.8. With this, we determine
the exact time when the LiDAR is not moving, denoted as
tstop.
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Fig. 4. The x-axis shows the translation in the x direction
in m. The y-axis shows the translation in the y
direction in m. In the figure, a resulting trajectory
is shown using the presented method. A circular path
with identical start and target position was traversed
in this case. For the sake of clarity, the z coordinates
are not shown.

Fig. 5. The trajectory from Fig. 4 in three-dimensional
space. For comparison, the resulting trajectory has
also been plotted (red line), which arises if the cor-
rection by the LiDAR data is omitted. In both cases,
the same calibrated measured values of the IMU were
used.

6.2 Position estimation

The IMU provides us with the corrected acceleration
measurement values Sa in the body frame. These values
are now first rotated into the global coordinate system:

Gaq = G
S q ⊗ Saq ⊗ G

S q
∗, (10)

where G
S q

∗ is the conjugate quaternion, ⊗ the quaternion
multiplication, and Saq the pure quaternion of Sa. A pure
quaternion, denotent with subscript q, is defined as follows:

xq = [ 0 x ]
T
. (11)

The relative acceleration of the sensor is obtained as
follows:

Garel = Ga− g. (12)

Here g = [ 0 0 g ]
T

represents the gravitational vector.
Using Garel, the velocity and distance traveled are now
calculated starting from an initial value by temporal



integration. Additionally, we introduce an uncertainty
vector ν at this point.

Gvt = Gvt−1 + (Garel,t − ν)∆t (13)
Gst = Gst−1 + Gvt∆t (14)

Here ∆t denotes the time difference between the measure-
ments at t and t − 1. With the help of the evaluation of
the LiDAR data, we now determine ν, between two times
of complete standstill. For the associated tstop we assume
that the LiDAR does not move anymore, consequently
Gv

!
= 0. Therefore, we now calculate ν as follows for the

preceding motion phase:

ν =
Gvtstop

∆tk
, (15)

where k is the number of measured values during the mo-
tion phase and Gvtstop the error-prone velocity determined
by the IMU at the time of standstill. This allows us to
correct the measured acceleration values during the motion
phase according to Eq. (13) afterwards.

6.3 3D Point Cloud generation

Using the calculated positions and orientations, the cap-
tured 2D scans are now rotated and translated to create
a 3D point cloud. Here Spt,j denotes the point which is
calculated from the corresponding distance measurement
in the body frame. Gpt,j denotes this point, which was
transformed into the global coordinate system. As follows,
those points being calculated:

Spt,j =

[
rt,j sin(j∆α)
rt,j cos(j∆α)

0

]
, (16)

Gpq,t,j = G
S qt ⊗ Spq,t,j ⊗ G

S q
∗
t + Gsq,t, (17)

where the angular distance between each distance mea-
surement, given by the LiDAR specifications, is defined as
∆α.

7. EXPERIMENTS

To demonstrate the potential of our algorithm, the ap-
perature shown in Fig. 1 (top) was loosely attached to
a backpack (bottom). Using this, we walked through our
institute building and recorded the raw data from LiDAR
and the calibrated measurements from the IMU during this
time. Due to the human walking gait the device “wobbled”
during the data recording. Every few meters we stopped
for a moment so the LiDAR could detect a standstill. The
evaluation of the data was performed in post-processing.

7.1 Pose estimation

To demonstrate that our method improves the position
estimation of the IMU, we walked a circular route. Care
was taken to ensure that the start and end positions match.
The resulting position estimates are shown in Fig. 4. As
it can be seen, there is only a slight deviation of the end
position from the start position.

For comparison, the same acceleration measurements were
used to determine the position without the help of the
LiDAR. In Fig. 5, these are plotted as a red line, showing
an enormous difference to the position estimation with

Fig. 6. The three images presented here demonstrate
the recorded point cloud. The points are colored
according to their deviation from the ground truth
point cloud. Note that the corresponding color scale
is shown in Fig. 7.

the LiDAR (blue line). Without using the data from the
LiDAR, the position estimate becomes completely useless
due to a strong drift, which is typical for IMUs in this price
range. Consequently, a low-cost LiDAR helps to improve
position estimation using IMUs.

7.2 3D-Point-Clouds

The main purpose of this work was not to generate 3D
point clouds using LiDAR, however, the position estima-
tion works sufficiently well that this becomes possible. We
have created the 3D point cloud as explained previously
in section 6.3. No calibration of the LiDAR was performed
for the data acquisition. In this experiment, we walked in
a relatively straight line along the main corridor of our
institute building with a 90 degree curve in the middle
while recording the data. We stopped 4 times for a few
seconds during data recording. In order to be able to
make a comparison, we recorded a point cloud of the same
environment using a high-quality, survey-grade Riegl VZ-
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Fig. 7. The x-axis shows the deviation in cm of the point
cloud shown in Fig. 6 from the ground truth point
cloud. The y-axis shows the number of points. In
addition, the color scale is shown, which assigns the
deviation to the points from Fig. 6.

400 5 terrestrial 3D laser scanner as ground truth. The
resulting point cloud of our device is shown in Fig. 6.
All points are colored according to their point-to-point
distance from the true point cloud after rigid registration
using the Iterative Closest Point (ICP) algorithm. The cor-
responding color scale and the histogram of the deviations
can be seen in Fig. 7. Using the presented method, 90% of
all points have a deviation of less than 21.46 cm. 70% of
the points have a deviation of less than 9.77 cm. Despite
some smaller inaccuracies the general shape of the scene is
well represented and there are no obvious deviations from
the trajectory leading to a curvature in the 3D point cloud.
The points with large deviation (red), seen in the upper left
of the first and third image in Fig. 6, are probably due to a
window front located there. In the absence of glass in the
environment, the deviations are correspondingly smaller.

8. CONCLUSIONS

The purpose of this scientific work was to use data ob-
tained from a LiDAR to improve position estimation by
IMUs. The relevance of calibration of IMUs was discussed
and a reliable method for calibration was presented. Fur-
thermore, the importance of the exact determination of the
orientation was explained and a procedure was presented,
which provides reliable results even during movements
with high dynamics. A strategy has been developed which
makes it possible to detect a standstill and thus to correct
the acceleration measurements of the IMU. It has been
shown that this method significantly improves the posi-
tion estimation of the IMU. Moreover, the estimation of
the trajectory is sufficiently accurate to determine a 3D
point cloud that accurately represents the shape of the
environment.

9. FUTURE WORK

Needless to say, a lot of work remains to be done. We are
currently working on merging the data from two or more
5 http://riegl.com/nc/products/terrestrial-scanning/

IMUs, which requires that all IMUs provide the same or
at least very similar measurement data. At this time, this
is only possible under the condition that both IMUs have
exactly the same orientation. In reality however, it will
be almost impossible to mount two or more IMUs with
the exact same orientation on one platform. Therefore
it is necessary to calibrate the exact rotation between
the IMUs. If non-linear motions are also to be recorded,
the translation must also be known. Furthermore, we are
currently developing methods to determine these parame-
ters. At the same time, the LiDAR should be calibrated.
Our low-end LiDAR is not well mounted and is eccentric
while rotating, so the distance measurements are slightly
distorted. This problem is probably due to the low price.
Nevertheless, we would like to show how to design a func-
tional 3D scanner using low price technology. We would
like to use technologies such as Simultaneous Localization
and Mapping (SLAM) or loop closing methods to improve
the results further. In the future, we will use the method we
presented to implement a mapping system for underwater
environments. Such a system needs to distinguish between
a moving and stationary phases of the remotely operated
vehicle (ROV). Also, we aim at developing an autonomous
system that creates 3D point clouds inside buildings using
a drone, LiDAR and IMU.
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