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Abstract— The detection of markers or reflectors within point
cloud data (PCD) is often used for 3-D scan registration, mapping,
and 3-D environmental modeling. However, the reliable detection
of such artifacts is diminished when PCD is sparse and corrupted
by detection and spatial errors, for example, when the sensing
environment is contaminated by high dust levels, such as in
mines. In the radar literature, constant false alarm rate (CFAR)
processors provide solutions for extracting features within noisy
data; however, their direct application to sparse, 3-D PCD is
limited due to the difficulty in defining a suitable noise window.
Therefore, in this article, CFAR detectors are derived, which are
capable of processing a 2-D projected version of the 3-D PCD
or which can directly process the 3-D PCD itself. Comparisons
of their robustness, with respect to data sparsity, are made with
various state-of-the-art feature detection methods, such as the
Canny edge detector and random sampling consensus (RANSAC)
shape detection methods.

Index Terms— Constant false alarm rate (CFAR), feature
detection, point cloud data (PCD), radar.

I. INTRODUCTION

APPLICATIONS such as image alignment, tracking mov-
ing objects in a scene, and ladar surveying involve the use

of sensors to monitor the environment. They belong to research
fields as diverse as remote sensing, computer vision, medical
imaging, augmented reality, and robotic mapping. It is usually
necessary to match and align successive scans from the envi-
ronment, often from different relative locations. In some appli-
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cations, this process is referred to as registration, examples of
which include point-based registration techniques, such as the
iterative closest point (ICP) method [1]. Some of the limita-
tions and difficulties of registration approaches, particularly in
the application of airborne laser scanning, are presented in [2].

In several applications, control points are needed to identify
the same part of an object within the different datasets. Regard-
less of the application, the general procedure to obtain such
control points is similar. This involves the detection of some
identifiable features of the objects in each dataset and matching
the detected features of the corresponding objects across the
different datasets. If the measured objects exhibit some unique
characteristic, which can be used for identification, this feature
is usually calculated or “extracted” directly from the dataset.
Methods to extract such features include the scale-invariant
feature transform (SIFT) [3], speeded up robust features
(SURFs) [4], Oriented features from accelerated segment
test (FAST) and rotated Binary robust independent elementary
features (BRIEFs) (ORB) [5], Canny edge detection [6], [7],
random sampling consensus (RANSAC) shape detection [8],
[9], and surface normal features used in 2-D or 3-D [10]
image processing [3], [5], [11], [12]. Customized feature
detection methods also exist, such as [13], in which street
light poles are detected from LiDAR point cloud data (PCD)
in a semiautomated manner.

Some environments lack the number or quality of natural
features needed to achieve a required level of accuracy.
An example includes terrain laser scanning (TLS) in a for-
est environment [14]. Also, the environment may be highly
dynamic, thus altering the potential natural features from scan
to scan. In these situations, the use of artificial landmarks is
preferable.

When the objects lack an identifiable characteristic, artificial
markers can be added to the observed objects. Depending
on the marker’s distinguishable information, which can be
shape, reflectivity, color, pattern, texture, or local gradient,
different methods for detecting these features should be used.
Often, combinations of these characteristics are exploited
simultaneously [15], [16].

Some standard automated procedures to detect artificial
markers are template matching, image segmentation, and edge
detection [17]. It will be shown, in this article, that the
nature of 3-D PCD can negatively impact the performance
of these techniques, motivating the need for automatic feature
extraction dedicated to 3-D PCD.
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Automatic methods for detecting reflective markers with
3-D laser range scanners are presented here. These approaches
are based on the adaptive threshold obtained by using constant
false alarm rate (CFAR) processors, which are used to segment
the markers from the rest of the data. CFAR processors
are well known in the radar community and are capable of
feature/target detection at low signal-to-noise ratios (SNRs),
achieving high probabilities of detection while bounding the
false alarm rate (FAR). They have been applied to many
diverse areas in the literature. For example, a CFAR edge
detector for polarimetric synthetic aperture radar (SAR) data
is presented in [18]. This detector overcomes the limitations
of standard edge detection methods used with optical images
since it is adapted for SAR image statistics (i.e., the speckle
distribution). Furthermore, this method is capable of using
the full polarimetric information, unlike other CFAR detectors
developed for SAR data, by developing a new test for the
SAR data complex covariance matrix, which follows a Wishart
distribution. Also, a robust CFAR detector based on truncated
statistics developed for ship detection in SAR data is described
and compared to other approaches in [19] and [20]. This
method shows improved detection in high-density multitarget
situations. CFAR-based methods have also been used with
other sensors. One such application consists of an image
processing technique to detect electrical lines in laser range
finder images [21]. CFAR methods have also been used
to detect and track dim points with low SNR in infrared
image (IR) sequences [22].

The methods of automatically detecting reflectors in clutter
presented in this article use the intensity level of energy
reflected by markers in 3-D PCD. Range information is also
incorporated to calculate an adaptive threshold, motivated by
the results obtained in [21]. Classical CFAR methods are
adapted to disambiguate the reflective markers from the rest of
the objects in the ladar images. These stochastic methods are
designed to keep the FAR at a predetermined (preferably low)
constant level, and they exhibit a relatively low computational
complexity with respect to other detection methods [22].

The proposed methods also estimate the probability of
detection for each point, serving as a measure of how likely
that point corresponds to an actual marker. This can be used
by automatic registration systems to give higher weights to the
markers with higher detection rates.

Specifically, in this article, standard cell averaging (CA)
and ordered statistics (OS) CFAR processors are applied
to 3-D laser PCD, using both its raw 3-D format and its
2-D projections. Both CA-CFAR and OS-CFAR processors
are chosen since it is documented that CA-CFAR performance
is good when homogeneous clutter can be assumed [23].
This means that the clutter is assumed to follow a Weibull
distribution. On the other hand, in the case of nonhomoge-
neous clutter, OS-CFAR processors have been shown to yield
superior performance. Nonhomogeneous clutter corresponds
to clutter that follows a Weibull amplitude distribution with
parameters that change abruptly as a function of range [23].
The contributions include the following.

1) Adaptive, parametric CFAR detectors, capable of uti-
lizing 3-D power and range information from PCD
when projected into 2-D. Range information is used to

automatically adjust the 2-D CFAR window size and,
hence, number of the guard and reference cells, yielding
adaptive 2-D CFAR processors capable of achieving
higher detection probabilities than their nonadaptive
counterparts.

2) Modified CFAR algorithms, for direct application to
sparse, 3-D PCD.

Three standard semantic feature detection methods are used
for benchmark comparisons: 1) constant threshold segmen-
tation [24]; 2) RANSAC shape detection [8] (both methods
used in both 2-D and 3-D representations); and 3) Canny edge
detection [6], [7] (for 2-D projected data). All the methods are
followed by a standard connected component analysis (CCA)
[24] to identify and label the detected areas (2-D data) or
volumes (3-D data).

After applying the derived 2-D and 3-D CFAR processors,
as well as the above benchmark detection algorithms, com-
parative results in the form of receiver operating characteris-
tics (ROC) curves are shown. These are based on the standard
definitions of true positive rate (TPR) versus actual FAR.

II. FEATURE DETECTION WITH 3-D PCD—THE

SPARSITY PROBLEM

As a 3-D sensor scans the environment, space is discretized
in 3-D, typically in the range r , bearing angle φ, and elevation
angle θ space - i.e., into polar voxels. In addition to spatial
information, many sensors also record reflected intensity or
received power and have their own detection electronics.
Such sensors only report the received power within polar
voxels in which detections are made, leaving all other voxels
void of such information. The set of voxels corresponding to
detections, and hence containing received power information,
comprises the PCD. Thus, if the spherical space within the
sensor’s field of view is considered to be a 3-D matrix
containing cells that provide sufficient reflective intensity, then,
not all elements of the matrix have a value. Such a data
matrix is considered to be sparse. This is an advantage from
the point of view of data size because sensors, such as laser
range finders, can achieve a very high resolution, producing
millions of points in a point cloud. However, because of this
sparsity, 3-D PCD cannot be processed in the same way as
1-D signals, 2-D images, video, and some 3-D data that are
represented by dense matrices. As discussed in Section IV,
data processing methods need to be adapted for direct use with
PCD. Alternatively, a projected 2-D image obtained from the
PCD can also be used, but the sparsity is also transferred to
the 2-D representation, which then causes problems with 2-D
image processing algorithms. In spherical coordinates, as the
range to points increases, the voxel volume representing a
particular point increases together with the distance between
“adjacent” points (i.e., adjacent voxels). Therefore, some of the
difficulties arising from the nature of 3-D PCD are as follows.

1) When the 3-D data are projected to a 2-D image,
targets at different ranges from the sensor appear to have
different sizes. Also, if the sensor is not oriented along
the line of sight of the target’s surface normal, its shape
will be distorted.

2) In both 3-D or 2-D projected data, some nontarget
objects might present a similar reflected intensity as the
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targets themselves, which can confuse threshold detec-
tors. In this case, usually, a second detector is used to
discard false positives, such as a shape or size detector.
The sparsity of the data, however, can affect the results
of these methods. For example, discontinuities in the
pixels’ (in 2-D projected data) or points’ (in 3-D data)
intensity values will cause size or shape detectors to fail.
Also, edge detectors are affected by this phenomenon as
false edges arise at these discontinuities, which can be
misinterpreted as actual targets.

The proposed detection methods, in this article, have been
modified to cope with these problems.

III. OVERVIEW OF CFAR PROCESSORS

Before presenting the adaptation of the CFAR concepts to
the problem, a brief overview of CFAR methods is now given.

The CFAR concept refers to a family of adaptive algo-
rithms widely used in radar to detect target returns against
a background of noise and clutter. The starting point for the
processing of radar data is the standard assumption that the
target absence and presence distribution types are known, but
not their moments, since these typically vary and should be
estimated. In this case, a test statistic must be derived. If such a
statistic can be found, which is independent of any unknowns,
then the detection method is known as a CFAR detector.

In most radar signal processing literature to date,
a CA-CFAR detector is the preferred method of target
detection [25], [26].

1) CA-CFAR: An adaptive threshold S CA-CFAR necessary
for CA-CFAR-based detection is determined as follows. Ref-
erence [27] shows that the detection probability of a Rayleigh
fluctuating target, embedded in exponential noise or clutter,
can be determined from the CA-CFAR parameters

P CA-CFAR
D (q) =

[
1 + τCA-CFAR

W f

(
1

1 + η̂ SNP(CUT)

)]−W f

(1)

where W f is the size of the CFAR window and τCA-CFAR is
defined as

τCA-CFAR = W f

((
P CA-CFAR

fa

) −1
W f − 1

)
(2)

where P CA-CFAR
fa is the chosen, acceptable false alarm prob-

ability and η̂ SNP(CUT) is the estimated received SNP in the
cell under test (CUT), calculated as

η̂ SNP(CUT) = PCUT

T CA-CFAR
CUT

(3)

where PCUT is the received power from the radar in the CUT.
T CA-CFAR

CUT is the test statistic derived from power values in
the neighborhood of the CUT. In the case of the CA-CFAR
detector, T CA-CFAR

CUT is the average power value recorded in the
vicinity of the CUT. The adaptive threshold at the CUT is then
defined as

S CA-CFAR(CUT) = τCA-CFAR T CA-CFAR
CUT . (4)

Hence, for chosen values of W f and P CA-CFAR
fa , the detec-

tion probability P CA-CFAR
D of a target, as a function of the

Fig. 1. 1-D and 2-D CA-CFAR reference windows.

estimated received SNP η̂ SNP, is given by (1). In general,
in order to assure that the cells in the window contain noise
information only, “guard cells” are selected around the CUT,
accounting for the fact that some target power spreads to
adjacent cells of the CUT.

In the case of scanning sensors, the above-mentioned analy-
sis can be extended to 2-D to process the range and bearing
dimensions simultaneously, thus jointly analyzing all available
information. The 1-D window used to estimate the test statistic
is extended to a 2-D area surrounding the CUT, as shown
in Fig. 1. It has been shown that for a given window size
in range and bearing and a chosen false alarm probability
P CA-CFAR

fa , the 2-D CA-CFAR probability of detection is
higher than its 1-D equivalent, for all received signal to noise
power ratios η SNP [28].

2) OS-CFAR: Several other CFAR methods have been
developed, such as the OS-CFAR processor, which has been
reported to perform well for large targets (with respect to the
spatial resolution) and in SAR images with the higher effect of
multiplicative speckle noise present in such images [23]. In the
OS-CFAR detector, the equivalent test statistic T OS-CFAR

CUT is
obtained by choosing the kth value from the ordered set of
power values in the CFAR window surrounding the CUT as
follows [29]:

S(1) ≤ S(2) ≤ · · · ≤ S(k) ≤ · · · ≤ S(W f −1) ≤ S(W f ). (5)

A value of k = (3 W f /4) has been suggested in [23] to
represent a good estimate for typical radar applications. The
parameter τOS-CFAR is calculated numerically from

P OS-CFAR
fa =

k−1∏
i=0

W f − i

W f − i + τOS-CFAR (6)

while the probability of detection is obtained from

P OS-CFAR
D =

k−1∏
i=0

W f − i

W f − i + τOS-CFAR

1+η̂ SNP(q)

. (7)

τOS-CFAR is determined numerically from (6) according to
the chosen acceptable probability of false alarm P OS-CFAR

fa .
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Similarly to the CA-CFAR processor, the OS-CFAR adaptive
threshold is

S OS-CFAR(CUT) = τOS-CFAR T OS-CFAR
CUT (8)

and the resulting detection probability is given by (7).

IV. ADAPTATION OF CFAR ALGORITHMS TO 3-D PCD

The 3-D sensor type addressed in this article yields spherical
coordinate information (r, θ, φ) and a value for the received
reflected intensity. In order to use the CFAR methods with 3-D
data, two approaches are proposed. The first one is to project
the 3-D data onto a 2-D image and then apply 2-D CFAR
methods. This is a common approach to visualize 3-D data
(e.g., cartographic maps and ladar scenes). Although there are
many mature, robust, and fast algorithms to process 2-D data,
all projection techniques distort the spatial relations of objects
in the original image, leading to performance detriments. Thus,
a second alternative is to apply the CFAR techniques directly
onto the undistorted 3-D data. Often, 3-D algorithms are less
developed than their 2-D counterparts and usually slower due
to the higher amount of data to be processed.

Standard CA-CFAR, OS-CFAR, or other CFAR methods
suitable for 2-D data can be directly applied to the ladar
intensity image, in the same way they are used with radar
data. The standard CFAR methods will be used as benchmarks
to compare the performance of the two CFAR extensions
proposed in this article, both of which aim at incorporating
range and reflectance information simultaneously into the
CFAR analysis. The performance of the CFAR methods is
expected to improve when using range information. The first
algorithm corresponds to an adaptive CFAR method that uses
range information to adapt the size of the reference and
guard cell windows. The second proposed variation corre-
sponds to a direct CFAR implementation in 3-D space. These
two approaches are analyzed in Sections IV-A and IV-B
respectively.

A. Projecting 3-D Range and Intensity Information Into
2-D Images for Feature Detection

In this approach, 3-D intensity values are projected onto a
2-D image using bearing and elevation angle values. Instead
of intensity values, range information can also be projected
using a similar transformation. This approach has the draw-
back that any projection transform introduces distortions,
which affects the shape of features/markers and, consequently,
detriments their detection. Also, areas of the image with
no intensity/range data should be replaced with “appropriate
values,” which are usually maximum range/minimum intensity
values, to avoid false detections. A thorough analysis of
various projections and their effects in feature-based detec-
tors in 3-D ladar applications is given in [30]. Two of the
projections presented in [30] will be used here. The first is
the equirectangular projection because it is the simplest and
the most widely used projection in image processing. The
other is the Mercator projection, which is mainly used in
cartography and geoinformatics. This projection was shown
in [30] to outperform other projections for 3-D laser surveying,

TABLE I

SUMMARY OF PROJECTIONS USED

by achieving high registration rates in various indoor and
outdoor environments as well as for different combinations of
descriptors and feature detectors, such as SIFT, SURF, ORB,
and FAST. This projection also has the capability of processing
full 360◦ panoramic images.

In general, projecting 3-D data onto a 2-D image requires
the mapping of the r, θ, φ coordinates to 2-D x, y coordinates.
In equirectangular projection, the bearing and elevation angles
are directly mapped to horizontal and vertical coordinates of a
grid without any transformation or scaling. As a result, vertical
straight lines in 3-D space remain as vertical straight lines
in the 2-D image, but, with the exception of the horizon,
the horizontal straight lines become curves. Also, the poles
in 3-D are stretched to the entire width of the 2-D image at
the top and bottom edges.

Mercator projection presents less distortion than equirec-
tangular projection and suffers less vertical stretching. Table I
summarizes these two projections [30]. Once intensity data
have been projected into a 2-D image, standard CFAR proces-
sors can be applied to obtain the adaptive CFAR thresholds.

1) 2-D Adaptive Window CFAR Detection: Intensity and
range data can also be combined to increase the probability of
detection of 2-D CFAR processors. This work proposes the use
of range information to adjust the size of the CFAR window
to match the expected size of the markers, which results in a
CFAR processor with adaptive window size, number of guard
cells, and τCA-CFAR (or τOS-CFAR) parameters.

For each CUT, the range information is used to calculate
the appropriate sizes of the reference and guard windows
in the projected bearing-elevation space. By matching the
expected size of the markers to the guard cells window,
the reference cells’ window would be assumed to contain only
noise or clutter values.1 Thus, the CFAR assumptions would
be enforced, and the performance of the detector should be
improved [23]. A description of this proposed method now
follows.

Let rCUT, θCUT, and φCUT be the coordinates of the CUT in
the original spherical coordinates. Also, let RT be the assumed
known effective radius of the marker, and if θ+

T , θ−
T , φ+

T , and
φ−

T represent the border angles of the marker in the original
space (see Fig. 2), then

θ+
T = θCUT + RT /rCUT, θ−

T = θCUT − RT /rCUT (9)

φ+
T = φCUT + RT /rCUT, φ−

T = φCUT − RT /rCUT (10)

where the small angle assumption has been applied to θ+
T − θ ,

θ −θ−
T , φ+

T −φ, and φ −φ−
T since the diameter of the markers

is usually much smaller than their distance from the sensor.

1Assuming that no other markers are in the vicinity of the CUT.
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Fig. 2. Adaptive 2-D-CFAR and its parameters.

Also, if fx (θ, φ) and fy(θ, φ) are the transform functions from
the original to the projected space, as defined in Table I, then
the region WT corresponding to the marker in the original
space and the region W �

T to that in the projected space are
defined as

WT =
{

(θT , φT )
∣∣∣ √

θ2 + φ2 ≤ RT

rCUT

}
(11)

W �
T = {( fx(θ, φ), fy(θ, φ)) | (θ, φ) ∈ WT } (12)

where WT is the set of angle pairs in the original space, while
W �

T is the set of (x, y) coordinates in the projected space,
defined in formal set builder notation [31]. The bounding
coordinates of the projected marker are given by

x+
T = max

(θ,φ)∈WT
( fx (θ, φ)), x−

T = min
(θ,φ)∈WT

( fx (θ, φ)) (13)

y+
T = max

(θ,φ)∈WT
( fy(θ, φ)), y−

T = min
(θ,φ)∈WT

( fy(θ, φ)). (14)

In the following, the subscripts “gc” and “rc” will refer to
guard cells and reference cells, respectively. CFAR guard and
reference cell windows in the projected space are then defined
as

W �
gc = {(

x, y) | (
ax−

T < x < ax+
T

) ∧(
ay−

T < y < ay+
T

)}
(15)

W �
rc = {(

x, y) | (
bx−

T < x < bx+
T

) ∧(
by−

T < y < by+
T

)
∧(x, y) �∈ W �

gc

}
(16)

where the guard cell window in the projected space W �
gc is a

rectangle, which encompasses a scaled version of the projected
marker image. The scale used for W �

gc is a (a > 1), and the
scale used for W �

rc is b (b > a).
In standard CFAR methods, the window width

(�xπ = x+
π − x−

π ) and height (�yπ = y+
π − y−

π ), with
π ∈ {gc, rc}, are fixed parameters in the projected space
coordinates. On the other hand, the proposed adaptive
algorithm uses RT as a parameter and the measured range
rCUT to calculate the window widths and heights in the
projected space for each CUT, using (11)–(16). The guard
cell window width and height are calculated such that W �

gc
includes the whole W �

T region. This is achieved by iteratively
growing the window in the projected space and calculating
the window size in the original space until the desired size of
the marker is reached, for each CUT. The reference window
width and height, on the other hand, are chosen such that the

Fig. 3. CFAR windows in 3-D space. Blue point: point in CUT. Red points:
points within the guard window (brown sphere). Green points: points within
the reference window (the green region outside of guard window). Black
points: points outside the reference window and not considered in CFAR
calculations.

window is larger than the guard window and large enough
to obtain a representative estimate of the noise power while,
at the same time, not so large that it would include other
markers. Due to computational constraints, it is also desirable
to keep the reference window to a limited size.

The thresholds, τCA-CFAR (2) and τOS-CFAR (determined
from (6)), and the test statistics, T CA-CFAR

CUT and T OS-CFAR
CUT , are

then calculated using these reference and guard cell windows
and assigned to each CUT. The adaptive CFAR thresholds,
S CA-CFAR(CUT) and S OS-CFAR(CUT), are then calculated
from (4) and (8).

B. Direct CFAR Detection in 3-D Space
The second approach is to directly apply a 3-D CA-CFAR

processor to the intensity information in the 3-D PCD. The
3-D range, bearing, and elevation coordinates are first con-
verted to x, y, z coordinates in the Cartesian space. This has
the advantage of not having the distortions introduced by the
projections. On the other hand, special considerations need to
be taken to apply the CFAR algorithms to sparse 3-D data.
To illustrate the proposed approach, Fig. 3 shows 3-D CFAR
windows operating on 3-D PCD. The 3-D CFAR algorithm
discretizes the space into 3-D voxels (cells) corresponding to
range, bearing, and elevation bins, represented by the gray
framed voxels. The algorithm iterates over all 3-D data points
in the point cloud. Each point falls inside a voxel (cell),
which becomes the CUT once (blue point in Fig. 3). Then,
all surrounding data points that fall into the guard window
(brown sphere with radius Rgc) are ignored, while the data
points in the reference window (green section of radius Rrc)
are used to estimate the adaptive threshold. In the particular
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case of the CA-CFAR processor, the average received power,
T CA-CFAR

CUT = T CA-CFAR-3D
CUT in the reference window, used to

estimate the threshold, is

T CA-CFAR-3D
CUT = 1

VR

∑
xi∈R

Ixi (17)

where Ixi is the intensity value of data point xi , R represents
the reference window, and VR is the number of reference
points in R. Analogously, the OS-CFAR detector’s test sta-
tistic T OS-CFAR-3D

CUT is calculated by ordering all points in the
reference window according to their power as in (5) and then
selecting the kth value.

In 3-D space, the exact location of each measurement is
used, while in the 2-D projections, usually, interpolation is
used to assign measurements to pixels in the 2-D image grid
from the 3-D data. Therefore, the direct application of a
CFAR detector to 3-D PCD is expected to increase CFAR
performance since no distortion of the shape and size of the
markers occurs. State-of-the-art CFAR processors assume that
none, or a relatively small amount, of the reference cells are
part of the object being detected. Therefore, the volume of
the guard cells window should be large enough to contain as
many of a marker’s cells as possible. Likewise, the reference
window should be large enough to contain cells corresponding
to noise and clutter to obtain a valid estimate of the noise
power. Conversely, the reference window should not include
target cells from a neighboring object.2

Unlike A-scope radar data or 2-D images, where contiguous
cells usually have contiguous indexes, 3-D point clouds are
often large, unstructured, lists of 3-D coordinates. There-
fore, an efficient method to organize and search points in
a multidimensional space is a k-d tree [32]. The nearest
neighbor algorithm, which takes advantage of data structured
in a k-d tree, is used to find the guard and reference cells.
The implementation used in this work is based on the method
described in [33].

Because of sparsity, there may be few points in the refer-
ence window. In this case, the test statistics, T CA-CFAR

CUT and
T OS-CFAR

CUT , give less reliable estimates of the noise power.
When there are no points in the reference window, the noise
estimate is undefined, and in this work, such CUTs are
discarded.3

C. Benchmark Algorithms for Comparison

All the previously presented CFAR algorithms are com-
pared with three state-of-the-art marker detection methods,
namely, segmentation thresholding, Canny edge detection [7],
and RANSAC shape detection [6], [8]. These algorithms are
chosen since they can be designed to extract the reflector
type markers examined in this article, either via their relative
reflectivity, compared with their surroundings or their shape.

2The reference window should be smaller than the expected minimum
distance between targets and should contain enough noise samples. In the
experiments, reference cell window diameters 1.5 to 2.0 times larger than the
corresponding guard cell window diameters gave satisfactory results.

3Note that an alternative method in this extreme case would be to use the
received power from the spatially closest point as an estimate of the noise
power, assuming that it is not another reflector.

This is in contrast with other feature detection algorithms,
such as ORB, SIFT, and SURF, that detect more complex
image-based features, not necessarily directly related to the
reflectors examined here.

1) RANSAC (RANSAC2D and RANSAC3D) Implementa-
tion: For benchmark comparisons, the “Scikit-image” imple-
mentation of RANSAC shape detection is applied to all
of the projected 2-D images. Due to range errors and the
projection distortions that result when converting the PCD
into 2-D images, the disk-shaped reflectors do not always give
perfect disks in their images, and therefore, the detection of
ellipsoids proved more robust.

In the ensuing experiments, ROCs are produced by vary-
ing the detectors’ false positive rates (FPRs). For the 2-D
RANSAC Scikit-image approach (RANSAC2D), this was
achieved by varying the residual threshold, which corresponds
to the maximum distance for a data point to be classified as
an inlier [6], [7].

In the 3-D PCD, a RANSAC implementation, which
detected ellipsoids based on [34], was used to detect the
disk-shaped reflectors. This is due to the foreshortening pos-
sible when scanning a circular disk. To vary the FPR for 3-D
RANSAC ROC generation, the equivalent “max distance to
primitive” parameter was varied in the “Cloudcompare tool”
according to [34].

Due to the high resolution of the 3-D laser scanner, each
target is represented by several points in the data set. In order
to obtain a single detection per actual target, the connected
component labeling algorithm is used to group points [24].

2) Canny Edge Detection (Canny) Implementation: The
benchmark Canny edge detection approach adopted in the
transformed 2-D images is taken from the OpenCV source
libraries [35]. Once the image gradient magnitudes and direc-
tions are determined, the detector requires two image gradient
thresholds. Edges with intensity gradient higher than the
largest threshold are classified as edges, and those with inten-
sity gradient lower than the smallest threshold are discarded.
Edges with intensity gradient between the two thresholds are
classified as edges based on their connectivity. This provides a
form of hysteresis thresholding. In the Scikit image implemen-
tation [6], both thresholds are defined from a single parameter.
In the benchmark Canny edge detector applied here, this single
parameter was varied, which, in turn, varies both upper and
lower gradient magnitude thresholds, which, in turn, varies the
FPR of the Canny edge detector.

3) Segmentation Thresholding (cth2D and cth3D) Imple-
mentation: Segmentation thresholding uses an image intensity
threshold to detect the reflective markers. Pixels with image
intensities above the set threshold are assumed to correspond
to the markers. To vary the FPR for the generation of the cth2D
and cth3D ROCs, the segmentation threshold parameter is
varied between the minimum image intensity to its maximum.

V. PCD-BASED CFAR EXPERIMENTS

In all the results presented in this section, the algorithms
used for comparison are labeled Canny, cth, RANSAC, cacfar
and oscfar corresponding to the Canny edge detector, seg-
mentation thresholding, RANSAC and the newly developed
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TABLE II

CFAR PARAMETERS. PIXEL UNITS ARE LABELED px

CA-CFAR and OS-CFAR algorithms, respectively. In addition,
each label is appended with the tag 2-D or 3-D to differentiate
the respective version. CFAR 2-D methods carry the suffix std
to indicate the standard (fixed window size) version or adp to
note the adaptive (adaptive window size) version.

The format of the results for all data sets consists of
experimentally determined ROC curves, determined by vary-
ing the appropriate detection parameter for each algorithm.
Correspondingly, in the derived CFAR methods, the theoretical
FAR parameter was varied. These plots correspond to the TPR,
determined by

TPR = TP

TP + FN
= No. correctly detected targets

Real number of targets
(18)

where TP corresponds to the number of correct detections and
FN corresponds to the number of missed detections, versus the
actual FAR, determined by

FAR = FP

FP + TN
= No. false alarms

Total no. non-target points
(19)

where FP corresponds to the number of false detections and
TN corresponds to the number of points/pixels that do not
correspond to targets.

For each data set, first, ROC curves are shown for the
detectors applied directly to the 3-D PCD. This is followed by
ROC plots for the detection methods adapted to process the
projected 2-D versions of the 3-D PCD. Finally, the analysis
of each data set yields plots of the true FAR versus the
theoretical probability of false alarm parameter set in the
CFAR algorithms. This is to give an indication of how well
each detection algorithm achieves its theoretical FAR.

In all of the following results, the reference and guard
window cell sizes are given in Table II.

A. Results With Simulated Data
The methods were first tested in a simulated environment.

This allows tests under controlled detection statistics (clutter
and detection probabilities) and knowledge of the ground-truth
positions of the markers.

The simulated environment consists of four sets of five
targets, with all five targets in each set presenting the same
SNR, but different SNRs for each set. The five targets in

4Note that the diameter rather than the radius of the markers was used to set
the guard window size, since the CUT could lie on or near the circumference
of a marker. Hence Rgc = aRT , with a = 2.

Fig. 4. Simulated environment with targets at different distances from the
sensor and different SNRs.

TABLE III

SNR VALUES USED IN THE SIMULATED ENVIRONMENT WITH

TARGETS AT DIFFERENT DISTANCES

each set are at different distances, such that with respect to
the sensor, each target has an apparent size that doubles that
of the previous, closer target. Fig. 4 shows this environment.
The dark points represent noise or clutter data surrounding
the targets, shown as white points. The reflected intensity
values of the background noise data points were generated
using an exponential distribution. The circled points represent
the targets. Their reflected intensity values were generated
from a Rayleigh distribution to comply with the CA-CFAR
assumptions, as will be justified in Section V-B1. The SNR
for each set is listed in Table III.

Fig. 5 shows the ROC curves for the 3-D detectors. The
probability of detection (TPR) is plotted against the actual
probability of false alarm (FPR), which results from chang-
ing the theoretical false alarm parameters (P CA-CFAR

fa and
P OS-CFAR

fa ) in the CFAR processors.
In this data set, cacfar3D(Pcd) and oscfar3D(Pcd) exhibit

comparable performances, while segmentation thresholding
yields a slightly lower performance during most of the ROC
curve. The 3-D RANSAC method is unable to declare any
detection. In this application, the number of points in the
PCD is much larger than the number of inliers required by
RANSAC 3-D to detect ellipsoids. This means that even when
the maximum number of RANSAC iterations is large, there is
a high probability that the 3-D RANSAC method finds a group
of points that matches the expected model but corresponds to
another, usually significantly larger, structure (ellipsoid) in the
PCD. For example, it was observed, in all the experiments, that
some planar sections were matched to large ellipsoids. When
this occurs, the CCA algorithm discards these detections due
to size constraints leaving no or very few detections, and the
points in the ROC curve are very close or equal to zero.

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on February 27,2020 at 09:47:08 UTC from IEEE Xplore.  Restrictions apply. 



1884 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 58, NO. 3, MARCH 2020

Fig. 5. ROC curves of the methods applied to 3-D PCD in the data set with
targets at different distances.

TABLE IV

RANK (R) OF 3-D AND 2-D METHODS BASED ON

ROC CURVES FOR FPR ≤ 0.15

Although, with the exception of RANSAC 3-D, there is
little difference in the ROC curves for the 3-D algorithms,
this simulated data set is particularly useful for assessing
the performance of the proposed 2-D adaptive window size
versions of the CFAR methods. This is because the standard
2-D CFAR methods are sensitive to the target size, which is
used to define the guard cells’ window size parameter. ROC
curves for the equirectangular and Mercator 2-D projected data
are shown in Figs. 6 and 7, respectively. For this data set, both
2-D projections (“Equi” and “Merc”) show comparable results.

Table IV gives each 3-D and 2-D method a rank R
based on the ROC performances for values of FPR ≤ 0.15.
The rankings R in Table IV results from the average TPR
value (highest to lowest) over the FPR interval considered
(0 ≤ FPR ≤ 0.15). Note that it is at low FPR values that
each CFAR processor is challenged in producing a high TPR,
and therefore, the performances are compared at these FPR
values. Note the poor performance of RANSAC 2-D. As in

Fig. 6. ROC curves of the methods applied to the equirectangular 2-D
projected data set with targets at different distances.

Fig. 7. ROC curves of the methods applied to the Mercator 2-D projected
data set with targets at different distances.

the case of 3-D RANSAC, this is again due to multiple points
in each image contributing to structures (in this case, ellipses)
that are much larger than the actual markers.

Note that the adaptive CA-CFAR methods outperform all
other 2-D methods, including the adaptive OS-CFAR proces-
sor. This can be explained by the fact that unlike the CA-CFAR
processor, the OS-CFAR processor does not assume additive
noise but rather multiplicative noise. In the simulations used
so far, the noise and target noise sources have been generated
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Fig. 8. Probability of false alarm versus required FAR in data set with targets
at different distances.

in an additive manner, with exponential and Rayleigh distri-
butions, respectively, so that the CA-CFAR assumptions are
met.

Fig. 8 plots all of the CFAR methods’ actual FARs versus
the theoretical probability of false alarm parameter used in the
CFAR algorithms. It can be observed that both 3-D versions
of the CFAR methods [cacfar3D(Pcd) and oscfar3D(Pcd)]
present the best performance with respect to both probability
of detection (see Fig. 5) and achieving the desired FAR
(see Fig. 8). For probability of FARs higher than 10−5, the 3-D
OS-CFAR and CA-CFAR algorithms almost perfectly achieve
the desired FARs, while maintaining the highest detection
rates.

In relation to the 2-D projections used, the equirectangular
projection introduces a higher5 distortion in the shape of the
markers. In the case of the CA-CFAR methods, the adaptive
version is, thus, capable of presenting a higher TPR than the
standard version at low FPR values.

In all cases, the adaptive OS-CFAR detector exhibits
the lowest TPR values among the CFAR methods. Due
to the CA-CFAR assumptions used in generating the data,
the OS-CFAR is not the optimal CFAR detector. It is also
interesting to note, however, that the adaptive window size
of the 2-D adaptive OS-CFAR processor (oscfar2Dadp)
sometimes contained insufficient data points, thus negatively
impacting the OS reference power estimate.

Regarding the benchmark methods, 2-D RANSAC
(RANSAC 2-D) yields very low TPR values and only in a
limited FPR range. The Canny detector (CannyLog) behaves
in a similar way, but all its ROC curve points correspond

5Note that the diameter rather than the radius of the markers was used to set
the guard window size, since the CUT could lie on or near the circumference
of a marker. hence Rgc = aRT, with a = 2.

Fig. 9. Received power clutter histogram from an indoor laboratory
environment.

Fig. 10. Received power clutter histogram in an underground mine environ-
ment.

to high FPR values and are, therefore, not considered in the
ranking table. The segmentation thresholding method (cth2D)
is ranked below all the CFAR methods.

B. Results With Real Data

An indoor laboratory environment and an underground mine
are used for comparing the 3-D PCD and 2-D projected
image marker detection algorithms with real data. Before
applying the CFAR methods to real ladar data, it is useful to
check whether the assumptions for the validity of the CFAR
algorithms are approximately obeyed, the most important of
them is the noise and target distribution types.

1) Ladar Target Noise Distributions: Ladar data captured
in the two environments are used to determine the corre-
sponding clutter and target distributions. The received power
intensity values of points where there are no markers are
used to obtain clutter distributions (see Figs. 9 and 10),
while points corresponding to markers are used to determine
typical target distributions. Fig. 11 shows an example target
distribution.6 In each figure, the blue discrete data repre-
sents the sample distributions, and the red curves represent
their best fit continuous distributions. In the case of noise

6Note that the reflectance values recorded by the sensor used in the
experiments (Riegl VZ-400) correspond to a reflected intensity relative to
the intensity of a white diffuse target at the same distance; thus, the reflected
intensity values are unitless. The sensor stores these values in dB. The linear
reflectance is calculated from the logarithmic values.
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Fig. 11. Received power target histogram in an indoor environment.

Fig. 12. Indoor laboratory environment. Darker points: higher reflected
logarithmic intensity.

(see Figs. 9 and 10), exponential distributions were fit, and for
the target (see Fig. 11), a Rayleigh distribution was fit.

Note that CA and OS-CFAR processors assume the form of
an exponential noise/clutter distribution but make no assump-
tions on the exponential distribution parameter itself, which
would differ for Figs. 9 and 10. The Rayleigh target statistics
are also assumed in the derivation of the detection statistics
of the CA-CFAR detector, and therefore, Fig. 11 together
with Figs. 9 and 10 at least approximately justify the use of
CA-CFAR processors in these environments [29].

2) Results (Indoor Laboratory Environment): Fig. 12 shows
3-D PCD recorded in the laboratory environment, which
contains seven reflective markers to be detected. Darker
points represent a higher reflected intensity on a logarithmic
scale. For ground-truth comparison purposes, the reflective
markers were identified manually within the 3-D PCD along
with their corresponding pixels in the 2-D projected images
(see Figs. 13 and 14).7 The environment includes objects (clut-
ter) that yield intensity values close to those of the targets.

7Note that in Figs. 12–14, PCD corresponding to the laboratory ceiling
has been manually removed for visual purposes. All detection algorithms,
however, used the complete PCD.

TABLE V

RANKING OF 2-D METHODS BASED ON ROC CURVES FOR FPR < 0.1

The CFAR parameters in this experiment were the same as in
the simulation since the targets were of similar size.

For comparison purposes, it was necessary to challenge
the detectors by adding artificial clutter to the indoor envi-
ronmental data. This was achieved by adding 0.2% of the
total number of points, corresponding to two false alarms
per every 1000 laser PCD measurements. This corresponds
to an increase in the number of highly reflective, nonmarker
points/objects, which would degrade the performance of the
various detectors. In Section V-B3, an underground mine
environment is used, which contains dust and naturally occur-
ring patches of reflective material on its walls, providing a
challenging scenario for the detectors in terms of clutter and
the potential for missed detections.

The ROC curves for the methods applied directly to the
3-D PCD data set from the indoor laboratory environment
are shown in Fig. 15, where, to demonstrate each detector’s
performance at low FPRs, a logarithmic FPR axis is used. Note
that compared to the 3-D CFAR algorithms, the segmentation
thresholding method (cth3D) results in a decreased TPR, for
FARs below 0.2% as expected. Once again, 3-D RANSAC
failed to make successful detections.

Figs. 16 and 17 present ROC curves obtained from 2-D data
using the equirectangular and Mercator projections, respec-
tively. Comparing Fig. 15 with Figs. 16 and 17 shows that
the 2-D versions of the algorithm present lower performances
than 3-D versions with probabilities of detection ranging
between 50% and 70% for 2 × 10−4 ≤ FPR ≤ 0.1.
Table V again ranks each 3-D and 2-D method based on
average TPR performance for values of FPR ≤ 0.1. In this
environment, the 3-D and adaptive 2-D OS-CFAR detectors
(oscfar3D(Pcd) and oscfar2Dadp) give the best performances.
Also, the adaptive 2-D CA-CFAR versions perform better
than their standard counterparts. Both, adaptive and standard,
OS-CFAR versions showed a better performance than the
segmentation thresholding method. As in the results with
3-D PCD, the CA-CFAR methods yielded a slightly lower
performance than the OS-CFAR methods.

For FPR values below 0.002, the effect of the artificially
introduced clutter is more noticeable, negatively affecting the
performance of both the 2-D and 3-D segmentation threshold-
ing methods (cth3D and cth2D) while affecting the 2-D and
3-D CA-CFAR methods to a much lesser extent.
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Fig. 13. Mercator projected image of indoor laboratory environment.

Fig. 14. Equirectangular projected image of indoor laboratory environment.

Fig. 15. ROC curves of the methods applied to 3-D PCD in the indoor
laboratory experimental data set.

Again the problem with the standard and adaptive
2-D OS-CFAR processors (oscfar2Dstd and oscfar2Dadp) was
observed, as insufficient data points were captured in the
reference cell windows to produce a useful OS at FPR < 0.01.
However, for FPR > 0.01, the 2-D OS-CFAR detectors show
superior TPRs than the 2-D CA-CFAR detectors. This can
be explained due to the real data itself not complying with
the CA-CFAR statistical assumptions. The other benchmark
methods, 2-D RANSAC and the Canny detector, exhibit sim-
ilar problems to those shown with the simulated data.

The actual FAR versus the chosen theoretical FAR para-
meter is shown in Fig. 18. In terms of the actual FAR,
all methods present a poor performance when the chosen
FAR parameter values were below 1 × 10−3, with 3-D
CA-CFAR [cacfar3D(Pcd)] performing best. Note that for
required probabilities of false alarm between 0.001 and 0.4,
the cacfar3D(Pcd) detector produces actual FARs that are even
lower than the set value.

3) Results (Mine Environment): Finally, a data set obtained
in an underground mine was also used to test the algorithms.

Fig. 16. ROC curves of the methods applied to equirectangular 2-D projected
data in the indoor laboratory experimental data set.

As shown in Fig. 19, the data set contains a large number of
points with seven markers, five of them are in the tunnel (red
circles) and two of them are located on the end wall (green
circles). To provide a real and challenging scenario, compar-
isons were made in the presence of dust, thus increasing the
clutter level for each detection algorithm.

Fig. 20 shows the ROC curves of the 3-D detectors applied
directly to the 3-D PCD. Similar behavior to that observed
in the indoor laboratory data set is noted. The 3-D CFAR
methods are least affected by the high level of clutter, while the
constant thresholding method (cth3D) shows a decreased true
positive detection rate for FARs below 0.025. The CA-CFAR
processor [cacfar3D(Pcd)], however, generally gives a much
lower probability of detection than the other methods (near
70% for most values of FPR). Although the clutter histogram
generated in Fig. 10 does approximately satisfy the CA-CFAR
assumptions, the local statistics in the CA-CFAR window may
not, meaning that the noise distribution assumptions are not
always met within the CA-CFAR noise window. In contrast,
the 3-D OS-CFAR processor yields a very high detection rate
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Fig. 17. ROC curves of the methods applied to the Mercator 2-D projected
data in the indoor laboratory experimental data set.

Fig. 18. Probability of false alarm versus required FAR for indoor laboratory
data (artificial clutter).

at low probabilities of false alarm. This can be attributed to
its more realistic noise distribution assumptions.

ROC curves for the 2-D equirectangular and Mercator
projected data are shown in Figs. 21 and 22, respectively.
Table VI ranks each 3-D and 2-D method based on average
TPR performance for values of FPR ≤ 0.1. It can be seen
that the constant threshold detector (cth2D) shows a decreased
true positive detection rate for FARs below 0.008. Note that it

Fig. 19. Section of an underground mine tunnel. Red and green circles:
visible targets’ locations.

Fig. 20. ROC curves of the methods applied to 3-D PCD in the underground
mine tunnel data set in the presence of dust.

TABLE VI

RANKING OF 2-D METHODS, APPLIED TO THE MINE DATA SET,

BASED ON ROC CURVES FOR FPR < 0.1

is only under the 2-D Mercator projection that the adaptive
versions of both the CA-CFAR and OS-CFAR processors
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Fig. 21. ROC curves of the methods applied to equirectangular 2-D projected
data in the underground mine tunnel data set.

Fig. 22. ROC curves of the methods applied to the Mercator 2-D projected
data in the underground mine tunnel data set.

(cacfar2Dadp and oscfar2Dadp) slightly outperform their state-
of-the-art fixed window size counterparts (cacfar2Dstd and
oscfar2Dstd). This can be attributed to the equirectangular
projection introducing more distortion in the shape of the
markers.

Under the equirectangular projection, for FPR < 0.05,
the adaptive CA-CFAR detector (cacfar2Dadp) yielded lower
TPR values than its standard counterpart (cacfar2Dstd). This
can also be explained since the adaptive window does not
include enough points to obtain a good estimate of the clutter
power level. In this particular data set, this is due to the targets

Fig. 23. Probability of false alarm versus required FAR for the underground
mine tunnel data.

being far from the sensor, thus exhibiting a small apparent size
that left very few pixels available to calculate the size of the
reference window. For FPR > 0.08, all 2-D detectors produced
comparable performances.

Fig. 23 shows the actual probability of false alarm curves
versus the chosen, theoretical probability of false alarm para-
meter used by each detector. The 3-D CFAR methods [cac-
far3D(Pcd) and oscfar3D(Pcd)] present the best performances
by achieving even lower actual FARs than the set FARs for
values above 5 × 10−4 and below 0.3. All the 2-D OS-CFAR
methods present a similar performance as do the 2-D adaptive
CA-CFAR detectors for both the Mercator and equirectangular
projections.

Overall, the 3-D OS-CFAR detector is the only method
showing a very high detection probability (greater than 96%)
over a large range of FPRs (see Fig. 20), which simultaneously
gives an actual FAR similar or below the required value
(see Fig. 23).

VI. CONCLUSION

There are various conclusions that can be drawn from the
simulated experiments, which are directly applicable to all of
the real experimental results. These are given as conclusions
1-4 in the following. However, certain conclusions that can
be drawn from the simulated results only partially apply
to the real results. These are given as conclusions 5-7 in
the following, together with the suggested explanations of
the differences. Finally, conclusions 8 and 9 provide sugges-
tions regarding the appropriate circumstances under which the
adaptive 2-D CFAR processors and the OS-CFAR processors
should be used.

1) In all of the experiments, the proposed 3-D CFAR detec-
tors [cacfar3D(Pcd) and oscfar3d(Pcd)] outperformed
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the benchmark 3-D RANSAC and constant threshold
detectors (see Tables IV–VI). Their advantages are par-
ticularly apparent in Figs. 8, 18, and 23, as the actual
FPR is similar to, or even less than, the desired CFAR
FPR.

2) The 3-D CFAR algorithms exhibit better performance
than their 2-D CFAR counterparts as there is no distor-
tion in the size or shape of the markers.

3) The Canny edge detector yielded low TPRs even at
higher FPRs, as observed with both simulated and real
data.

4) The RANSAC method also yielded a low performance
in its 2-D form, while the spatial data structure in 3-
D also negatively affected its performance, as several
different structures were consistent with the elliptical
model, and falsely detected. It should be noted, however,
that RANSAC could be used after the detection phase
to check whether the detected objects match a particular
shape and size.

5) The proposed adaptive window 2-D CA-CFAR detector
outperformed its standard counterpart in all experiments,
except in the mine using the equirectangular projection,
where a slight degradation could be seen over a small
interval of FPRs. This can be attributed to the distortion
introduced by the equirectangular projection. Note that
the adaptive version gives superior performance when
the Mercator projection is used since this projection
introduces less distortion of the data.

6) The proposed adaptive window 2-D OS-CFAR detector
(oscfar2Dadp) again outperformed its standard coun-
terpart in the laboratory environment and under the
Mercator projection of the mine data. Once again, it is
suggested that the slight degradation in its performance
with the equirectangular projection of the mine data (see
Table VI) is due to the distortion of the data. In the
simulated data, a small degradation was also evident (see
Table IV) due to the CA-CFAR statistical assumptions
used in generating the simulated data.

7) In the simulated experiments, in which the noise and
target distributions obeyed the CA-CFAR assumptions,
and for targets that gave high SNRs, the proposed 2-D
CFAR methods yielded comparable performances with
the state-of-the-art detection methods (see Figs. 5–8).

8) With 2-D data, and if it is known that the targets have
very different apparent sizes, the adaptive window size
CFAR versions should be used. Else, when the apparent
sizes of the targets do not vary significantly, the standard
versions should be used due to their lower computational
complexity.

9) The adaptive OS-CFAR processor should be used when
it is expected that some of the points representing the
target will spread into the reference cell window (i.e.,
when detecting large objects).
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