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Abstract—With computer technology advancing in both soft-
ware and hardware, the benefits of embodied intelligence are
becoming increasingly evident. This robust interactive learning
model enables artificial intelligence (AI) to be more flexibly
deployed across diverse fields. In recent years, the development
of multi-modal large language models (LLMs) has further
accelerated the progress of Al, prompting extensive research
on how to leverage these advancements to enhance the field
of autonomous driving. This perspective believes that embodied
intelligence can significantly enhance the application of LLMs,
analyzing the new opportunities brought to the mining industry,
and emphasizing the potential of their integration to revolutionize
various aspects of the field. Meanwhile, This perspective also
examines the challenges of deploying embodied agents in mining,
while emphasizing their promising future and offering insights
into potential research and development avenues.

Index Terms—embodied intelligence, large language model,
intelligent mining

I. INTRODUCTION

Recently, the emergence of Large Language Model (LLM)
has propelled artificial intelligence (AI) into unprecedented
realms[1], [2], [3], [4], ushering in a new era of text generation
capabilities. The advent of LLMs not only advances Al in
the realm of textual comprehension and generation but also
catalyzes developments in related fields. Their integration
with robotics undeniably injects fresh vigor into embodied
intelligence.
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Embodied intelligence refers to the ability of agents to
understand and manipulate the objective world through inter-
actions with their environment and learning [5]. Historically,
intelligent algorithms have been constrained by their reliance
on training data, limiting their flexibility when addressing real-
world problems. This challenge has made dynamic interactive
embodied learning a difficult feat. The advent of LLMs,
however, has opened up the possibility for real-time interac-
tion, allowing them to adeptly handle embodied question-and-
answer tasks. Additionally, multimodal LLMs offer innovative
solutions for embodied tasks such as visual exploration and
navigation.

This perspective believes that the embodied Al with LLM is
expected to play a crucial role in mining autonomous driving
and offer new solutions for this field, better-achieving mining
5.0 [6], [7], [8]. Integrating embodied Al and LLM enhances
the ability of mining autonomous vehicles to interact with and
learn from the environment, thereby improving the overall per-
formance of autonomous driving.[9] This perspective discusses
embodied intelligence with LLM and its application in the field
of autonomous driving, and analyzes the potential challenges
and future direction.

II. EMBODIED INTELLIGENCE WITH LLM

Built on large-scale neural networks, LLMs are trained
on extensive textual data, enabling them to develop a deep
understanding of language patterns, semantics, and syntax.
They can generate coherent text, answer questions, summarize
information, and engage in dialogue with humans. Addition-
ally, multimodal LLMs integrate information from modalities
beyond language, like sound and vision, enhancing their com-
prehension abilities. Embodied multimodal LLM integrates
perception ability with embodied cognition, allowing them to
comprehend and generate language while interacting with the
environment, representing a significant advancement in Al.

Embodied LLMs have witnessed significant advancements
across various models, each contributing uniquely to the field:
The emergence of Flamingo [10] demonstrates the few-shot
learning ability in the field of visual language modeling.
By combining pre-trained language models with external
knowledge, the system is adept at navigating open-domain
generative question answering and other knowledge-intensive
tasks. Google’s PaLM-E[11] realizes the landing of a multi-
modal LLM in robot scene training, which is an important
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Fig. 1: The application of embodied Al in the field of robotics, autonomous driving and smart mining.

milestone because it demonstrates the feasibility of multi-
modal language model in robot multi-data source multi-scene
fusion. Microsoft published the paper[12], which proposed the
basic idea of using ChatGPT to control robots, and provided
a new perspective for the application of LLM in embodied
intelligence. ShapeLLM][13] specializes as a 3D multi-modal
large-scale language model designed for embodied interaction.
Through the fusion of 3D point clouds and language, it
ventures into the realm of 3D object understanding.

These advancements collectively underscore the rapid
progress and immense potential of embodied intelligence with
multimodal LLM in revolutionizing robotic cognition and
interaction within the physical world.

At the same time, many LLMs for autonomous driving have
emerged, which has promoted the development of autonomous
driving. The application of LLM in autonomous driving is
mainly focused on two aspects: providing environmental un-
derstanding and interaction, and generating driving behaviors
and decisions. These models process and analyze a large
amount of multi-modal driving data, including images, vidcos
and language commands, so that autonomous driving systems
can perform tasks more accurately and stably.

At present, there have been many datasets of LLM for
autonomous driving [14], [15], [16], [17], [18], which con-
tain a large number of video frames and corresponding text
descriptions, which are suitable for perception and planning
tasks in autonomous driving.

DriveLikeaHuman[19] explores the potential of using LLMs
to understand the driving environment in a human-like way
and analyze its ability to reason, interpret, and remember
when faced with complex scenarios. DriveMLM[20] pro-
poses a framework to integrate the world knowledge and
reasoning capabilities of LLMs into an autonomous driving
system, enabling closed-loop driving in real-world simulators.
DriveVLM[21] integrates a unique combination of Chain-of-
Thought (CoT) modules for scenario description, scenario
analysis, and hierarchical planning. VELMA[22] designs LLM
agents for navigation in street view, which greatly improves

the performance of visual navigation tasks. LimSim++[23]
proposes An autonomous driving closed-loop simulation plat-
form designed for multi-modal LLMs, aiming to apply LLMs
to autonomous driving, it addresses the need for a long-term
closed-loop infrastructure and supports continuous learning
and improved generalization capabilities in autonomous driv-
ing.

It can be noticed that the emergence of LLM has injected
new vitality into the development of automatic driving. This
perspective believes that embodied intelligence is expected
to become a new carrier for multi-modal LLM to assist
automaltic driving to better assist automatic driving promoting
the migration of autonomous driving from cities to other
scenarios. The following chapters will explore the application
of embodied intelligence migration to smart mines, and the
implications and future directions.

III. APPLICATION OF EMBODIED Al IN MINING

Fig. 1 depicts the application of embodied intelligence in
the field of robotics, autonomous driving and smart mining.

In the field of robotics, embodied Al refers to robots that
can interact with the environment and engage in exploratory
learning. Equipped with a Human Machine Interface (HMI),
these robots can complete specific tasks through human-
machine interaction commands, such as visual exploration, vi-
sual navigation, embodied question answering, and more. The
development of simulators has facilitated embodied learning
for robots. A high-quality simulator must construct not only
realistic environments but also realistic interactions between
agents and objects or between objects, modeling real-world
physics properties. In such an environment, robots learn the
best strategies to complete tasks through interaction with the
physical environment. Whether in a simulator or the real
world, the amount of data available to embodied robots is
very sufficient, supporting the possibility of embodied robots
learning in the real world in the future.

When it comes to the field of autonomous driving, the
requirement for safety increases significantly. V2X technology
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Fig. 2: The system for embodied intelligence in smart mining.

enables vehicles to have the physical foundation to interact
and communicate with everything. Cognitive abilities allow
them to better understand all interactive behaviors, laying the
foundation for the implementation of embodied intelligent
vehicles. Smart cars undergo end-to-end training in simula-
tors, establishing a mapping between perception and control,
thereby supporting the migration of models to actual vehicles
to complete real driving tasks.

Embodied intelligence provides new ideas for autonomous
driving, prompting the transition of the autonomous driving
system from being a spectator in intelligent transportation
to being an actual participant. The interactive learning mode
has the potential to learn deeper abstract knowledge, enabling
autonomous driving to break through the bottleneck of difficult
scene migration. This also implies the huge potential of
embodied intelligence in mining scenarios. The lack of data
has always been a painful issue for traditional solutions to
achieve autonomous driving in mines. By building a parallel
mine simulator, vehicles can perform end-to-end learning
in the simulator, alleviating the pressure of data collection
and annotation. Alternatively, by utilizing small batches of
data through migration, urban autonomous driving agents can
adapt to mining scenes, creating favorable conditions for the
progress of autonomous driving in mines.

The realization of an embodied intelligence system for
mines requires the support of the following modules (shown
in Fig.2):

Equipment: The driving operations of embodied vehicles
should be uniformly controlled by a domain controller. The
transportation equipment system interacts with vehicles and
roadside equipment through the V2X module. Meanwhile, a
remote control module supports drivers in remotely and syn-

chronously operating vehicles. Data: Excellent mine-driving
decisions rely heavily on data, including sensor data from
cameras, lidars, and communication data such as scheduling
and control information. LLMs: The implementation of em-
bodied intelligence algorithms relies on the support of LLM.
Multi-modal LLM integrates data from modalities such as
vision and language to achieve embodied question answering.
The introduction of CoT for reasoning and decision-making
establishes an end-to-end mapping from perception to control
while preserving the logic of planning and decision-making.
This enhances the model’s interpretability, improving its cred-
ibility and explainability, which is crucial for enhancing the
safety of unmanned mining. Platform: The platform should
meet the demands of embodied intelligence for computing
resources, data storage, model training, simulation testing,
and safety supervision. Therefore, storage devices, computing
servers, simulators, test vehicles, and operating supervision
modules are required. Products: Embodied intelligence should
not only operate in simulators but also have the ability to
migrate to reality. This requires specific products such as cars,
trucks, wide-body trucks, and mining trucks, which together
contribute to the construction of smart mines.

It is believed that embodied intelligence would contributes
to the construction of smart mines, in the future, its realization
should endow vehicles with the following capabilities:

Self-awareness: Intclligent algorithms are no longer mu-
tually independent in a modular form but contribute to the
embodied mining truck’s understanding of itself. It should
understand its size, shape, physical structure, and character-
istics, as well as driving tasks and goals. It should possess the
ability for mine visual exploration and navigation, enabling it
to better complete tasks such as cargo loading, unloading, and
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transportation in the mine.

Interactive cognition: This includes the inherent interaction
between the sensory and control systems, and the external in-
teraction between the individual and the environment. Inherent
interaction requires vehicles to have a sensorimotor system
that establishes a mapping relationship between sensation and
control. External interaction requires vehicles to consider the
reaction to themselves during interaction with the environment.

Risk awareness: Embodied mining trucks should be aware
of the potential risks posed by the environment and control
actions, such as vehicle bumps and slips caused by road con-
ditions, understanding the dangers of colliding with obstacles
to both parties, and the adverse effects of extreme weather on
driving. Embodied mining trucks should have the ability to
recognize and avoid risks.

I'V. IMPLICATIONS AND FUTURE DIRECTIONS

Although Embodied intelligence has shown a promotion
role in smart mines, there are still some potential problems.
This section discusses these potential issues and future devel-
opments.

High-quality data collection: Currently, most autonomous
driving data is concentrated in urban areas, making the col-
lection of high-quality mining data crucial.

System redundancy and fail-safe mechanisms: In order
to cope with potential cyber-attacks, mine emergencies, or
other failures, autonomous vehicle systems should be designed
with redundancy and fail-safe mechanisms. These mechanisms
can help mitigate the effects of cyberattacks and ensure that
vehicles can still operate safely in case of a problem.

Real-time and computational efficiency: Autonomous
vehicles require real-time data processing and reaction capa-
bilities, presenting a computational challenge for Embodied
LLM. Any sluggishness in processing speed can lead to delays
that ultimately impact the vehicle’s responsiveness.

Interpretability and transparency: The decision-making
process of autonomous driving systems needs to be transparent
to the outside world so that users and regulators can understand
how they work and the basis for their decisions.

Ethical and ethical Decision Framework: Autonomous
driving systems need a clear framework to guide their behavior
when faced with ethical decisions. Autonomous vehicles can
conduct decision training under this framework to expect the
system to make ethical decisions in complex situations.

V. CONCLUSION

This perspective takes a deep dive into the application
of embodied intelligence in mining, detailing the setup of
an embodied Al system and prospects the characteristics of
mining vehicles with embodied intelligence. By integrating
language processing capabilities, embodied intelligence offers
the potential to revolutionize the mining field, despite potential
challenges, it is believed that embodied intelligence holds
immense promise for the advancement of intelligent mining.
As the field continues to evolve, further research and develop-
ment efforts are warranted to fully realize the transformative
potential in the mining industry.

(1]
[2

3

[4]

[5]

[6]

[7

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

M. Zhang and J. Li, “A commentary of gpt-3 in mit technology review
2021, Fundamental Research, vol. 1, no. 6, pp. 831-833, 2021.

0. (2023), “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774,
2023.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

N. Roy, I. Posner, T. Barfoot, P. Beaudoin, Y. Bengio, J. Bohg, O. Brock,
I. Depatie, D. Fox, D. Koditschek et al., “From machine learning to
robotics: Challenges and opportunities for embodied intelligence,” arXiv
preprint arXiv:2110.15245, 2021.

S. Teng, X. Li, Y. Li, L. Li, Z. Xuanyuan, Y. Ai, and L. Chen, “Scenario
engineering for autonomous transportation: A new stage in open-pit
mines,” [EEE Transactions on Intelligent Vehicles, vol. 9, no. 3, pp.
4394-4404, 2024.

L. Chen, J. Xie, X. Zhang, J. Deng, S. Ge, and F.-Y. Wang, “Mining 5.0:
Concept and framework for intelligent mining systems in cpss,” I[EEE
Transactions on Intelligent Vehicles, vol. 8, no. 6, pp. 3533-3536, 2023.
Y. Li, S. Teng, L. Li, Z. Xuanyuan, and L. Chen, “Foundation models for
mining 5.0: Challenges, frameworks, and opportunities,” in 2023 IEEE
3rd International Conference on Digital Twins and Parallel Intelligence
(DTPI), 2023, pp. 1-6.

S. Teng, L. Li, Y. Li, X. Hu, L. Li, Y. Ai, and L. Chen, “Fusionplanner:
A multi-task motion planner for mining trucks via multi-sensor fusion,”
Mechanical Systems and Signal Processing, vol. 208, p. 111051, 2024.
J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, 1. Barr, Y. Hasson, K. Lenc,
A. Mensch, K. Millican, M. Reynolds et al, “Flamingo: a visual
language model for few-shot learning,” Advances in neural information
processing systems, vol. 35, pp. 23716-23 736, 2022.

D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter,
A. Wahid, J. Tompson, Q. Vuong, T. Yu et al., “Palm-e: An embodied
multimodal language model,” arXiv preprint arXiv:2303.03378, 2023.
S. H. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “Chatgpt for
robotics: Design principles and model abilities,” IEEE Access, 2024.
Z. Qi, R. Dong, S. Zhang, H. Geng, C. Han, Z. Ge, L. Yi, and K. Ma,
“Shapellm: Universal 3d object understanding for embodied interaction,”
arXiv preprint arXiv:2402.17766, 2024.

J. Kim, A. Rohrbach, T. Darrell, J. Canny, and Z. Akata, “Textual
explanations for self-driving vehicles,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 563-578.

T. Qian, J. Chen, L. Zhuo, Y. Jiao, and Y.-G. Jiang, “Nuscenes-qa:
A multi-modal visual question answering benchmark for autonomous
driving scenario,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, no. 5, 2024, pp. 4542-4550.

T. Deruyttere, S. Vandenhende, D. Grujicic, L. Van Gool, and M.-
F. Moens, “Talk2car: Taking control of your self-driving car,” arXiv
preprint arXiv:1909.10838, 2019.

S. Malla, C. Choi, I. Dwivedi, J. H. Choi, and J. Li, “Drama: Joint risk
localization and captioning in driving,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2023, pp. 1043—
1052.

M. Nie, R. Peng, C. Wang, X. Cai, J. Han, H. Xu, and L. Zhang,
“Reason2drive: Towards interpretable and chain-based reasoning for
autonomous driving,” arXiv preprint arXiv:2312.03661, 2023.

D. Fu, X. Li, L. Wen, M. Dou, P. Cai, B. Shi, and Y. Qiao, “Drive like
a human: Rethinking autonomous driving with large language models,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2024, pp. 910-919.

W. Wang, J. Xie, C. Hu, H. Zou, J. Fan, W. Tong, Y. Wen, S. Wu,
H. Deng, Z. Li et al., “Drivemlm: Aligning multi-modal large language
models with behavioral planning states for autonomous driving,” arXiv
preprint arXiv:2312.09245, 2023.

X. Tian, J. Gu, B. Li, Y. Liu, C. Hu, Y. Wang, K. Zhan, P. Jia, X. Lang,
and H. Zhao, “Drivevlm: The convergence of autonomous driving and
large vision-language models,” arXiv preprint arXiv:2402.12289, 2024.
R. Schumann, W. Zhu, W. Feng, T.-J. Fu, S. Riezler, and W. Y. Wang,
“Velma: Verbalization embodiment of 1lm agents for vision and language
navigation in street view,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 38, no. 17, 2024, pp. 18924-18933.

D. Fu, W. Lei, L. Wen, P. Cai, S. Mao, M. Dou, B. Shi, and Y. Qiao,
“Limsim++: A closed-loop platform for deploying multimodal 1lms in
autonomous driving,” arXiv preprint arXiv:2402.01246, 2024.



