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Abstract— Detecting moving objects is of great importance for
autonomous unmanned vehicle systems, and a challenging task
especially in complex dynamic environments. This paper proposes
a novel approach for the detection of moving objects and the
estimation of their motion states using consecutive stereo image
pairs on mobile platforms. First, we use a variant of the semi-
global matching algorithm to compute initial disparity maps.
Second, assisted by the initial disparities, boundaries in the image
segmentation produced by simple linear iterative clustering are
classified into coplanar, hinge, and occlusion. Moving points are
obtained during ego-motion estimation by a modified random
sample consensus) algorithm without resorting to time-consuming
dense optical flow. Finally, the moving objects are extracted by
merging superpixels according to the boundary types and their
movements. The proposed method is accelerated on the GPU
at 20 frames per second. The data which we use for testing
and benchmarking is released, thus completing similar data sets.
It includes 812 image pairs and 924 moving objects with ground
truth for better algorithms evaluation. Experimental results
demonstrate that the proposed method achieves competitive
results in terms of moving-object detection and their motion state
estimation in challenging urban scenarios.

Index Terms— Stereo vision, autonomous vehicles, simultane-
ous localization and mapping.

I. INTRODUCTION

ENVIRONMENT perception is one of the core
issues for advanced driver assistance systems (ADAS)

and autonomous driving systems (ADS). It has been an active
field of research in the intelligent transportation systems (ITS)
area during the last decade. Detecting moving objects is
a significant component of the perception system [1]–[4],
as it is the basis for numerous applications, such as
robot navigation [5], [6], simultaneous localization and
mapping (SLAM) [6]–[8], traffic surveillance [9]–[12] and
video segmentation [13], etc.

Moving-object detection in static environments has been
studied extensively [14], and many effective solutions have
been proposed, including background subtraction, frame dif-

Manuscript received July 9, 2016; revised January 16, 2017 and
February 27, 2017; accepted March 7, 2017. This work was supported
in part by the National Natural Science Foundation of China under
Grant 41401525, in part by the Natural Science Foundation of Guangdong
Province under Grant 2014A030313209, and in part by the CCFTencent Open
Fund under Grant IAGR20150114. The Associate Editor for this paper was
D. Fernandez-Llorca.

L. Chen, L. Fan, G. Xie, and K. Huang are with the School of Data and
Computer Science, Sun Yat-sen University, Guangzhou 510275, China
(e-mail: chenl46@mail.sysu.edu.cn).

A. Nüchter is with the Informatics VII - Robotics and Telematics Group,
University of Würzburg, 97070 Würzburg, Germany.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2017.2680538

ference, and optical flow. However, moving-object detec-
tion in dynamic environments is still a challenging task
because it is not feasible to have a unique background
model in a dynamic scene. Many kinds of sensors have
been used to solve the moving-object detection problem,
including monocular cameras, stereo cameras, LIDARs and
radars [5], [15], [16]. Among these sensors, the monocular
camera lacks scale reference and LIDAR is very expensive.
Stereo cameras could provide both color and depth information
of the environment at very low cost. This is the major driven-
force that stereo-based perception is receiving more and more
attention recently.

Most stereo-based methods adopt optical flow or scene
flow to detect moving objects [3], [17]–[21]. These flow-
based methods are very time-consuming, and moreover, the
shadow of moving object would be easily misclassified by
using dense optical flow calculation [17], [18]. Other kinds
of moving-object detection methods [22]–[24] abandon the
process of optical/scene flow calculation and use grid or
voxel to establish specific 3D maps to extract moving targets.
These methods could not provide pixel-level results which
are critical for object segmentation and visual odometry. The
above observations motivate us to design a real-time pixel-
level moving-object detection method based on stereo cameras.

To solve the time-consuming problem of flow-based meth-
ods, in this paper, we employ the RANSAC process on feature
points matched circularly between continuous stereo pairs,
which requires much less time than optical flow calculation.
To extract moving objects completely, we perform a segmenta-
tion of input image using superpixels. The relations between
superpixels are then sorted into coplanar, hinge and occlu-
sion by applying the slanted-plane method. For the shadow
problem, we accurately segment the shadow projected by the
moving objects to another plane, such as the ground, by taking
the boundary categories into consideration. We estimate the
motion of each superpixel according to formerly extracted
feature points. Following the image segmentation, superpixels
with great possibilities to form one single target and similar in
the movement are merged into the final pixel-level detection
results. Moreover, we design a stereo matching algorithm
based on the GPU by parallelizing image segmentation and
semi-dense disparity map computation, which produces a
dense disparity map with a slanted plane model for moving-
object detection in real-time.

To sum up, our moving-object detection method has four
primary contributions, comparing with existing methods:

• To the best of our knowledge, the proposed method is
the first one that leverages the type of relation between
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RGBD and plane segmentation for moving-object
detection, and it exhibits robustness and efficiency when
dealing with multiple targets while removing the harmful
influence of shadows.

• The proposed method is not object type specific and
therefore is able to detect all moving objects. The
detection result of our method also achieves pixel-level
accuracy.

• We propose a GPU-based fast stereo matching algorithm
by parallelizing independent processes, which delivers a
dense disparity map and an image segmentation with
boundary types. By using this matching algorithm, our
moving-object detection method runs at 20 frames per
second on the GTX 960 graphics card.

• Two datasets containing 812 frames and 924 mov-
ing objects selected from KITTI and our SYSU
datasets with manually tagged ground truth are released
for better algorithms evaluation, which has various
objects including vehicles, pedestrians, and bicycles, etc.
These datasets could be found at http://www.carlib.net/
stereomovingobjects.html/.

The remainder of this paper is organized as follows: Section II
briefly reviews the related literature. The strategy behind our
method to detect moving objects using consecutive stereo
pairs lies in four steps, which we will explain in detail in
section III. In section IV, we present the experiments involving
two datasets, including KITTI and SYSU. Section V concludes
the paper.

II. RELATED WORK

The detection of moving objects in dynamic fields have been
studied using various sensors, such as monocular cameras [25],
stereo cameras [26], [27] and laser scanners [2], [28], etc.
Multiple sensor fusion methods [5], [15], [16] have been
proposed recently to detect moving obstacles by combining
input data streams. Chavez-Garcia and Aycard [16] considered
objects of interest obtained at early stages from multiple sen-
sors to reduce misdetections. Combining data from different
sensors truly promotes the detection accuracy but is also
challenging, namely in terms of multiple-sensor calibration,
signal synchronization, and information association.

Stereo cameras provide image pairs with basic color infor-
mation, and semi-dense or dense disparity maps could be
produced applying stereo matching algorithms [29]–[32]. The
method [30] proposed by Yamaguchi et al. achieved the state-
of-art accuracy by plane-fitting to original disparity maps
from semi-global matching method [29]. In our approach, the
stereo matching step follows the previous work [30] while
accelerating the computation time to 40 milliseconds per
frame. Further, a better segmentation of the input image is
embedded in our matching algorithm while still producing a
boundary label map efficiently.

In [26], an effective approach for moving-object detection
is proposed based on modeling the ego-motion uncertainty
and then applying graph-cut based motion segmentation. The
authors estimated relative camera poses through minimizing
the sum of reprojection errors. By propagating the uncertainty
of the ego-motion to the RIMF, a motion likelihood for each

pixel is obtained. Pixels with a high motion likelihood and a
similar depth are detected as a moving object. In contrast to
detecting moving objects based on dense optical flow resulting
in high computation time consumption, our method estimates
the dynamic probability of superpixels [33] supervised by ego-
motion knowledge and then merging similar segments to a
complete target according to depth planes.

Grid-based data structures are good choices for integrating
temporal data from the driving environment due to its
high memory-efficiency. Using these data structures for
moving-object detection usually starts by distinguishing grid
cells of the dynamic environment as free or occupied, then
segment and track these cells, to provide an object level
representation of the scene. Nguyen et al. [23] used a stereo
camera to build a two-dimensional (2D) occupancy grid
map, and they applied a hierarchical segmentation method
to cluster grid cells into object segments. In [24], particles
were employed to estimate the occupancy and velocity of the
cells in an occupancy grid map for modeling and tracking
of a driving environment. Broggi et al. [22] presented a
full 3D voxel-based dynamic obstacle detection for urban
scenarios using stereo vision. Stereo-based point clouds were
first sampled into a full voxel-based 3D map. Then, they
segmented the voxels into a cluster structure using a flood-fill
approach; finally, they labeled the clusters as stationary
or moving obstacles based on the ego-motion information.
Both grid-based or voxel-based detection methods require a
previously established map in a specific format.

The deep-learning technique was introduced to stereo
camera-based motion segmentation by Lin and Wang [34].
Instead of using point features that are based on 3D geometric
constraints for moving-object detection, they employed
high-level spatio-temporal features learned unsupervisedly
from raw image data based on Reconstruction Independent
Component Analysis (RICA). They proposed a framework that
incorporates both the detected moving-point results and the
learned spatio-temporal features as inputs to Recursive Neural
Networks (RNN) which performs motion segmentation.
Makris et al. [35] proposed an object detection and object class
recognition method fusing intensity and depth information in
a probabilistic framework. Further, a system that integrates
fully automatic geometry estimation of the scene, 2D object
detection, 3D localization, trajectory estimation, and tracking
for dynamic scene interpretation from a moving vehicle has
been proposed in [36]. The Structure-from-Motion (SfM) and
the scene geometry is estimated in real time. In addition, they
perform multi-view and multi-category object recognition to
detect cars and pedestrians in both camera images in parallel.
These methods need models of specific targets, and the final
accuracy of moving-object detection is highly relative to the
training process.

Moving-object detection datasets were released on the
KITTI benchmark [21]. The datasets contain 400 dynamic
scenes from raw data collection. Moving objects are selected
out using detailed 3D CAD models. A 3D scene flow estima-
tion model is also released in Menze and Geiger [21]. They
segmented the scene and then gave each segment rigid motion
parameters and corresponding object index, which improves
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Fig. 8. The results of KITTI datasets are displayed in column 1 and 2. The results on SYSU datasets are displayed in column 3. The bottom color bar
stands for the disparity from large to small.

Fig. 9. The results of moving-objects’ states estimation. The number of stereo pairs we use to reconstruct are: (a) 12, (b) 16, (c) 16, (d) 27, (e) 14, (f) 12,
(g) 12, (h) 24, (i) 14 and (j) 15.

boundaries of objects. The difficulties involved in detecting
moving objects and avoiding noises fall into three categories:
(1) Sparse outliers are false located on static objects. (2) The
number of feature points in a segment is not fixed, and
(3) Outliers gather around the edge of the moving object.

Our algorithm starts by labeling each segment to obtain
the initial detection results. It then uses the categories of
boundaries and other measurements to optimize initial detec-
tion results. To filter out the noise of outliers and cause them
to mark on target objects to the best, the quality of outliers
has to be determined. We employ a k-means like method to
measure the quality (Fig.5).

With the qualified outliers, noise may still be present in
the result. Because we expect that all the superpixels on
the moving objects are detected and no superpixels will be

considered as moving in an incorrect way, the refinement
should be derived based on the relationships between seg-
ments. The noise on the road is filtered out because of the
relationships with adjacent segments, which are static and
coplanar. The center of a moving object that is short of outliers
is optimized by making comparisons with the neighbors.
The refinement contains two parts: noises that are filtered
and moving objects that are repaired. The critical factors of
our algorithm are outlier and inlier, boundary type, segment
relation, disparity image, and robotic motion.

D. Motion States Estimation
After obtaining the results of the moving-object detection,

our algorithm estimates the states of moving objects by
calculating the positions of moving objects in the global
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TABLE I

THE TRAINING PART OF [21], OUR KITTI DATASET AND SYSU DATASET

TABLE II

THE RESULTS OF OUR ALGORITHM ON KITTI SCENE FLOW TRAINING DATASET [21] AND THE RESULTS BY [22] AND [26]

TABLE III

THE RESULTS OF PROPOSED ALGORITHM ON OUR KITTI MOVING-OBJECT DATASET AND THE RESULTS BY [22] AND [26]

TABLE IV

THE RESULTS OF PROPOSED ALGORITHM ON OUR SYSU MOVING-OBJECT DATASET AND THE RESULTS BY [22] AND [26]

coordinate system. In our method, we use four measurements
to describe the moving objects, i.e., the width, height, position,
and velocity. Because we have obtained the [R|t] between
subsequent frames, we can calculate the position of moving
objects using the following equation:

dispobject =
∑

(u,v)∈Areaobject
d(u, v)

Areaobject

Posobject = [R|t] ·
⎡

⎣
(uobject − cu) × baseline/dispobject
(vobject − cv) × baseline/dispobject

focus × baseline/dispobject

⎤

⎦

[R|t] = [R|t]0,1 × [R|t]1,2 × [R|t]2,3 × · · ·
× [R|t]cur−1,cur (12)

where uobject and vobject denote the average position of each
moving object in the left image. It is accessible to determine
the nearest or the farthest of the moving objects to the camera
because all of the disparity values of the objects are already
known.

Finally, we estimate their velocities based on the position of
moving objects in the real world. We combine the timestamp
of each frame to compute the velocity and the vector of the
moving-object detection. An overview of the estimation work
for the state of the moving objects is shown in Fig. 6.

IV. EXPERIMENTAL RESULTS

A. Datasets

The dataset [21] only contains pixel-level ground truth for
moving vehicles instead of marking all moving obstacles, such
as bicycles and pedestrians. In this work, we label moving
objects in [21] manually. And to enhance available datasets
for measuring the accuracy of moving objects, another two
datasets are released with this paper from both KITTI [40]
raw data and our stereo dataset. We 1) select several KITTI
pairs and label the moving objects to form a KITTI mov-
ing objects dataset, which is called KITTI for short in this
work, and 2) create a new stereo moving objects dataset by
our moving platform, which is named SYSU (Sun Yat-sen
University) dataset. KITTI contains 612 groups of images
with the 1299 × 374 resolution, and each group consists
of four frames including two successive stereo pairs, i.e.,
t-time left frame, t-time right frame, (t + 1)-time left frame
and (t + 1)-time right frame. KITTI groups are selected from
more than 5000 frames of images in KITTI benchmark. SYSU
dataset containing 100 groups are collected by our stereo
camera mounted on the roof of our moving platform with
a resolution of 1299 × 374 under urban road environments
conditions. Fig. 7 shows our moving platform and an example
of SYSU dataset.
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Fig. 10. The position of each moving objects in the next frame are demonstrated in (a), (b), (c) and (d) with their disparity, and the yellow arrow presents
the motion direction. Detailed positions of moving objects are illustrated in (e), (f), (g) and (h) in airview.

Each frame of our DATMO datasets contains moving
objects, and frames whose main part of the moving objects
are out of the image are not selected into our datasets. There
are 921 moving objects in all of our DATMO datasets and an
average of 2.26 moving objects per frame. The ground truth
of two datasets is generated by boxes marking the moving
objects in the left current image. Objects sheltered of less than
50% and moving in the scene are also regarded as moving
objects. We subdivide the moving objects into four categories
including cars, vans, bicycles, and pedestrians. The details of
these datasets are listed in Table I and they have already been
published on http://www.carlib.net/.

B. Moving Object Detection Results

Detailed results containing consecutive frames of our
method could be found at https://youtu.be/DUGcoNMu0S8.
Fig. 8 shows twelve output examples from our moving-object
detection method in both urban areas and highway situations.
Different types of moving objects, such as vans, cars, and
bicycles occur in these scenarios. In Fig. 8 (b), there are three
moving vehicles in this image, and two of them move in the
opposite direction of the other car. Noises might appear on the
road for the highlight of the road surface easily lead to mis-
matching. These mismatches are reduced by judging its quality
and utilizing the boundary types. The false negative appears
in Fig. 8 (g) is primarily due to insufficient feature points
marking on this moving vehicle. In Fig. 8, false positives occur
in subgraph (c) and (f). The reason is the blur on the input
images. The blur occurs when cameras move fast, and it leads
to wrong matches between stereo images, which further makes
the wrong classification of boundary types. Blur holds back the

process of utilizing RANSAC to extract outliers as well during
ego-motion estimation. Outliers located on static scenes are the
primary cause of false positives in subfigure (a). In Fig. 8 (h),
the man riding his bicycle is tagged out. Different from other
pattern recognition based detection methods, our method is
suitable for general moving objects with no need for specific
types of objects. The proposed method shows more robustness
for avoiding the situation that there is no corresponding pre-
training model. In Fig. 8 (i), two vehicles overlapped each
other do not affect the detection performance, which benefits
from the superpixel segmentation to adhere to the boundaries
of objects more accurately.

To quantitatively demonstrate the accuracy of our method,
we compare our work with two related works in the lit-
erature [22], [26]. The results are summarized in Table II,
Table III, and Table IV. Compared to [22], the overlapping area
larger than 50% is 4.23%, 3.19% and 5.00% higher than [22]
on three datasets respectively. From Table II, Table III and
Table IV, we present the comparison with Zhou’s [26]. The
number of detection results with an overlapping area larger
than 50% is 9.12% higher than [26] on three datasets totally.
There are 73 less false moving while 127 more true moving
detections with comparison to [26] among all 1393 moving
objects ground truth. Table II, Table III and Table IV present
the accuracy performances of three algorithms for detecting
cars, bicycles, pedestrians, and vans. We present the results
on Table II, III and IV when the recall value

T rueMoving

TrueMoving + FalseMoving + FalseStatic
(13)

reaches its least, which is influenced by the parameters of
our algorithm. The shape of a moving object is usually
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not a rectangle. Thus we figure out the moving objects by
considering the overlapping regions larger than 50%.

C. Motion States Estimation Results

To show the path of moving objects, we tested our method
on the KITTI odometry dataset. The results are shown in
Fig. 9. For better demonstration, we reconstruct the 3D scene
using consecutive frames, and it is obvious that moving objects
appear in different positions (ghosting) in the same coordinate
system. Therefore our moving-object detection method that
combines the approaches of stereo matching and ego-motion
estimation, 3D reconstruction benefits from this approach. The
red box stands for the position of moving objects referring to
each frame. The distance between the red boxes belonging to
the same objects is utilized for the velocity estimation. The
width and height of boxes denote the size of moving objects.
In Fig. 9 (d), a man riding his motorcycle comes from the left
road and then drives in the direction of our stereo cameras.
The path of the motion is clearly visible.

With the time capturing each frame and the location, the
velocity of moving objects is then calculated. The average
speed of the vehicle in Fig. 9 (a) is 8.45m/s, i.e., 30.42km/h.
Similarly, the car in Fig. 9 (b) moves at 18.49m/s or
66.56km/h. The motion direction of these vehicles or bicycles
between two frames is shown in Fig. 10. Our method computes
the position of the moving objects in both current and previous
images simultaneously, i.e., we draw the disparity of moving
objects in current frame on the previous image which shows
the shift apparently. The disparity of moving objects help us
to estimate their location, and the direction is displayed with a
yellow arrow in the 2D image. With this information, we are
able to further predict the intention of moving vehicles based
on former movements.

D. Operation Time

All experiments in this paper are completed on a desktop
computer whose processor is Intel Core i7-4770 CPU 4 cores
@ 3.4GHz with 8 GB RAM and GTX 960 graphics card. The
stereo matching method, accelerated by CUDA, has reached
0.04s per frame. The average time of ego-motion estimation
time is 0.02s, and the time of moving objects capturing is
0.01s. Compared to the average time of [26] with 10 frames
per second, our method is faster while doing more work for
other applications, such as 3D reconstruction.

V. CONCLUSION

In this paper, we have proposed a novel and efficient
stereo moving-object detection method which obtains pixel-
level results of moving targets at 20H z. The proposed method
achieves accurate detection results in challenging scenarios
and is independent of dense optical flow calculation. The states
of moving objects, including location, direction, and velocity,
are also obtained simultaneously as further byproducts. The
proposed work is the first approach that introduces superpixel
boundary classification into moving-object detection which
ameliorates the shadow effect. Additionally, our method is
not object type specific. Detection results in several videos

also show the robustness of dealing with various kinds of
targets. In future work, we will focus on the large-scale map-
ping coupling with moving-object detection for autonomous
driving, especially by using low-cost cameras and embedded
computing.
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