
1

Uni-Fusion: Universal Continuous Mapping
Yijun Yuan and Andreas Nüchter

Abstract—We present Uni-Fusion, a universal continuous map-
ping framework for surfaces, surface properties (color, infrared,
etc.) and more (latent features in CLIP embedding space, etc.).
We propose the first universal implicit encoding model that
supports encoding of both geometry and different types of
properties (RGB, infrared, features, etc.) without requiring any
training. Based on this, our framework divides the point cloud
into regular grid voxels and generates a latent feature in each
voxel to form a Latent Implicit Map (LIM) for geometries and
arbitrary properties. Then, by fusing a local LIM frame-wisely
into a global LIM, an incremental reconstruction is achieved.
Encoded with corresponding types of data, our Latent Implicit
Map is capable of generating continuous surfaces, surface prop-
erty fields, surface feature fields, and all other possible options.
To demonstrate the capabilities of our model, we implement
three applications: (1) incremental reconstruction for surfaces
and color (2) 2D-to-3D transfer of fabricated properties (3)
open-vocabulary scene understanding by creating a text CLIP
feature field on surfaces. We evaluate Uni-Fusion by comparing
it in corresponding applications, from which Uni-Fusion shows
high-flexibility in various applications while performing best or
being competitive. The project page of Uni-Fusion is available at
https://jarrome.github.io/Uni-Fusion/.

Index Terms—Mapping, RGB-D perception, Semantic scene
understanding, Universal mapping

I. INTRODUCTION

IN robotics, 3D perception plays an important role in
enabling robots to interact with their surroundings. To

achieve this, robots must use different types of sensors and
employ techniques such as reconstruction and scene under-
standing. These tasks require the processing of various types
of information, including geometry and surface properties.
However, algorithms must be designed specifically to handle
these different types of data.

Therefore, at the outset, we pose the following question:
Is it feasible to handle all these information with a single,
universal mapping model?

Reconstruction, as one of the most prominent topics in the
field, has been developing for decades. During this period,
numerous works have pushed the limits [1]–[15]. Reconstruc-
tion models aim to extract the zero-level surface given a set
of points. These approaches are typically based on occupancy
grids and signed distance functions (SDFs). Occupancy grids
are primarily used in 2D and object-level shape reconstruction,
where Gaussian Process Occupancy Maps (GPOM), Gaussian
Process Implicit Surface (GPIS), and Hilbert Maps have

The authors are with Informatics XVII – Robotics at Julius-Maximilians-
University of Würzburg, Germany. {yijun.yuan|andreas.
nuechter}@uni-wuerzburg.de

This work was in parts supported by the Federal Ministry for Economic
Affairs and Climate Action (BMWK) on the basis of a decision by the German
Bundestag und the grant number KK5150104GM1. We also acknowledge
the support by the Elite Network Bavaria (ENB) through the “Satellite
Technology” academic program.

Fig. 1. One Universal Continuous Mapping for all reconstructions. Such
as surface, properties including RGB, saliency, style and ..., even high
dimensional features (CLIP embeddings, and etc). A rendered video is
available on youtube2.

been developed to generate continuous probabilistic occupancy
maps. For scene-level reconstruction, most recent works
rely on SDFs. TSDF-Fusion [9], as the most widely used
reconstruction model, has facilitated real-time 3D reconstruc-
tion. With the rapid development of RGB-D sensors, such as
the Kinect and RealSense series, standard models have been
invented [10], [11]. These models utilize discretized SDFs
and the Marching Cubes algorithm [16] to generate surface
meshes.

To address the high memory consumption associated with
such a representation, recent techniques rely on deep neural
networks to encode the geometry [12], [13], [15], [17]. By us-
ing sparse voxels in the whole scene, high-dimensional vectors
are extracted for each local geometry. With this representation,
researchers have proposed to fuse the map of latent vectors
instead of the explicit field. The explicit field is then extracted
with arbitrary resolution. Thus, such a form of representation
produces a continuous mapping. These methods are called
Neural Implicit Maps (NIMs).

Previous studies have demonstrated it with encoding func-
tions pre-trained on object datasets [12], [13], [17]. Pre-
training on color or other point properties becomes impractical
due to the much higher complexity of the context pattern,
compared to shape. Currently, the only recent solutions for
continuous color reconstruction are based on back-propagation
to update local latent features [15] or Neural Radiance Fields
(NeRF) [18]. However, these methods require a significant
number of training epochs and are not suitable for real-time
applications. Therefore, this paper aims to fill the gap by

2https://www.youtube.com/watch?v=4Z-u7yU2ARU

2

introducing a universal model that directly encodes arbitrary
properties without the need for time-consuming learning or
training.

Our model uses Gaussian Process Regression (GPR) as its
basis. Firstly, we propose to decouple the GPR by utilizing
the approximation of the kernel function. Which supports the
encoding of the point cluster into a single feature vector. Then,
by leveraging the sparse voxel structure, we construct a local
feature vector within each voxel to form a map of latents. Since
our encoding-decoding function uses GPR, the entire model
does not pre-touch any format of data properties. Therefore,
our Uni-Fusion is applicable to arbitrary reconstruction appli-
cations.

We believe that there dose not exist such a model that can
handle every aspect of robot perception. Therefore, based on
this encoder, we introduce Uni-Fusion, a universal model for
all types of data that generates continuous maps. A selected
set of examples of “what Uni-Fusion can do” is presented
in Fig. 1. With various input data, our Uni-Fusion model ef-
ficiently encodes and generates continuous maps for surfaces,
colors, styles, and more. To further explore the potential of this
model, we even construct a field for high-dimensional CLIP
embedding [19].

The contributions of this work are as follows:
• we propose a universal encoding-decoding model for

local information that does not require any training,
• we present the first universal continuous mapping model,

capable of constructing continuous surfaces and various
surface property fields, including high-dimensional fea-
tures such as CLIP embeddings.

• we implement applications to demonstrate the capabilities
of our proposed model, including: (1) incremental surface
& color reconstruction, (2) 2D-to-3D transfer on a 3D
canvas, (3) open-vocabulary scene understanding.

Content Overview: In Section II, we provide an overview
of related works. Then, in Section III and Section IV, we
present the Universal Encoder and the Uni-Fusion model,
a universal continuous mapping framework built upon that
encoder. Afterwards, in Section V, we showcase the broad
applicability of Uni-Fusion by presenting a number of appli-
cations in different scenarios. The capabilities of Uni-Fusion
are evaluated in Section VI. Finally, we outline the future
directions and conclude this paper.

II. RELATED WORKS

We first discuss the development of continuous mapping
from 2D scenes to 3D scenes. Then we explore the importance
of recent state-of-the-art (SOTA) reconstructions utilizing neu-
ral implicit models. Next, we examine the development of
kernel methods that are closely related to our approach.

A. Continuous Mapping

The practice of continuous mapping originated in 2D sce-
narios. Gaussian Process Occupancy Maps (GPOM) [1] use
Gaussian Process Regression (GPR) to predict a continuous
representation, allowing the construction of maps at arbitrary
resolutions. To improve the scalability, Kim et al. [2] employ

a divide and conquer strategy where GP is applied in each
cluster. Then, the incremental approach to GPOM is employed
by leveraging the Bayesian Committee Machine (BCM) tech-
nique [3], [4].

Meanwhile, the Hilbert Maps approach [20], [21] has been
introduced. This approach is a mapping technique that does
not require an explicit formulation. Hilbert Maps achieve
continuous mapping by continuously optimizing parameters.

Due to the growing popularity of 3D sensors, there has
been a shift in focus towards 3D scenarios. Gaussian Process
Implicit Surface (GPIS), has emerged in the field [5]–[8].
These methods, given zero-level surface points, either sample
points along the normal direction and assign distance values,
or directly use derivative models with normals as labels (we
will discuss this in more detail in our mapping Section IV-B).
However, these methods focus primarily on shapes rather than
entire scenes. This is due to the fact that GPR-based methods
naturally incur high computational costs when dealing with
large amounts of data. This is especially true when moving
from 2D to 3D testing scenarios. Therefore, we leverage the
concept of Neural Implicit Maps (Section II-B) to address this
challenge and focus on scene reconstruction.

B. Neural implicit based Reconstruction

Neural implicit reconstruction was originally introduced for
SDF and occupancy-based reconstruction. The seminal work
by Park et al. [22], known as DeepSDF, employs a deep
model to encode geometry prior using multi-layer percep-
trons (MLPs) and extracts discretized SDF through decod-
ing queries. It then uses an algorithm similar to Marching
Cubes [16] for mesh extraction. For the latter, Occupancy
Networks [23] learn to estimate the occupancy probability
at positions using an implicit function. The Multiresolution
IsoSurface Extraction (MISE) technique is used to generate
meshes.

To enhance the efficiency of the reconstruction,
DeepLS [24] uses multiple local deep priors and reconstructs
based on a set of local SDFs. Jiang et al. [25] additionally
proposes the use of a local implicit grid to further simplify the
model complexity of the encoding. Conversely, Convolutional
Occupancy Networks [26] explore the local latent by replacing

Fig. 2. Uniform, sparse voxels. Each voxel is encoded into one feature vector
Fm [12].

3

the encoder-decoder with optimization on a grid of local
features, thereby alleviating the burden of MLPs.

More recently, Neural Implicit Maps (NIM) have achieved
real-time 3D reconstruction of real scenes. Huang et al.
propose DI-Fusion [12], a neural implicit mapping method
that performs incremental scene reconstruction. DI-Fusion
achieves high memory efficiency and produces improved re-
constructions, by fusing on maps of latent features. Similarly,
NeuralBlox [27] fuses a grid of latent features with known
external pose estimation. BNV-Fusion [17] further improves
feature quality by incorporating post-fusion optimization. To
address large scene reconstructions that may involve loops,
NIM-REM [13] introduces an SE(3)-transformation algorithm
for NIM and develops a mapping&remapping model that
works in conjunction with bundle adjustment and loop closing.
Thinking outside the box, Sucar et al. [14] propose iMAP, a
novel SLAM pipeline that incorporates neural implicit-based
incremental reconstruction. Using a differentiable rendering
model, iMAP performs online optimization of the reconstruc-
tion by minimizing the image distances. Zhu et al. present
NICE-SLAM [15], which replaces MLPs with a convolutional
occupancy grid to further improve the efficiency and quality
of the reconstruction.

In this work, our model also uses regularly spaced voxels,
as shown in Fig. 2, for local encoding-decoding. Since we
propose to use a single model for all properties, pre-training
such a model is not feasible. Therefore, we employ a kernel
method to achieve this objective.

C. Kernel Function Approximation

Kernel methods suffer from a scalability issue due to
the O(n3) time complexity required during regression. One
possible solution is kernel matrix approximation, but this
is beyond the scope of this paper. Another solution, kernel
function approximation, aims to enhance the scalability of
kernel methods by employing explicit vector maps. For exam-
ple, kernel function k(x1,x2) ≈ v(x1)T v(x2) with mapping
function v : X→ Rl [28]. Two approaches are commonly used
for approximation: Random Fourier Features (RFFs) [29]–[33]
and Nyström methods [28], [33], [34].

RFFs explicitly handle the shift-invariant kernels by map-
ping the data using the Fourier transform technique [33].
However, RFFs are primarily employed for shift-invariant
kernels and require a large l for their operation. Furthermore,
since RFFs are data-independent, they exhibit significantly
worse generalization performance compared to Nyström meth-
ods [35]. In contrast, Nyström methods can approximate any
positive definite kernel [28]. It relies on finding the eigenfunc-
tions to form the approximation:

k(x1,x2) =
∑
i≥1

µiϕi(x1)ϕi(x2),

where ϕi and µi ≥ 0 are eigenfunctions and eigenvalues of
kernel function k with respect to the probability measure q.
With the top-l eigenpairs, the Nyström method approximates
the kernel function with k(x1,x2) =

∑l
i≥1 µiϕi(x1)ϕi(x2).

However, Nyström methods are computationally expensive
for medium-sized training data and require evaluating each

sample N times, which is inefficient for direct regression of
a continuous map.

Instead, we encode the local geometry and properties, elim-
inating the need for a full-space approximation. By restricting
the approximation to the limited space x ∈ [−0.5, 0.5]3, and
applying the function in each local region, we reduce the
computational burden.

III. DECOUPLED REGRESSION AS AN UNIVERSAL
ENCODING

In this section, we propose a universal encoding model for
point clouds. Building on this encoder, in Section IV, we
introduce Universal Continuous Mapping.

A. Decoupled Gaussian Process Regression as Encoder-
Decoder

Inspired by DI-Fusion [12], which introduces latent feature
maps for continuous surface prediction, our goal is to gen-
erate a latent vector for each local patch. First, a universal
encoder design comes from the Gaussian Process Regression
(GPR), which is a widely used technique for low-dimensional
regression. It has been used in various mapping models [4],
[5]. Given a set of N observation points {(xn,yn)}Nn=1 where
point positions are xn ∈ Rd (d = 3 in this paper) and point
properties are yn ∈ Rc, GPR is used to regress a function f
that best explains the data. The N points are aggregated in the
N × d matrix X, and the targets are collected in the N × c
matrix Y.

The Gaussian process assumes that the data is sampled from
a multivariate Gaussian distribution, i.e.,[

Y
Y∗

]
∼ N (0,

[
k(X,X) k(X,X∗)
k(X∗,X) k(X∗,X∗)

]
). (1)

where (X,Y) and (X∗,Y∗) represent the observation and
inference pairs. For simplicity, we denote the matrix K =
k(X,X), K∗ = k(X,X∗), K∗∗ = k(X∗,X∗).

With the derivative in [36], we obtain

Y∗|X,Y,X∗ ∼ N (KT
∗K
−1Y,K∗∗ −KT

∗K
−1K∗). (2)

When an additional Gaussian error is introduced as y =
f(x) + ε, the covariance of X is rewritten as K + δ2nI. The
regression result is typically considered to be the mean

Y∗ = KT
∗ (K + δ2nI)

−1Y. (3)

This well illustrates the challenge of using Gaussian process
regression directly in large-scale reconstructions due to its
O(n3) time complexity, which is not feasible. Furthermore, the
formula (Eq. (3)) is impractical since it requires the large input
point cloud data to be maintained for the K∗ computation.

To address the issue of high complexity and avoid the need
to maintain the entire point cloud, we propose to decouple
the GPR to obtain the low-dimensional latent vectors for local
regions. The decoupling process involves approximating the
kernel function as

k(X,X∗) ≈ fposi(X)fposi(X∗)
T (4)

4

y1 x1

yn xn

z1

zn
fposi

fposi

fdec

fencEncoder

Zm

Ym

Fm

x∗

y∗

ZT
m(ZmZT

m + σnI)−1Ym

Fig. 3. Interpreting formula with a graph that is coherent to the Encoder-
decoder structure in Neural Implicit Maps [12].

where fposi : R3 → Rl. We refer to the function fposi as the
position encoding function, consistent with the Neural Implicit
Maps model, Di-Fusion [12]. Thus, Eq. (3) is rewritten as

Y∗ = fposi(X∗)fenc(X,Y) (5)

where the content encoder function is

fenc(X,Y) = fposi(X)T (fposi(X)fposi(X)T+δ2nI)
−1Y ∈ Rl×c.

(6)
The encoded feature is denoted by F(X,Y) = fenc(X,Y) ∈

Rl×c. which serves as the basis for the construction of latent
maps in the subsequent universal continuous mapping model
(Section IV). Specifically, for geometry encoding we set l =
20 and c = 1, resulting in a 20-dimensional vector feature.
Similarly, for color encoding, we have l = 20 and c = 3.

The decoding value for the inferred point x∗ is expressed
as

fdec(x∗,F(X,Y)) = fposi(x∗)F(X,Y). (7)

Thus, a signed distance field or surface property field is
approached.

In the following we derive the approximation function.

B. Position Encoding with Approximated Kernel Function

Considering that our mapping needs to encode the local
geometry & property, the encoding function only requires to
touch points in a limited region ([−.5, .5]3 in our case).

As we discussed in related work, Nytröm methods offer
greater accuracy than RFFs, because they depend on the given
points. This property is well-suited to our application.

The Nyström method for kernel approximation begins with
the use of eigenfunctions according to Mercer’s theorem:

k(x1,x2) =
∑
i≥1

µiψi(x1)Tψi(x2) (8)

where ψi and µi ≥ 0 are eigenfunctions and eigenvalues of
kernel function k with respect to the probability measure q.

Given a set of anchor samples X̂ = {x̂1, · · · , x̂N}, we
perform eigen-decomposition on the matrix k(X̂, X̂) to obtain
its eigenpairs {(λi,ui)}i∈{1,··· ,l} with rank l.

Subsequently, Nyström method produces

ψi(x) =
∑
n

k(x, x̂n)ui,n, i = 1, · · · , l. (9)

To simplify, we express the eigenfunction as

ψi(x) = k(x, X̂)ui. (10)

Similarly, the eigenvalue is written as µi = 1
λi

.
For clarity, we introduce the notation µµµ = [µ1, · · · , µl] and

Ψ = [ψ1, · · · , ψl]T based on Eq. (8) where Ψ : R3 → Rl.
To maintain consistency with Eq. (4), we set

fposi(x) = diag(
√
µµµ)Ψ(x) (11)

where diag produces diagonal matrix. fposi above refers to
the position encoder in Eq. (6).

In this paper, we employ the Matérn kernel function [37]3:

k(x1,x2) = σ2 21−ν

Γ(ν)
(
√

2ν
dist(x1,x2)

ρ
)Kν(

√
2ν
dist(x1,x2)

ρ
)

(12)
where Γ presents the gamma function, Kν is the modified
Bessel function of the second kind, dist denotes the Euclidean
distance, and σ and ρ are hyperparameters of the kernel
function. We utilize the half integer ν = 3 + 1

2 , which results
in the specific function:

k(d) = σ2(1 +

√
7d

ρ
+

2

5
(

√
7d

ρ
)2 +

1

15
(

√
7d

ρ
)3)exp(−

√
7d

ρ
)

(13)
where d = dist(x1,x2) for short.

To approximate the above kernel function, anchor points
are required. We sample Na = 256 points uniformly from
[−.5, .5]3 cube (as X̂) to compute the kernel matrix Ka =
k(X̂, X̂). Subsequently, we perform an eigendecomposition
on this kernel matrix, resulting in Ka = UΛUT . Lastly, U
and Λ are utilized in Eq. (11) and Eq. (4) to form the kernel
function approximation.

It is important to note that the dimension of the encoded
feature, l, used in Section III-A, depends on U. It further de-
termines the size of the map in the next section (Section IV).

Sorted Eigenvalue Index

E
ig

en
va

lu
e

Fig. 4. Sorted eigenvalues for Ka’s eigendecomposition.

The eigenvalues of Λ are plotted in Fig. 4, revealing that
the matrix is primarily influenced by a small number of pairs

3https://en.wikipedia.org/wiki/Mat\’ern\ covariance\ function

5

with significant eigenvalues. Most of the eigenvalues are less
than 1. Therefore, we choose l = 20 which is about 0.8 in this
plot to approximate the kernel while maintaining a compact
feature dimension.

Note that we perform a single sampling and decomposition
step. Subsequently, the encoding-decoding process in Fig. 3
only requires loading and reusing the parameters for fposi,
fenc and fdec. In contrast, related works often involve pre-
training on large datasets of objects [12], [17] or indoor
scenes [15]. For our model, however, no training is needed.

IV. UNIVERSAL CONTINUOUS MAPPING

The previous Section III suggests a universal encoding
model for different types of data. Based on this function, in this
section, our Universal Continuous Mapping produces a map
of latents to implicitly represent the scene. We refer to this
scene representation as Latent Implicit Maps (LIM), which
supports surfaces, surface properties, and high-dimensional
surface features.

BaseMap

SurfaceMap

PropertyMap

LatentMap

Fig. 5. Inheritance graph for the class of Latent Implicit Maps (LIM).

The inheritance graph is shown in Fig. 5. We introduce
a BaseMap to handle the voxel structure (Section IV-A),
dynamically allocate space and fuse maps (Section IV-E).
The SurfaceMap (Section IV-B) and the PropertyMap (Sec-
tion IV-C) are derived from the BaseMap and are designed
to handle specific data and applications. The LatentMap (Sec-
tion IV-D) is derived from PropertyMap. The main difference
is that the PropertyMap works primarily with low-dimensional
properties, such as color (c = 3), infrared (c = 1) data,
and so on. On the other hand, the LatentMap handles much
higher dimensional features, such as CLIP embeddings [19]
(c = 768), depending on the specific application requirements.

A. Map Representation

We follow Neural Implicit Maps ([12], [13], [17]) to use
uniformly spaced voxels to sparsely represent the scene. The
scene is denoted as V = {vm = (cm,Fm, wm)}, where m
is the voxel index. Each voxel vm comprises the voxel center
cm ∈ R3, voxel latent feature Fm ∈ Rl×c, and the count of
observed points wm ∈ N.

Given a sequence of incremental frames as input, our
model constructs local LIMs (Section IV-B, Section IV-C,
Section IV-D) and fuses (Section IV-E) them into a global
LIM. Then, we derive the explicit map from the global LIM.

B. Surface Mapping

Because the input point cloud X is located on zero-level
surface, it is not adequate to recover a 3D field of scene,
fSDF : R3 → R. Therefore, we use the concept of Gaussian
Process Implicit Surfaces (GPIS) [5]–[8] to incorporate deriva-
tives into kernel or to sample additional non-zero level points.
Both derivative-based and sample-based GPISs approaches
utilize normal information. Hence, we first preprocess X to
obtain normals S.

1) Using Derivatives based GPIS: From [5], the derivatives
of a GP are also Gaussian. Therefore, the covariance between
data and derivatives is computed by differentiating the covari-
ance function [38]. Specifically:

cov(
∂fSDF (x)

∂xi
, fSDF (x

′
)) =

∂k(x,x
′
)

∂xi

=
∂

∂xi
[fposi(x)]fposi(x

′
)T .

(14)

Additionally,

cov(
∂fSDF (x)

∂xi
,
∂fSDF (x

′
)

∂xj
) =

∂2k(x,x
′
)

∂xi∂x
′
j

=
∂

∂xi
[fposi(x)]

∂

∂x
′
j

[fposi(x
′
)]T .

(15)

Given points {xn}Nn=1 with normals {sn}Nn=1 and field values
{yn = 0}Nn=1, the position encoding function for derivatives is
fposi,deri(x, i) = ∂

∂xi
[fposi(x)]. Its corresponding field value

is the normal value si on the axis i. Therefore, we define

fposi,gpis(X) =

[fposi(X), fposi,deri(X, 1), fposi,deri(X, 2), fposi,deri(X, 3)]
(16)

with regression values Ygpis = [0, s·,1, s·,2, s·,3]T , where 0 =
zeros(1, N), s·,i = [s1,i, · · · , sN,i].

Then the local geometric encoding function is defined as

fenc,gpis(X,Y,S) =

fposi,gpis(X)T (fposi,gpis(X)fposi,gpis(X)T+σ2
nI)
−1Ygpis.

(17)

By introducing derivatives into the kernels, the matrix size is
increased by a factor of 15, while the encoded feature dimen-
sion remains low at l: F(X,Y,S) = fenc,gpis(X,Y,S) ∈ Rl×1.

For inference with the points x∗, the predictions are con-
sistent with Eq. (7), y∗ = fposi(x∗)F(X,Y,S).

2) Using Sample based GPIS: Sample-based GPIS is com-
monly used in GPIS research. This method avoids the com-
putation of Jacobians and allows for smaller kernel sizes,
resulting in significant reductions in computational costs in
terms of time and memory.

In sample-based GPIS, given points {xn}Nn=1 with normals
{sn}Nn=1 and field value {yn = 0}Nn=1, the dataset is extended
by sampling points along the normal direction. The corre-
sponding field values are the signed distances as the sampled
points move along the normal. Then, Eq. (6) is applied to the

6

extended points and distances (Xext, Yext). The inference
process of this model is the same as derivative-based GPIS
in Section IV-B1.

For each frame, points are assigned to their corresponding
voxel. Then, we encode the local geometry within each voxel
using methods described in Section IV-B, either derivative-
based GPIS or sample-based GPIS to obtain the voxel rep-
resentation v = (c,F, w) where F ∈ Rl×1 represents the
geometric latent vector. Subsequently, the local LIMs are fused
into a global LIM according to the fusion procedure outlined
in Section IV-E.

To visualize the surface result, we construct the signed
distance field from the global LIM by performing inference
on sample points. The sample points are generated on a grid
within each voxel, with a certain resolution. By applying the
Marching Cubes algorithm to the SDF, we obtain a surface
mesh that represents the reconstructed surface.

C. Surface Property Fields

The previous surface mapping approach discussed in Sec-
tion IV-B can be viewed as a special case of surface property
mapping. However, it is important to note that these two
mappings operate in different spaces. Specifically, in our
implementation, we do not derive the SurfaceMap class from
PropertyMap. Instead, we introduce a BaseMap that performs
common operations and allows them to be specific to local
map construction and visualization, e.g., meshing and coloring.

We introduce the more general mapping of surface proper-
ties. Since all points lie on the zero level of the signed distance
fields, the PropertyMap naturally operates within a subspace
of R3, the surface S. A surface property in this context refers
to any property associated with each point, such as color,
infrared values, and so on. These properties are represented
by the y value in the encoder diagram shown in Fig. 3, with
a dimensionality of c.

As an example, we take the most commonly used sur-
face property, color. Given an observed colored point cloud
{(xn,qn)}Nn=1 as input, where qn denote the RGB color
values. The corresponding surface property values are {yn =
qn}Nn=1. We aggregate these values into two N × 3 matrices
X and Q. Therefore, the encoded feature for this point cloud
is obtained using the following equation:

Fcolor = fposi(X)T (fposi(X)fposi(X)T + δ2nI)
−1Q. (18)

Here, Fcolor ∈ Rl×3 represents the color feature.
Since we use l = 20 for the approximation function in

our experiments, the color map only needs to store 20 × 3
float values in each voxel to represent a continuous color
field. It is important to note that our model requires no
training and can be applied directly to different types of data.
During inference, since the field is in the surface space S,
we sample points x∗ at arbitrary resolutions, either from a
known mesh or a surface constructed from previous surface
mapping (Section IV-B). Following Eq. (7), the inference point
x∗ is position encoded and multiplied by the color feature
Fcolor,m in the corresponding voxel m to obtain its value
q∗ = fdec(x∗,Fcolor,m).

ftext

XmXmXm

YmYm

Ym

fencfenc
fenc

fimfim

FmFmFm x∗x∗x∗

y∗ y∗

y∗

fdec
fdecfdec

uuu

UUU

score

Fig. 6. Encoding-decoding diagram in various applications. (a) fold ap-
plications obtain point properties (Ym) directly from the sensor. (b) fold
applications derive point properties using a function fim that captures style,
saliency and etc. (c) fold applications utilize feature as Ym to construct a
LIM for a (CLIP) feature field. Then, a text command is used to extract the
semantic information.

D. Surface Feature Fields

Surface feature fields represent an extension of the pre-
vious surface property fields discussed in Section IV-C. In
this extension, we broaden the scope of surface properties
to include features. This demonstrates the versatility of our
mapping model, as it is applied directly without the need of
any training.

We start by considering an embedding function fim :
RN×3 → RN×c that processes the input data X. We treat
the feature of each point as a surface property, where {yn =
fim(X)xn

∈ Rl×c}Nn=1.
Following the encoding and fusion steps described in Sec-

tion IV-C and Section IV-E, we construct latent implicit maps
for the surface feature fields. As a result, we extract maps of
features at arbitrary resolutions using the function fdec(·,F·).

We illustrate an application in Section V-C, specifically in
the context of open-vocabulary scene understanding. In this
application, our model constructs a CLIP space feature field
on the surface, enabling it to respond to textual input. The key
difference compared to surface property fields is demonstrated
in Fig. 6. In Fig. 6(c), a CLIP text encoder ftext is added
to encode the text command uuu into the CLIP feature UUU . By
leveraging the surface field for CLIP embeddings generated
by the left branch, our model identifies the desired region by
computing the similarity between features.

E. Map Fusion

We adopt the voxel-to-voxel fusion approach from Neural
Implicit Maps [12] to update the LIM. The fusion operation
is performed as follows:

Fm ←
Fmwm + F

′
mw

′
m

wm + w′
m

, wm ← wm + w
′
m, (19)

where vm = (cm,Fm, wm) represents the voxel m from the
global LIM, and v

′
m = (c

′
m,F

′
m, w

′
m) represents the voxel m

from the local LIM.

7

Frame i
External
Tracking

(Sec. V-A)

Internal Tracking
(Sec. V-A)

Surface Encoding
(Sec. IV-B)

Color Encoding
(Sec. IV-C)

Fusion
(Sec. IV-E)

Global
LIM for
Color

Global
LIM for
SurfaceReconstruction

Colored
Mesh

Mesh Extracting &
Coloring

Frame i Image
Encoding

Latent Encoding
(Sec. IV-D)

Fusion
(Sec. IV-E)

Global
LIM for
Latent

Scene understanding

Text
EncodingText

Points
to infer

Point
properties

Decoding
(Sec. III-A)

Fig. 7. Reconstruction and scene understanding applications’ pipeline. On the left incremental reconstruction application, external tracking runs in parallel to
reconstruction to provide coarse poses. While doing reconstruction, internal tracking refines the pose estimation fur a better surface fit. “· · · ” means that we
can add more other properties from Section V-A2 and Section V-B into this pipeline. On the right scene understanding application, we assume that the pose
of the frame is pre-known. The upper part of the white line is the fusion of LIM for the feature field. The lower part infers specific semantic information
along with the text command.

V. APPLICATIONS

To demonstrate the wide range of applications of our model,
we have implemented the following series of applications:

1) Incremental surface & color reconstruction
2) 3D saliency detection
3) Open-vocabulary scene understanding
4) Surface infrared field
5) 3D style transfer

Starting from our motivation in inspection and service
robotics, we implement 1) incremental surface & color re-
construction to visualize the robot environment. For robot
exploration, we implement 2) 3D saliency detection to indicate
the salient regions in maps. To recover object-level seman-
tic information in the environment, we implement 3) open-
vocabulary scene understanding to yield the regions containing
the objects. Furthermore, to demonstrate the flexibility, we
implement 4) surface infrared fields and 5) 3D style transfer
for artistic purposes.

In Fig. 6, we classify these applications into 3 categories:
(a) obtains properties directly from sensor observations, such
as applications 1) and 4). (b) processes sensor data and
predicts properties, such as applications 2), 5). (c) extends
(b) by operating on high dimensional features, specifically
application 3).

Applications 1) and 4) belong to the first category. We pri-
marily describe 1) incremental surface & color reconstruction
(Section V-A), while for 4) we can easily replace color with
infrared. For the second with 2) and 5) in Section V-B, we
mainly discuss the usage of fabricated properties and do not
provide detailed explanations of the mapping part, as it is
already covered in the previous category. Finally, we delve into
the third category with application 3), which involves mapping
a LIM for high-dimensional latent fields. We demonstrate the
flexibility and capability of this application in Section V-C.

A. Application: Incremental Reconstruction

In this section, we present an application of incremental
3D reconstruction using RGB-D sequences. Since RGB-D
sequences provide both point positions and color values, it
allows us to construct two types of LIMs: one for surface
(Section IV-B), and one for color (Section IV-C).

The pipeline is illustrated in Fig. 7. When an RGB-D frame
i is fed into the framework, it is firstly converted into a
colored point cloud (X ∈ RN×3,Q ∈ RN×3). The tracking
module takes (X,Q) to estimate the current pose T. Next,
the transformed point cloud XTT is used as input to the
surface mapping (Section IV-B), while the colored point cloud
(XTT ,Q) is used as input to the surface color mapping
(Section IV-C), resulting in the generation of local LIMs.
Using the fusion operation in Eq. (19), the local LIM is fused
into the global LIM on a voxel by voxel basis.

For visualization purposes, we first sample a grid within
each voxel and infer using the global surface LIM to obtain
the SDF. The Marching Cube algorithm is then applied to
extract the mesh.

Once the surface is reconstructed, we can sample points
from it at arbitrary resolution and perform inference using the
global color LIM to reconstruct the surface color.

1) Tracking: According to Zhu et al. [15], the current
implicit scene representation-based tracking models, such as
iMAP, DI-Fusion and NICE-SLAM, still have a performance
gap compared to state-of-the-art tracking approaches such as
BAD-SLAM and ORB-SLAM2. Therefore, instead of follow-
ing the neural implicit models to track with frame-to-model or
ray-tracing based optimization, we incorporate ORB-SLAM2
in a separate thread to provide a pose prior. Hence, we call
this external tracking.

Note that the primary focus of ORB-SLAM2 is on local-
ization not scene reconstruction. This means that direct use
of ORB-SLAM2 provides coarse surface reconstruction. We

8

further use colored point cloud registration (CPCR) [39] as a
tracking refiner.

In our implementation, ORB-SLAM2 runs independently
over all frames. Every few frames, CPCR tracks an initially
posed colored point cloud to compute the odometry within
a local window. Mapping is then done in the same thread.
Therefore, the latter is called internal tracking.

2) Other types of datas: Application 4) uses a point cloud
with infrared information, which is a straightforward modifi-
cation of the color-based approach. LIM feature dimension is
also correspondingly reduced. This flexibility allows different
types of point cloud properties to be integrated into the
continuous mapping pipeline.

B. Application: 2D-to-3D Transfer

Applications such as 2) and 4) can be easily integrated
with application 1) incremental reconstruction (Section V-A)
by incorporating the fabricated result together with the point
cloud. For instance, given RGB-D frames, we detect saliency
or transfer image styles to generate a fabricated X image.
Here, X represents saliency, style, or other properties. By
combining X with depth information through unprojection, we
assign the fabricated values to corresponding points, resulting
in point pairs (X, QX).

Similar to the reconstruction pipeline in Fig. 7, we employ
encoding (Section III-A) and fusion (Eq. (19)) to construct a
global LIM for the fabricated properties X . This global LIM
represents a surface X fields that is utilized for subsequent
inference.

While it is possible to similarly transfer a 2D semantic
image to 3D, it may not be feasible in practice due to the
need for multiple passes of different categories of semantic
information on the same dataset (such as object, usability,
etc.). Therefore, in the following section, we demonstrate the
construction of a surface feature field for scene understanding
application that satisfies various requirements through a single
mapping pass.

C. Application: Open-vocabulary Scene Understanding

This application follows OpenScene and CLIP-Field [40],
[41], which learn to predict dense features for 3D scene
points, where the features are co-embedded with text and
image pixels in CLIP feature space. Inspired by this, we
design the mapping for surface feature fields (Section IV-D).
The distinction between surface property fields is illustrated
in Fig. 6. We use the pre-trained OpenSeg model [19] to
obtain the function fim that produce CLIP feature for each
image point. Then we encodes the voxel latent Fm from
the CLIP features Qm and their corresponding positions Xm

. During inference, given an open-vocabulary text input uuu
and a position input x∗, we obtain the CLIP space features
and determine the semantic property of the point based on
similarity computation. The pipeline of this application is
illustrated in Fig. 7.

In this application, the image encoding function fim and
the text encoding function ftext are obtained from pre-trained
model, while fenc and fdec in our Uni-Fusion framework

are deterministic functions. With these functions, our model
constructs a continuous field for the CLIP feature on surface.

A very interesting and relevant work for Uni-Fusion’s scene
understanding application is VLMaps [42]. While VLMaps
produces a 2D map, our model produces a surface CLIP
feature field in 3D space.

VI. EXPERIMENTS

In this section, we demonstrate the wide range of appli-
cations and the high capabilities of Uni-Fusion. First, we
evaluate Uni-Fusion in application 1) Incremental surface and
color reconstruction, comparing its performance with SOTAs.
For applications 2) and 5), which are new topics, no specific
benchmarks are available. Therefore, we showcase the perfor-
mance on existing results. Next, we implement application 3)
and compare it with SOTA zero-shot semantic segmentation
models. Finally, for application 4), since infrared data is
not commonly used, we collect our own dataset containing
infrared values and show all applications on this data.

A. Implementation Details

In the experiments, we use our sample-based GPIS for local
geometry encoding. For each point, two additional points are
sampled along normal direction, one positive and one negative,
with distance ds = 0.1 in the local voxel’s normalized
space. Compared to derivative-based GPIS, our sample-based
GPIS is more efficient in both space and time. For the
encoder, we randomly sample 256 anchor points from the
range [−0.5, 0.5]3. We utilize the first 20 eigenpairs, resulting
in a feature dimension of 20. The model selection process is
discussed in the ablation study.

Different latent maps use different granularities. For the
surface LIM, we use a voxel size of 5cm. For color which
requires later comparison to NeRF, we use a voxel size of
2cm. For other property LIM and feature LIM, we use a voxel
size of 10cm.

For smooth reconstruction, the encoded voxel is designed
overlapped following [12]. The encoded voxel uses twice
the voxel size, resulting in a half-space overlap with each
neighboring voxel. During meshing, SDFs are retrieved and
interpolated from the overlapped voxels [12]. While for the
remaining properties, we sample only from its own voxel part.

The implementation runs on a PC with AMD Ryzen 9
5950X 16-core CPU and an Nvidia Geforce RTX 3090
GPU (24 GB). Online collaboration with OpenSeg (takes 15
GB GPU memory) utilizes one other 3090 GPU solely for
OpenSeg to avoid out of memory.

B. Datasets

We evaluate incremental reconstruction on the Scan-
Net dataset [43], TUM RGB-D dataset [44], and Replica
dataset [14]. Using MSG-Net [45]’s material set, we transfer
styles to the 3D canvas. For open-vocabulary scene under-
standing, we evaluate on ScanNet segmentation data [46] and
S3DIS dataset [47].

9

1) ScanNet [43]: ScanNet is a densely annotated RGB-
D video dataset. It is captured with the structure sensor [48]
and contains 1513 scenes for training and validation. For each
scene, both images and a 3D mesh is provided, along with
their 2D and 3D semantic annotations.

ScanNet provides 312 scenes for validation, which contains
a wide range of different room structures. It has now been
widely used in the thorough evaluation of the performance of
reconstruction and semantic segmentation.

2) TUM RGB-D [44]: TUM RGB-D is a benchmark to
mainly evaluate the tracking performance. It is captured with
Microsoft Kinect sensor together with ground-truth trajectory
from the sensor.

3) Replica [14]: The Replica dataset refers to iMAP’s
pre-processed dataset [14]. It is a synthetic rendered RGB-D
dataset from given 3D models. The advantage of including this
dataset is that Replica does not have motion blur. This is better
to evaluate the capability of the algorithms on reconstructing
surface color.

4) MSG-Net Style [45]: MSG-Net provides material images
for transfering the styles. We select 21style fold for demon-
stration. These images are given in Fig. 14 together with our
result.

5) ScanNet Point Cloud Segmentation Data [46]: For point
cloud semantic segmentation benchmarking, PointNet++ [46]
preprocesses the original ScanNet [43] and generates sub-
sampled point clouds and corresponding annotations for each
scene.

6) S3DIS [47] and 2D-3D-S [49]: S3DIS is a semantic
segmentation dataset for 3D point clouds. Which is also a
subset of the 2D-3D-S dataset. The 2D-3D-S dataset is a multi-
modality dataset containing 2D, 2.5D and 3D domains. This
dataset is densely annotated with semantic labels.

Note that 2D-3D-S’s 2D captures is not a RGB-D video as
ScanNet. 2D-3D-S’s images only have small overlap. There-
fore, it is only suitable for semantic segmentation and not for
incremental reconstruction.

C. Baselines

For online surface mapping evaluation, we select TSDF-
Fusion [9], iMAP [14], SOTA DI-Fusion [12] and BNV-
Fusion [17] as four baseline methods.

For the color field, we choose TSDF-Fusion [9], σ-
Fusion [50], iMAP [14], NICE-SLAM [15] and even the recent
hot Neural Radiance Fields model NeRF-SLAM [18] as five
baselines. While including NeRF in the comparison may not
be entirely fair, we want to show how Uni-Fusion narrows the
performance gap.

For the scene understanding application, we evaluate gen-
eralized zero-shot point cloud semantic segmentation with
ZSLPC [51], DeViSe [52] and SOTA 3DGenZ [53] for com-
parison.

D. Metrics

For incremental reconstruction, we evaluate the geomet-
ric reconstruction using Accuracy, Completeness, and F1
score according to SOTA BNV-Fusion. It firstly uniformly

samples 100, 000 points from the reconstruction and ground
truth meshes respectively. Then Accuracy (Completeness)
measures the percentage of reconstruction-to-groundtruth
(groundtruth-to-reconstruction) distances that are lower than
2.5cm threshold. F1 score is the harmonic mean of accuracy
and completeness. For tracking performance, we use ATE
RMSE.

To evaluate color reconstruction, we follow SOTA on this
topic, NeRF to render both depth and RGB images to compare
the image level Depth L1 and RGB PSNR.

To compare scene understanding, we follow zero-shot point
cloud semantic segmentation SOTA 3DGenZ to evaluate the
Intersection-of-Union (IoU) and Accuracy.

E. Reconstruction Results
In our evaluation, we first use the ScanNet validation set

with 312 sequences to thoroughly test the geometric recon-
struction on a wide variety of scenes. Then, we use TUM
RGB-D to compare our modified tracking model with related
works. Since the tracking part is not the contribution of this
paper, we give a brief overview of the tracking results. To fairly
evaluate the color reconstruction, we compare with related
works, including NeRF, on the high-quality rendered Replica
dataset.

1) Evaluation on ScanNet Dataset [43]: We use the 312
different scenes from the ScanNet validation set to evaluate
the performance of surface reconstruction. We follow the pure
mapping SOTA BNV-Fusion to take every 10th posed frame
as input. Without using any learning (as iMAP, DI-Fusion,
and BNV-Fusion do) or any post-optimization (as BNV-Fusion
does), our Uni-Fusion is capable to achieve precise continuous
mapping performance.

The results presented in Table I demonstrate that our Uni-
Fusion outperforms the SOTA method BNV-Fusion in terms
of +6 higher accuracy. However, our model does not out-
perform BNV-Fusion in terms of completeness, since BNV-
Fusion incorporates completion in post-optimization. Never-
theless, Uni-Fusion’s completion is still much higher than
one other optimization based model iMAP. Overall, our Uni-
Fusion model achieves higher F1-scores, which quantifies the
overall quality of reconstruction.

It is important to note that the SOTA BNV-Fusion is
not capable of real-time performance as it requires post-
optimization of all fed frames. On the other hand, the real-
time model Di-Fusion exhibits much worse results without
using post-optimization. In contrast, our real-time model, Uni-
Fusion achieves much better reconstruction quality than these
approaches even without post-optimization.

We additionally run BNV-Fusion’s official implementation
(emphasized with ∗) on the 312 videos from ScanNet and
conduct a scene-wise comparison in Section VI-E. Our result
is shown with the light blue curve, BNV-Fusion’s result is
shown with pink. The scene index is sorted based on the score
value of Uni-Fusion. To enhance visual clarity, we apply a
smoothing technique to BNV-Fusion’s curve and presented it
with dark pink color. The comparison clearly shows that Uni-
Fusion is overall performing better than BNV-Fusion. In ad-
dition, we use box-plots to analyze the statistics alongside the

10

TABLE I
SURFACE COMPARISON ON SCANNET [43]. SCORES ARE FETCHED FROM [17]. ∗ INDICATES THE RESULT FROM OUR RUNS OF THE OFFICIAL

BNV-FUSION CODE.

Method Pre-Train
with extra dataset

Train
with sequences Real-time Accuracy (%) ↑ Completeness (%) ↑ F1 score ↑

TSDF Fusion [54] None None X 73.83 85.85 78.84
iMAP [14] None Online train 68.96 82.12 74.96
DI-Fusion [12] Object Pretrain None X 66.34 79.65 72.97
BNV-Fusion [17] Object Pretrain Post Optimization 74.90 88.12 80.56
BNV-Fusion∗ [17] Object Pretrain Post Optimization 73.42 81.75 77.18
Uni-Fusion (Ours) None None X 80.43 84.91 82.44

(a) Accuracy (b) Completeness (c) F1 score
Fig. 8. Quantitative comparison on 312 scenes of the ScanNet validation set. We demonstrate the performance of SOTA BNV-Fusion and our Uni-Fusion.
We sort Uni-Fusion’s evaluation value and reordered all of the scores. The zigzag pink is the BNV-Fusion result; we also plot a deep-pink smoothed curve
for better visualization.

curve plot. Uni-Fusion’s scores show a higher concentration
on the plots. While the difference in completeness may be less
pronounced, Uni-Fusion’s box plot is smaller and positioned
relatively higher. This indicates that Uni-Fusion achieves a
more stable completeness result, while BNV-Fusion is more
likely to achieve low completeness in some cases.

In summary, our Uni-Fusion model achieves superior results
across almost all 312 scenes in terms of accuracy, com-
pleteness and F1-score. This finding is consistent with the
observation presented in Table I with BNV-Fusion∗, that Uni-
Fusion outperforms the official implementation of BNV-Fusion
in all metrics.

We show reconstruction on selected scenes from ScanNet
in Fig. 9. Both BNV-Fusion and our Uni-Fusion are able to
produce high quality reconstructions. However, we observe
that BNV-Fusion generates numerous small meshes on walls,
resulting in the appearance of small particles in the recon-
struction. We attribute this behavior to BNV-Fusion’s use of
very small voxel size (0.02m) to achieve a high score. This
is further supported by the fact that their mesh averages
247 MB, while ours averages only 54 Mb. Furthermore, our
Uni-Fusion’s mesh is smoother and also provides highly-
accurate color to the mesh which is not available for this
surface SOTA.

Besides, we evaluate the storage cost of the latent repre-
sentation. BNV-Fusion’s latents require an average storage
of 228 MB across the 312 scenes of ScanNet, while Uni-
Fusion achieves significantly lower storage requirements with
an average of only 9 MB.

2) Tracking Evaluation on TUM RGB-D Dataset [44]: In
the above test, we evaluate the performance of pure mapping.
Although tracking is not the contribution focus in our paper, it
is still part of the incremental reconstruction model. We follow
the novel incremental reconstruction model NICE-SLAM [15]

to evaluate the camera tracking on the small scale TUM RGB-
D dataset. Our Uni-Fusion uses a coarse-to-fine strategy for 3D
reconstruction tracking. From Table II, it demonstrates overall
better ATE RMSE than other implicit representation models.

TABLE II
TRACKING ON TUM RGB-D [44]. ATE RMSE [cm] (↓) IS USED AS THE

EVALUATION METRIC.

fr1/desk fr2/xyz fr3/office
iMAP [14] 4.9 2.0 5.8
DI-Fusion [12] 4.4 2.3 15.6
NICE-SLAM [15] 2.7 1.8 3.0
Ours 1.8 0.5 2.1
BAD-SLAM [55] 1.7 1.1 1.7
Kintinuous [56] 3.7 2.9 3.0
ORB-SLAM2 [57] 1.6 0.4 1.0

On the other hand, there also exist high accuracy algorithms
from SLAM. By additionally using bundle adjustment and
loop-closing techniques, their tracking quality is much better
than all of the implicit based models. Our coarse-to-fine
strategy obtains a good score because, first it ensures it does
not easly lose track. Second, it is more suitable for surface
fitting.

This further supports our test on the Replica dataset.
3) Evaluation on Replica RGB-D Dataset [14]: In this

evaluation, we compare with implicit reconstruction (TSDF-
Fusion, σ-Fusion) and latent implicit reconstruction models
(iMAP, NICE-SLAM) that support color. Additionally, we
include a large-scale NeRF model, NeRF-SLAM, in the com-
parison. It is important to note that NeRF is SOTA in the view-
synthesis task, which gives it an unfair advantage over other
models because it learns light directions and does not really
model a surface. However, we include NeRF in this evaluation
to demonstrate that Uni-Fusion significantly reduces the gap.

11

BNV-Fusion Uni-Fusion Ground Truth BNV-Fusion Uni-Fusion Ground Truth

Fig. 9. Surface reconstruction on ScanNet dataset.

TABLE III
GEOMETRIC (L1) AND PHOTOMETRIC (PSNR) EVALUATION ON THE REPLICA DATASET [14].

office-0 office-1 office-2 office-3 office-4 room-0 room-1 room-2 Avg.

Non-continuous mapping method

TSDF-Fusion [9]
Depth L1 [cm] ↓ 14.11 10.50 30.89 28.92 22.83 23.51 20.94 23.34 21.88
PSNR [dB] ↑ 11.16 15.92 4.86 5.68 5.46 3.43 4.51 5.57 7.07

σ-Fusion [50]
Depth L1 [cm] ↓ 13.80 10.21 22.27 28.70 22.21 21.92 19.28 22.40 20.10
PSNR [dB] ↑ 11.16 15.92 4.86 5.69 5.46 3.45 4.51 5.57 7.08

Continuous mapping method

iMAP∗ [14]
Depth L1 [cm] ↓ 6.43 7.41 14.23 8.68 6.80 5.70 4.93 6.94 7.64
PSNR [dB] ↑ 7.39 11.89 8.12 5.62 5.98 5.66 5.31 5.64 6.95

Nice-SLAM [15]
Depth L1 [cm] ↓ 1.51 0.93 8.41 10.48 2.43 2.53 3.45 2.93 4.08
PSNR [dB] ↑ 22.44 25.22 22.79 22.94 24.72 29.90 29.12 19.80 24.61

Uni-Fusion (Ours)
Depth L1 [cm] ↓ 0.79 0.56 1.59 2.71 1.66 1.94 0.69 1.80 1.47
PSNR [dB] ↑ 33.88 33.31 25.84 26.01 28.14 24.02 26.20 27.17 28.07

Neural radiance field method

NeRF-SLAM [18]
Depth L1 [cm] ↓ 2.49 1.98 9.13 10.58 3.59 2.97 2.63 2.58 4.49
PSNR [dB] ↑ 48.07 53.44 39.30 38.63 39.21 34.90 36.95 40.75 41.40

TABLE IV
DIFFERENCES AMONG DIFFERENT SURFACE & COLOR RECONSTRUCTION MODELS.

Method Pre-Train
with extra dataset

Train
with sequences Real-time Direct Output Light

direction Render

TSDF-Fusion None None X Discrete TSDF Ray Rasterization
σ-Fusion None None X Discrete TSDF Ray Rasterization
iMAP None Online Train MLPs Volumetric Rendering

NICE-SLAM Pretrain
with indoor dataset Online Train Neural Implicit Grid Volumetric Rendering

NeRF-SLAM None Train hundred epochs - NeRF X Volumetric Rendering
Uni-Fusion None None X Latent Implicit Map Ray Rasterization

12

Notably, NeRF-SLAM embeds external tracking model [50],
[58] to provide poses while using SOTA NeRF implementation
Instant-ngp [59] for NeRF construction.

Uni-Fusion tracks and follows the same setting as in Scan-
Net test to take every 10 frames for mapping. NICE-SLAM
and NeRF-SLAM create depth and color using volumetric
rendering. In Uni-Fusion, we cast rays from the virtual camera
onto our result surface mesh for the depth image. The cast
points are then inferred using Uni-Fusion’s color LIM to obtain
color results.

According to Table III, Uni-Fusion demonstrate the best
Depth L1 on all scenes with an average of 1.471.471.47cm depth L1.
This is a 177%177%177% boost compared to the second best model.

Moreover, excluding NeRF, our Uni-Fusion also shows the
best performance in modeling the colors, achieving an average
PSNR of 28.07dB.

However, it is strange that NICE-SLAM loses details while
in two cases, it shows better PSNR than Uni-Fusion. To high-
light the true result, we provide rendered images in Fig. 10.
It is evident that our Uni-Fusion accurately models the details
of painting, carpet and quilt, while NICE-SLAM only roughly
models the average color.

In addition, from Fig. 10, Uni-Fusion’s rendering quality
is as precise as NeRF. The painting, carpet and quilt in Uni-
Fusion’s results are very similiar to the original appearance.
The green window highlights the regions of interest. Uni-
Fusion reproduces the high-quality appearances that are very
close to NeRF in terms of qualitative evaluation. However,
Uni-Fusion still has a quantitative score gap to NeRF’s color
rendering (41.4dB), despite the highly comparable qualitative
results to NeRF and ground truth. We attribute this difference
to three main factors: 1. Uni-Fusion does not model the light

directions to points, which is essential to NeRF. 2. NeRF
optimizes image quality by focusing primarily on color rather
than depth, which is evident from its higher color rendering
score but much worse depth rendering compared to Uni-
Fusion. 3. Uni-Fusion does not support hole filling, which
results in black holes in the rendered images.

We summarize the differences between Uni-Fusion and
other models in Table IV. Similar to TSDF-Fusion and σ-
Fusion, Uni-Fusion is a forward method that does not require
any training of map representation, i.e., pre- or on-line training.
It shares similarities with NICE-SLAM and NeRF-SLAM in
producing an implicit map with a set of latents, that outputs
results at arbitrary resolution. However, Uni-Fusion differs in
the extraction of the signed distance field, as each query value
is directly inferred using the corresponding ruling latent, while
NICE-SLAM and NeRF-SLAM use a much denser grid of
features for interpolation during volumetric rendering based
inference.

Like TSDF-Fusion and σ-Fusion, our Uni-Fusion is a real-
time algorithm, whereas iMAP, NICE-SLAM and NeRF-
SLAM are not capable of running in real time. NeRF-SLAM
claims to be real-time, which is questionable as it still needs
hundreds of epochs training after feeding the data.

However, optimization with backpropagation allows for
pixel-to-pixel learning, which is theoretically superior to the
regression and fusion strategy. Although Uni-Fusion demon-
strates its high ability to model colors, exploring NeRF-like
post-optimization would be a promising direction for further
improvements.

NICE-SLAM NeRF-SLAM Uni-Fusion Ground Truth

Fig. 10. Demonstration of color rendering on the Replica dataset. Fine appearances are highlighted in green window. Small defects are in a red box.

13

Fig. 11. Ablation study on surface construction basis. (a) Sample based. (b)
Derivative based.

0.1

0.05

0.02

Fig. 12. Ablation study on voxel size.

Fig. 13. Ablation study on number of eigenpairs and number of anchor
samples in kernel approximation.

F. Ablation study
1) Sample-based or Derivative-based: We select the sur-

face model with our own recorded sequences. All settings are
detailed in Section VI-A. As shown in Fig. 11, reconstructions
of Yijun’s office are demonstrated. While both models are
capable of construction, the derivative-based model introduces
a lot of noise to the surface. This issue arises, because, for
smoothness purpose, we follow Di-Fusion [12] to build voxels
that overlap with their neighbors, leading to redundant voxels
near the surface. For these redundant voxels, no center sample
is provided and thus the derivative-based surface construction
builds poor SDFs on unknown region of the voxels.

In contrast, the sample-based surface construction does not
encounter this problem because it adds more points within
the voxels, enabling the construction of very smooth surfaces.
We observe well-constructed and accurately colored objects
such as the whiteboard, the chair, the school bag and even the
oranges.

2) Voxel size: While testing of the office scene, we vary the
voxel size from low to high. From Fig. 12, when a low voxel
size 0.02m is used, the surface appears rough. As the voxel
size increases, the smoothness improves. However, when a
voxel size of 0.1m is employed, the surface appears blurry.
Considering Uni-Fusion produces a surface color field, the
quality of surface directly impacts the coloring. Thus, further
increasing the voxel size will result in deteriorated surface
quality.

Therefore, in the above given experiments, 0.05m voxel
size is used for surface construction. Additionally, it should
be clarified that each voxel used for encoding actually has a
size of 0.1m due to the employment of overlapped voxels.

3) Number of eigenpairs and anchor points: The kernel
approximation is affected by the number of eigenpairs and
anchor points. Uni-Fusion treats the approximation module as
a cohesive entity, expecting it to behave like a real kernel.
Therefore, we conduct the ablation study at the module level.

This feature dimension l corresponds to the number of
eigenpairs retained during kernel approximation. We employ a
uniform sampling of 256 anchor points for the approximation.
To access the accuracy in recovering the original kernel,
we randomly sample 2000 test samples in [−.5, .5]3 and
compute the matrix K using original Matérn Kernel. Our
approximation, denoted as K̂, is then evaluated. We calculate
the Mean Absolute Error (MAE) between the two kernels and
observe the curve presented in Fig. 13. From the figure, we
find that the error decreases fast until l reaches 20, and beyond
that point, the improvement becomes marginal. Considering
that the result for l = 20 is very close to that at l = 40 while
requiring only half the storage space, the optimal selection for
l is 20.

Similarly, we perform a module-level ablation for number
of anchor points. With l fixed at 20, a minimum of 20
samples is required. Fig. 13 demonstrates that the approx-
imation shows minimal improvement beyond 256 samples.
Additionally, since this number of anchor samples only affects
the computation time and not the storage space, it is advisable
to select a the large value such as 256, but not the largest, to
improve efficiency without sacrificing accuracy.

14

Fig. 14. Style transfer on 3D canvas.

scene0568 00 scene0249 00 scene0435 00 office3 room0

C
ol

or
Sa

lie
nc

y

Fig. 15. Saliency transfer on the 3D canvas. The top row shows the result colored meshes. The bottom row shows the saliency meshes.

G. Results for 2D-to-3D transfer

In addition to surface and color, Uni-Fusion also allows
continuous mapping of other fabricated data. Therefore, we
apply Uni-Fusion to style data and saliency data in order to
achieve style and saliency transfer on the 3D canvas.

In Fig. 14, we present artistic painting on the 3D canvas.
Each frame undergoes style transfer using MSG-Net [45],
and Uni-Fusion is used to construct the style LIM for the
surface style field. The test scene is “office0” from the Replica
dataset captured from a single custom view. 20 images are
used to provide the style and are attached at lower left
corner accordingly. Our Uni-Fusion successfully constructs
style meshes that closely resemble the taste of the supplied
style images. For instance, with pure style or abstract painting,

the 3D “canvas” shows a very similar style. Among the style
images, with our favorite style, located in the middle of the
fourth row, Uni-Fusion produces a high quality 3D sketch
painting.

In Fig. 15, we demonstrate saliency detection in 3D. In this
figure we select three scenes from ScanNet and two scenes
from Replica. Similarly, we detect saliency on each frame
using InSPyReNet [60] and construct saliency LIM for surface
saliency field.

In the second row, high saliency regions are colored in
yellow, indicating the object of interest. This information can
be used to guide a robot’s navigation in 3D scene. For example,
in the first column, the sofa, chair, curtain, and television in
the room certainly attract more attention in daily life. In the

15

3DGenZ Uni-Fusion Ground Truth 3DGenZ Uni-Fusion-SU Ground Truth

Fig. 16. Demonstration of semantic segmentation on the ScanNet dataset. Selected scenes are consistent with Fig. 9

second column, a meeting room, the long desk and chairs are
obviously the main components. Similarly, in the third column
showcasing a hotel room, the bed stands out, along with the
sofa, desk, lamp, and TV in the fourth column, and the sofas
and chairs in the last column.

H. Scene Understanding Results

Saliency detection effectively highlights the objects of inter-
est. This is also considered part of 3D semantic understanding.
However, as the semantics categories vary, fusing different
categories of semantics into multiple LIMs can be inefficient.
Therefore, in this section, we utilize Uni-Fusion to fuse and
construct a surface field for high-dimensional CLIP embed-
dings. With a single LIM, we can generate different semantic
results based on corresponding commands. Since now our Uni-

Fusion works with OpenSeg for scene understanding purposes,
we call it Uni-Fusion-SU.

1) Semantic Segmentation: We first evaluate our model
on generalized zero-shot point cloud semantic segmentation
application. Generalized Zero-Shot Learning (GZSL) differs
from Zero-Shot Learning (ZSL) in that ZSL only predicts
classes unseen during training, while GZSL predicts both
unseen and seen classes [53]. Therefore, comparing our results
with GZSL SOTAs provides a better understanding of the
potential of Uni-Fusion-SU, as it does not train on both seen
and unseen.

This test uses ScanNet and S3DIS datasets for benchmark-
ing. It is important to note that the compared baselines are
trained on the corresponding datasets. Our Uni-Fusion-
SU uses OpenSeg to provide the 2D image level feature

TABLE V
GZSL SEMANTIC SEGMENTATION RESULTS. SCORES ARE IN %. † INDICATE 3DGENZ’S ADAPTION OF THE METHOD. NOTE THAT, UNI-FUSION-SU

DOES NOT EVEN TRAIN WITH THE SEEN CLASSES.

Training set Inference input ScanNet S3DIS
Backbone Classifier Seen Unseen All Seen Unseen All

Supervised methods with different levels of supervision
Full supervision seen ∪ unseen seen ∪ unseen Point Cloud 43.3 51.9 45.1 74.0 50.0 66.6
ZSL backbone seen seen ∪ unseen Point Cloud 41.5 39.2 40.3 60.9 21.5 48.7
ZSL-trivial seen seen Point Cloud 39.2 0.0 31.3 70.2 0.0 48.6

Generalized zero-shot-learning methods
ZSLPC-Seg [51]† seen unseen Point Cloud 28.2 0.0 22.6 65.6 0.0 45.3
DeViSe-3DSeg [52]† seen unseen Point Cloud 20.0 0.0 16.0 70.2 0.0 48.6
3DGenZ [53] seen seen ∪ ˆunseen Point Cloud 32.8 7.7 27.8 53.1 7.3 39.0

Zero-shot learning + map fusion
Uni-Fusion-SU (Ours) None None Sparse Frames 31.0 41.9 32.9 31.3 24.0 29.0

16

ebmedding. Although Uni-Fusion-SU is also zero-shot, it
does not touch any ScanNet or S3DIS annotations.

We demonstrate the mIoU scores in Table V. In particular,
our model achieves best results among the zero-shot learning
methods on the ScanNet dataset and remains competitive with
fully supervised methods.

Furthermore, we provide results specifically for the unseen
classes in Table VI. Although not as good as the fully
supervised approach, Uni-Fusion-SU performs much better
than 3DGenZ. In addition, our Uni-Fusion-SU demonstrates
high precision in classes such as sofa and Toilet, even when
compared to the fully supervised model.

TABLE VI
CLASSWISE GZSL SEMANTIC SEGMENTATION PERFORMANCE (%) ON

THE SCANNET UNSEEN SPLIT.

Bookshelf Desk Sofa Toilet mean

FSL (Fully supervise) IoU 56.9 30.0 57.4 63.4 51.9
3DGenZ (Zero-shot) IoU 6.3 3.3 13.1 8.1 7.7
Uni-Fusion-SU (Ours) IoU 38.3 16.8 51.7 60.9 41.9

3DGenZ (Zero-shot) Acc. 13.4 5.9 49.6 26.3 23.8
Uni-Fusion-SU (Ours) Acc. 61.9 29.6 67.4 91.6 62.6

However, in the S3DIS dataset, our model does not outper-
form 3DGenZ and other methods as shown in Table V.

Even in the result of unsceened data, as presented in
Table VII, we observe that Uni-Fusion-SU hardly finds some
classed, e.g. Beam and Column, which are not commonly
annotated objects. However, for common objects like sofa and
window, our model performs much better.

TABLE VII
CLASSWISE GZSL SEMANTIC SEGMENTATION PERFORMANCE (%) ON

THE S3DIS UNSEEN SPLIT.

Beam Column Sofa Window mean

FSL (Fully supervise) IoU 63.1 10.2 54.1 72.4 50.0
3DGenZ (Zero-shot) IoU 13.9 2.4 4.9 8.1 7.3
Uni-Fusion-SU (Ours) IoU 5.5 0.02 57.4 32.9 24.0

3DGenZ (Zero-shot) Acc. 20.0 9.1 62.4 23.7 28.8
Uni-Fusion-SU (Ours) Acc. 41.5 0.02 78.3 42.1 40.5

We present the results of the semantic segmentation
in Fig. 16. It is evident that, 3DGenZ’s result contains more
noise, as seen in the spotted sofa, bed and other objects.
Conversely, Uni-Fusion-SU’s results are generally smoother
and more precise.

2) Scene Understanding with Different Properties: The
main contribution of this application is that, Uni-Fusion is
the first model to construct a continuous mapping of high-
dimensional embeddings onto the surface without the need
for any training of the map representation. In the previous
experiment (Section VI-H1), we evaluate the performance of
generalized zero-shot semantic segmentation. However, the
potential of Uni-Fusion goes beyond semantic segmentation.
By constructing a LIM, we obtain a surface CLIP feature field.
This enables us to query various semantic categories such as
Object, Room Type, Material, Affordance and Activity
without requiring multiple LIMs or re-running the model.

We present the results in Fig. 17, where we query object
(desk, sofa), activity (work), affordance (sittable), and material
(wood). Uni-Fusion-SU accurately identifies and highlights
the object and material regions. However, for less specific
commands such as work or sittable, the model provides a
wider range of results with less confidence (indicated by dull
yellow). Nevertheless, the suggested options are also roughly
correct.

I. Time

We run all of the applications in a single pass using
our captured office sequences and evaluate the time cost of
construction and fusion of each LIM. The average time cost
across frames is shown in Table VIII.

TABLE VIII
TIME REQUIRED FOR EACH FRAME.

Surface Color Infrared Style Saliency Latent Internal Track

Time (s) 0.100 0.038 0.045 0.048 0.045 0.011 0.225

Using depth and property images of size 720 × 1280 as
input, it is evident from the table, that our model operates
at a frequency of ∼ 10Hz for surface (sample mode) LIM
construction and integration. It alse achieves a frequency
of over 20Hz for color, infrared, style, and saliency. These
results demonstrate the suitability of Uni-Fusion for real-time
applications.

However, our internal tracking process takes around 0.225s
per frame, which is relatively slower compared to the map-
ping module. Nevertheless, Uni-Fusion uses external tracking
to prevent tracking loss, enabling our internal tracking and
mapping to operate at a lower frequency. As a result, the
entire model can be effectively applied in real-time in various
scenarios.

VII. EXTENSIVE EXPERIMENT ON OUR OWN DATASET

In previous experiments, we evaluate the capabilities of
Uni-Fusion in different applications. To further demonstrate
its effectiveness in robotic environmental understanding, we
capture our own dataset to show all applications together.

We capture two scenes: The office and apartment of the
first author using a Microsoft Kinect Azure. RGB-D and
infrared video are captured. After calibration, RGB, depth,
infrared inputs have resolution of 720 × 1280. Uni-Fusion
tracks and reconstructs all applications in one pass. While
office data has been involved in ablation study (Section VI-F),
we showcase all applications using the apartment dataset, as
depicted in Fig. 18.

For better visualization, the ceiling of reconstruction is
removed. The top row of images presents the colored mesh
with room details, the infrared mesh revealing the lighting
effect, and the saliency reconstruction highlighting objects
crucial for navigation. Additionally, we select the second style
from Fig. 14 for style transfer to the apartment canvas. As a
result, the wooden floor in the room is colored with dark green.
The whole apartment is in a warm style.

17

scene0568 00 scene0249 00 scene0435 00 office3 room0

Desk

Sofa

Work

Sittable

Wood

Fig. 17. Demonstration of the original mesh, highlighted semantic mesh given various queries.

The remaining results are generated from the surface field of
the CLIP embeddings. We issue commands to locate objects,
e.g., where is the sofa, desk and coat. In addition, it easily
identifies affordances such as being sittable. For material, it
successfully detects the wooden floor in each room.

VIII. LIMITATIONS AND FUTURE WORK

1) Remapping: Uni-Fusion currently lacks support for
deintegrating local LIM from global LIM, which is essential
for incorporating bundle adjustment or loop closing tech-
niques. In addition, the current state of Uni-Fusion does not
allow the transformation of LIMs as demonstrated by NIM-
REM [13]. To enhance a better quality and to facilitate large
scale mapping, loop closing and bundle adjustment are future

18

Color Infrared Saliency

Style Object-sofa Object-desk

Object-coat Affordance-sit Material-wood
Fig. 18. Demonstration on the captured apartment data.

targets.
2) Visual Language Navigation: Uni-Fusion serves as a

solid foundation for reconstruction and scene understanding
in the context of Visual-Language Robot Navigation (VLN).
While existing work produces a 2D embedding map [42], Uni-
Fusion excels in constructing a 3D embedding map of the
scene. As a result, Uni-Fusion empowers the robot with a
deeper understanding of the scene. In our future work, we
intend to explore applications such as navigation.

IX. CONCLUSION

In this paper, we have introduced Uni-Fusion, a novel uni-
versal model for all continuous mapping applications. Without
any training, Uni-Fusion constructs Latent Implicit Maps that
support geometry and arbitrary properties. Moving one step
further to scene understanding, Uni-Fusion is also the first
model that is capable of constructing continuous maps with
high-dimensional embeddings without the training of map rep-
resentation. With such a basis, we have implemented several
applications, including a high-quality incremental surface and

color reconstruction application, a 2D-to-3D transfer of fabri-
cated properties, and an open-vocabulary scene understanding
application.

REFERENCES

[1] S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy maps,”
The Intl. Journal of Robotics Research, vol. 31, no. 1, pp. 42–62, 2012.

[2] S. Kim and J. Kim, “Continuous occupancy maps using overlapping
local gaussian processes,” in 2013 IEEE/RSJ international conference
on intelligent robots and systems. IEEE, 2013, pp. 4709–4714.

[3] M. Ghaffari Jadidi, J. Valls Miro, and G. Dissanayake, “Gaussian pro-
cesses autonomous mapping and exploration for range-sensing mobile
robots,” Autonomous Robots, vol. 42, pp. 273–290, 2018.

[4] Y. Yuan, H. Kuang, and S. Schwertfeger, “Fast gaussian process occu-
pancy maps,” in 2018 15th Intl. Conf. on Control, Automation, Robotics
and Vision (ICARCV). IEEE, 2018, pp. 1502–1507.

[5] W. Martens, Y. Poffet, P. R. Soria, R. Fitch, and S. Sukkarieh, “Geo-
metric priors for gaussian process implicit surfaces,” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 373–380, 2016.

[6] B. Lee, C. Zhang, Z. Huang, and D. D. Lee, “Online continuous mapping
using gaussian process implicit surfaces,” in 2019 Intl. Conf. on Robotics
and Automation (ICRA). IEEE, 2019, pp. 6884–6890.

[7] L. Wu, K. M. B. Lee, L. Liu, and T. Vidal-Calleja, “Faithful eu-
clidean distance field from log-gaussian process implicit surfaces,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 2461–2468, 2021.

19

[8] J.-P. A. Ivan, T. Stoyanov, and J. A. Stork, “Online distance field priors
for gaussian process implicit surfaces,” IEEE Robotics and Automation
Letters, vol. 7, no. 4, pp. 8996–9003, 2022.

[9] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proc. of the 23rd annual conf. on
Computer graphics and interactive techniques, 1996, pp. 303–312.

[10] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison et al., “Kinectfusion:
real-time 3d reconstruction and interaction using a moving depth cam-
era,” in Proc. of the 24th annual ACM symposium on User interface
software and technology, 2011, pp. 559–568.

[11] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bundle-
fusion: Real-time globally consistent 3d reconstruction using on-the-fly
surface reintegration,” ACM Transactions on Graphics (ToG), vol. 36,
no. 4, p. 1, 2017.

[12] J. Huang, S.-S. Huang, H. Song, and S.-M. Hu, “Di-fusion: Online
implicit 3d reconstruction with deep priors,” in Proc. of the IEEE/CVF
Conf. on Computer Vision and Pattern Recognition, 2021, pp. 8932–
8941.

[13] Y. Yuan and A. Nüchter, “An algorithm for the se (3)-transformation
on neural implicit maps for remapping functions,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 7763–7770, 2022.

[14] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit mapping
and positioning in real-time,” in Proc. of the IEEE/CVF Intl. Conf. on
Computer Vision, 2021, pp. 6229–6238.

[15] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald,
and M. Pollefeys, “Nice-slam: Neural implicit scalable encoding for
slam,” in Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern
Recognition, 2022, pp. 12 786–12 796.

[16] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” ACM siggraph computer graphics,
vol. 21, no. 4, pp. 163–169, 1987.

[17] K. Li, Y. Tang, V. A. Prisacariu, and P. H. Torr, “Bnv-fusion: Dense
3d reconstruction using bi-level neural volume fusion,” in Proc. of the
IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2022,
pp. 6166–6175.

[18] A. Rosinol, J. J. Leonard, and L. Carlone, “Nerf-slam: Real-time
dense monocular slam with neural radiance fields,” arXiv preprint
arXiv:2210.13641, 2022.

[19] G. Ghiasi, X. Gu, Y. Cui, and T.-Y. Lin, “Scaling open-vocabulary image
segmentation with image-level labels,” in Computer Vision–ECCV 2022:
17th European Conf., Tel Aviv, Israel, October 23–27, 2022, Proc., Part
XXXVI. Springer, 2022, pp. 540–557.

[20] R. Senanayake and F. Ramos, “Bayesian hilbert maps for dynamic
continuous occupancy mapping,” in Conf. on Robot Learning. PMLR,
2017, pp. 458–471.

[21] W. Zhi, L. Ott, R. Senanayake, and F. Ramos, “Continuous occupancy
map fusion with fast bayesian hilbert maps,” in 2019 Intl. Conf. on
Robotics and Automation (ICRA). IEEE, 2019, pp. 4111–4117.

[22] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“Deepsdf: Learning continuous signed distance functions for shape
representation,” in Proc. of the IEEE/CVF conf. on computer vision and
pattern recognition, 2019, pp. 165–174.

[23] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy networks: Learning 3d reconstruction in function space,” in
Proc. of the IEEE/CVF conf. on computer vision and pattern recognition,
2019, pp. 4460–4470.

[24] R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove,
and R. Newcombe, “Deep local shapes: Learning local sdf priors for
detailed 3d reconstruction,” in Computer Vision–ECCV 2020: 16th
European Conf., Glasgow, UK, August 23–28, 2020, Proc., Part XXIX
16. Springer, 2020, pp. 608–625.

[25] C. Jiang, A. Sud, A. Makadia, J. Huang, M. Nießner, T. Funkhouser
et al., “Local implicit grid representations for 3d scenes,” in Proc. of
the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, 2020,
pp. 6001–6010.

[26] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and A. Geiger,
“Convolutional occupancy networks,” in Computer Vision–ECCV 2020:
16th European Conf., Glasgow, UK, August 23–28, 2020, Proc., Part III
16. Springer, 2020, pp. 523–540.

[27] S. Lionar, L. Schmid, C. Cadena, R. Siegwart, and A. Cramariuc, “Neu-
ralblox: Real-time neural representation fusion for robust volumetric
mapping,” in 2021 Intl. Conf. on 3D Vision (3DV). IEEE, 2021, pp.
1279–1289.

[28] Z. Deng, J. Shi, and J. Zhu, “Neuralef: Deconstructing kernels by deep
neural networks,” in International Conference on Machine Learning.
PMLR, 2022, pp. 4976–4992.

[29] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” Advances in neural information processing systems, vol. 20,
2007.

[30] ——, “Weighted sums of random kitchen sinks: Replacing minimiza-
tion with randomization in learning,” Advances in neural information
processing systems, vol. 21, 2008.

[31] F. X. X. Yu, A. T. Suresh, K. M. Choromanski, D. N. Holtmann-
Rice, and S. Kumar, “Orthogonal random features,” Advances in neural
information processing systems, vol. 29, 2016.

[32] M. Munkhoeva, Y. Kapushev, E. Burnaev, and I. Oseledets, “Quadrature-
based features for kernel approximation,” Advances in neural informa-
tion processing systems, vol. 31, 2018.

[33] D. P. Francis and K. Raimond, “Major advancements in kernel function
approximation,” Artificial Intelligence Review, vol. 54, no. 2, pp. 843–
876, 2021.

[34] C. Williams and M. Seeger, “Using the nyström method to speed up
kernel machines,” Advances in neural information processing systems,
vol. 13, 2000.

[35] T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou, “Nyström method
vs random fourier features: A theoretical and empirical comparison,”
Advances in neural information processing systems, vol. 25, 2012.

[36] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006, vol. 2, no. 3.

[37] M. G. Genton, “Classes of kernels for machine learning: a statistics
perspective,” Journal of machine learning research, vol. 2, no. Dec, pp.
299–312, 2001.

[38] E. Solak, R. Murray-Smith, W. Leithead, D. Leith, and C. Rasmussen,
“Derivative observations in gaussian process models of dynamic sys-
tems,” Advances in neural information processing systems, vol. 15, 2002.

[39] J. Park, Q.-Y. Zhou, and V. Koltun, “Colored point cloud registration
revisited,” in Proc. of the IEEE intl. conf. on computer vision, 2017, pp.
143–152.

[40] S. Peng, K. Genova, C. Jiang, A. Tagliasacchi, M. Pollefeys,
T. Funkhouser et al., “Openscene: 3d scene understanding with open
vocabularies,” arXiv preprint arXiv:2211.15654, 2022.

[41] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. Szlam,
“Clip-fields: Weakly supervised semantic fields for robotic memory,”
arXiv preprint arXiv:2210.05663, 2022.

[42] C. Huang, O. Mees, A. Zeng, and W. Burgard, “Visual language maps
for robot navigation,” in ICRA, 2023.

[43] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in Proc. of the IEEE conf. on computer vision and pattern
recognition, 2017, pp. 5828–5839.

[44] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of rgb-d slam systems,” in 2012 IEEE/RSJ
intl. conf. on intelligent robots and systems. IEEE, 2012, pp. 573–580.

[45] H. Zhang and K. Dana, “Multi-style generative network for real-time
transfer,” in Proc. of the European Conf. on Computer Vision (ECCV)
Workshops, 2018, pp. 0–0.

[46] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” Advances in neural
information processing systems, vol. 30, 2017.

[47] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer, and
S. Savarese, “3d semantic parsing of large-scale indoor spaces,” in Proc.
of the IEEE conf. on computer vision and pattern recognition, 2016, pp.
1534–1543.

[48] Occipital, “Occipital: The structure sensor,” 2016.
[49] I. Armeni, S. Sax, A. R. Zamir, and S. Savarese, “Joint 2d-3d-semantic

data for indoor scene understanding,” arXiv preprint arXiv:1702.01105,
2017.

[50] A. Rosinol, J. J. Leonard, and L. Carlone, “Probabilistic volumetric
fusion for dense monocular slam,” in Proc. of the IEEE/CVF Winter
Conf. on Applications of Computer Vision, 2023, pp. 3097–3105.

[51] A. Cheraghian, S. Rahman, and L. Petersson, “Zero-shot learning of
3d point cloud objects,” in 2019 16th Intl. Conf. on Machine Vision
Applications (MVA). IEEE, 2019, pp. 1–6.

[52] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato,
and T. Mikolov, “Devise: A deep visual-semantic embedding model,”
Advances in neural information processing systems, vol. 26, 2013.

[53] B. Michele, A. Boulch, G. Puy, M. Bucher, and R. Marlet, “Generative
zero-shot learning for semantic segmentation of 3d point clouds,” in
2021 Intl. Conf. on 3D Vision (3DV). IEEE, 2021, pp. 992–1002.

[54] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d
data processing,” arXiv preprint arXiv:1801.09847, 2018.

20

[55] T. Schops, T. Sattler, and M. Pollefeys, “Bad slam: Bundle adjusted
direct rgb-d slam,” in Proc. of the IEEE/CVF Conf. on Computer Vision
and Pattern Recognition, 2019, pp. 134–144.

[56] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended kinectfusion,” 2012.

[57] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[58] Z. Teed and J. Deng, “Droid-slam: Deep visual slam for monocular,
stereo, and rgb-d cameras,” Advances in neural information processing
systems, vol. 34, pp. 16 558–16 569, 2021.

[59] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Transactions on
Graphics (ToG), vol. 41, no. 4, pp. 1–15, 2022.

[60] T. Kim, K. Kim, J. Lee, D. Cha, J. Lee, and D. Kim, “Revisiting image
pyramid structure for high resolution salient object detection,” in Proc.
of the Asian Conf. on Computer Vision, 2022, pp. 108–124.

Yijun Yuan is a third year PhD student in Prof. An-
dreas Nüchter’s group at Julius Maximilian Univer-
sity Würzburg. He received Bachelor’s and Master’s
Degree from ShanghaiTech university in 2018 and
2021. Yijun has experience on Rescue Robotics and
Metrical&Topological Mapping and in PhD studies
he focuses on dense SLAM methods using various
sensors.

Andreas Nüchter is professor and chair of robotics
at University of Würzburg. Before fall 2022 he
was associated professor (tenured) for telematics at
University of Würzburg and before summer 2013
he headed as assistant professor the Automation
group at Jacobs University Bremen. Prior he was
a research associate at University of Osnabrück.
Further past affiliations were with the Fraunhofer
Institute for Autonomous Intelligent Systems (AIS,
Sankt Augustin), the University of Bonn, from which
he received the diploma degree in computer science

in 2002 and the Washington State University. He holds a doctorate degree
(Dr. rer. nat) from University of Bonn. Andreas works on robotics and
automation, cognitive systems and artificial intelligence. His main research
interests include reliable robot control, 3D environment mapping, 3D vision,
and laser scanning technologies for various applications, e.g. for planetary
exploration, safety security and rescue robotics, or underwater inspection.
Andreas developed fast 3D scan matching algorithms that enable robots to
perceive and map their environment in 3D representing the pose with 6
degrees of freedom. The capabilities of these robotic SLAM approaches were
demonstrated at RoboCup Rescue competitions, ELROB and several other
events. He is a member of the GI and the IEEE.

