
1

SceneFactory: A Workflow-centric and Unified
Framework for Incremental Scene Modeling

Yijun Yuan, Michael Bleier, Andreas Nüchter

Abstract—We present SceneFactory, a workflow-centric and
unified framework for incremental scene modeling, that conve-
niently supports a wide range of applications, such as (unposed
and/or uncalibrated) multi-view depth estimation, LiDAR com-
pletion, (dense) RGB-D/RGB-L/Mono/Depth-only reconstruction
and SLAM. The workflow-centric design uses multiple blocks
as the basis for constructing different production lines. The
supported applications, i.e., productions avoid redundancy in
their designs. Thus, the focus is placed on each block itself
for independent expansion. To support all input combinations,
our implementation consists of four building blocks that form
SceneFactory: (1) tracking, (2) flexion, (3) depth estimation, and
(4) scene reconstruction. The tracking block is based on Mono
SLAM and is extended to support RGB-D and RGB-LiDAR
(RGB-L) inputs. Flexion is used to convert the depth image
(untrackable) into a trackable image. For general-purpose depth
estimation, we propose an unposed & uncalibrated multi-view
depth estimation model (U2-MVD) to estimate dense geometry.
U2-MVD exploits dense bundle adjustment to solve for poses,
intrinsics, and inverse depth. A semantic-aware ScaleCov step is
then introduced to complete the multi-view depth. Relying on
U2-MVD, SceneFactory both supports user-friendly 3D creation
(with just images) and bridges the applications of Dense RGB-D
and Dense Mono. For high-quality surface and color reconstruc-
tion, we propose Dual-purpose Multi-resolutional Neural Points
(DM-NPs) for the first surface accessible Surface Color Field
design, where we introduce Improved Point Rasterization (IPR)
for point cloud based surface query.

We implement and experiment with SceneFactory to demon-
strate its broad applicability and high flexibility. Its quality also
competes or exceeds the tightly-coupled state of the art ap-
proaches in all tasks. We contribute the code to the community1.

Index Terms—Reconstruction, 3D Modelling, SLAM, RGBD,
RGB-Lidar

I. INTRODUCTION

S IMULTANEOUS Localization and Mapping (SLAM)
plays an important role in robotics. Previous works have

made substantial progress for robust localization of robots [1]–
[3], including in challenging environments [4], while the

Yijun Yuan is with Tsinghua University, Beijing, China. Yijun Yuan,
Michael Bleier and Andreas Nüchter are with Julius-Maximilians-Universität
Würzburg, Germany. Andreas Nüchter is also with the Zentrum für
Telematik e.V., Würzburg and currently International Visiting Chair
at U2IS, ENSTA, Institut Polytechnique de Paris, France. The re-
search was done at Julius-Maximilians-Universität Würzburg. Contact:
{yijun.yuan|michael.bleier|andreas.nuechter}@
uni-wuerzburg.de

This work was in parts supported by the Federal Ministry for Economic
Affairs and Climate Action (BMWK) on the basis of a decision by the German
Bundestag und the grant number KK5150104GM1. We also acknowledge
the support by the Elite Network Bavaria (ENB) through the “Satellite
Technology” academic program.

1https://jarrome.github.io/SceneFactory/

Fig. 1. SceneFactory is workflow-centric and supports a wide range of
applications given different input combinations of RGB Irgb, depth Id, pose
G and intrinsics θ.

mapping of the environment is often sparse. With the aim
of producing higher quality maps, dense mapping [5] and
3D reconstruction [6] have been developed. Dense mapping
provides a point set as a mapping representation but is much
denser. Alternatively, 3D reconstruction [6] produces meshes
for compactness and continuity reasons, which is more user
friendly.

However, we observe that most works construct the whole
pipeline in a highly tight-compact design. This restricts the
model to a specific application and is difficult to upgrade each
submodule. This leads to our first research question: Can we
design a framework that will support all of the production
lines?

First of all, we traverse all possible input cases and look
at what the tasks might be. As shown in Fig. 1, given
different input combinations of RGB Irgb, depth Id, pose G
and intrinsics θ, a number of applications could be run. And
our goal at the very beginning is to support them all in a single
framework.

To achieve this goal, we design our framework in a
workflow-centric fashion. The advantage of such a design
philosophy is that all tasks are connected by a dependency
graph to reduce redundancy. For example, as in our de-
sign Fig. 2, one final task usually depends on the output
from other tasks. However, the other tasks can also be the
final tasks. All subtasks work both independently and together,
each block must be completed on its own. So we have four

ar
X

iv
:2

40
5.

07
84

7v
2

 [
cs

.C
V

]
 1

6
A

pr
 2

02
5

https://jarrome.github.io/SceneFactory/

2

blocks in the workflow: tracking, flexion, depth estimation,
and reconstruction.

On the tracking block, we subtract and find the greatest
common divisor, Mono SLAM [7], [8]. Mono SLAM con-
siders more complicated conditions than RGB-D and Stereo
SLAM due to the difficult depth estimation. Which operates
the simplest sensor setup with fewer observation requirements.
However, Mono SLAM relies on only sparse keypoints, and
thus we also introduce a dense estimation task for dense depth-
related applications. The “loose connection” concept directs us
to build a dense SLAM where each module focuses on its own
task.

When there is no RGB input, but depth input, we exploit the
seminal work of [9], called flexion. Flexion image is based
on surface curvature, where in each pixel it calculates the
difference between two normals from the neighboring pixels.
To make it compatible with our vision-based tracking block,
we have to rely on trackable images. However, the depth
image does not contain SE(3)-invariant features under different
viewpoints. So the flexion is applied then to convert the un-
trackable/unmatchable depth images into trackable images [9].

Then comes depth estimation, which has been widely stud-
ied with monocular and multi-view input. While monocular
depth [10] naturally loses scale, the reliable methods usually
operate multiple views. Such methods are classified as (1)
depth-from-video without known poses [11]–[13], (2) multi-
view stereo with known poses [14]–[19] and (3) pointmaps
without poses and intrinsics [20]. In our depth estimation
module, we want to support all of them. For high-reliability,
we rely on a low-level vision model, optical flow [21] for
correlation search, and use dense bundle adjustment to esti-
mate the dense structure. Here, all camera intrinsics, poses
and depths are estimated in one optimization problem.

For use in SLAM sequences, we further introduce good
neighborhood selection aiming to reduce the above situations.
However, even with this selection, the side effect of producing
missing regions still exists. An example is in Section V, where
there is a hole in the wall. Inspired by MonoSDF [22], that the
monocular depth shares point properties with the real depth,
we turn to monodepth and find in our scene case that al-
though monodepth is distorted between structures, in-structure
coplanarity is preserved. Therefore, we propose to utilize
this in-structure property with the ScaleCov model. It relies
on the learned deep covariance to fill the clipped locations
with regressed scale image. In SLAM-related applications, we
additionally scale the depth to global to make the mapping
consistent.

Although our depth estimation model fits well into mono
SLAM, the model on its own supports unposed & uncalibrated
multi-view depth estimation. This also provides a user-friendly
application that requires only RGB images.

Afterwards, we perform the 3D reconstruction. Recently,
there have been some successful attempts for immersive
visualization under 3D reconstruction pipeline, such as ES-
LAM [23] and NeRF-SLAM [24]. They borrow the NeRF-like
training scheme to produce high-quality view synthesis. How-
ever, the ray integration naturally suffers from many samples
with large space and time costs. Therefore, we turn to another

related branch, Neural Surface Light Fields (NSLF), without
geometry optimization. Recent research of NSLF has verified
the efficiency on SLAM sequences [25]. Because NSLF only
learns the surface field, each surface position is not modi-
fied. However, the existing online SLF method [25] requires
an external SDF model [26] to provide the surface points.
Therefore, we propose here dual-purpose multi-resolutional
neural points (DM-NPs) to overcome this limitation. Following
NSLF-OL [25], which uses a multi-resolutional hash grid
for efficient online learning, we create a multi-resolutional
point grid for fast SLF learning. Moreover, since our point-
based representation naturally provides position on surfaces,
a straightforward idea is to use point rasterization. However,
point rasterization is a dysfunction compared to surface ras-
terization (as introduced in Section IV-C). To make it work,
we propose an Improved Point Rasterization which turns out
to be really useful compared to the point rasterization of
Pytorch3D [27]. Our CUDA implementation is 10 to 50 times
faster than Pytorch3D’s CUDA implementation.

In summary, as shown in Fig. 1, we intend to design a
modular scene modeling method, where each module supports
individual applications, while they can be combined into one.

The contributions of this work are:
1) We propose a workflow-centric framework, SceneFac-

tory, that supports all incremental scene modeling appli-
cations with different combinations under the connection
of a dependency graph.

2) We introduce a dual-purpose multiresolution neural
points representation for both Surface Light Fields (SLF)
and Improved Point Rasterization (IPR). This is (1) the
first surface-gettable SLF model, (2) the first to make
point rasterization as usable as surface rasterization.

3) We give a robust depth estimation block with (1) an
unposed & uncalibrated multiview depth estimation
model (U2-MVD) and (2) a deep correlation kernel-
based depth completion model, ScaleCov.

4) We capture the first dense mono SLAM purpose RGB-X
dataset for high-quality monocular reconstruction.

In the following, we first describe the related work on
dense monocular SLAM, neural rendering in SLAM and multi-
view depth estimation. Then, in three separate sections, we
introduce the overall SceneFactory structure, the dual-purpose
multi-resolution neural point representation and the unposed &
uncalibrated depth estimation. Then, we conduct experiments
to thoroughly evaluate the performance of the system. Finally,
we conclude this paper and attach the supplementary.

II. RELATED WORKS

A. Dense SLAM

Dense SLAMs are the main application of SceneFactory.
Originally for reliable reconstruction, dense SLAM systems
operate the metric dense depth from laser scanners or RGB-
D sensors and focus more on the mapping representation, to
approach a high-quality surface reconstruction. When metric
depth is involved, traditional fusion methods [28] incremen-
tally update the Truncated Signed Distance Field (TSDF) and
then extract afterwards a mesh using Marching Cubes [29].

3

More recently, neural priors have been used for Neural Implicit
Representation [26], [30]. Uni-Fusion’s implicit representation
supports even more data properties without any training [31].
With the even more recent trend of volumetric rendering,
trained neural implicit rendering methods also come into
view [25], [32].

However, the application scenarios of scanners and depth
sensors are still limited by their low affordability, portability
and accessibility. Alternatively, almost everyone has their own
monocular camera at hand, e.g., on a mobile phone. Therefore,
a lot of work has been done in recent years to explore dense
SLAM with a monocular camera [33]–[37]. For Dense RGB
SLAM, optimizing an entire sequence of depths is not feasible
given the large number of variables involved. To reduce the
computational costs of depth estimation, CodeSLAM [33] and
DeepFactors [34] optimize the latent codes of depth images.
However, the single-frame depth encoder-decoder needs to be
pre-trained with similar data sets. And mono-depth naturally
loses scale and intrinsic information, usually resulting in
distorted structures. Instead of optimizing poses and depths at
the same time, Tandem [35] first solves frame poses and then
uses the pre-trained MVSNet to recover the dense structure.
However, the MVSNets are usually overfitted with the trained
camera intrinsic. This is suboptimal for custom cameras and
new scenes. On the other hand, DROID-SLAM [36] ensembles
dense optical flow modules into the pipeline, and optimizes
poses and downsampled inverse depths using dense bundle
adjustment. To cope with DROID-SLAM’s noisy depth esti-
mation, Sigma-Fusion [37] introduces depth uncertainty into
DROID-SLAM’s framework and uses TSDF to provide a high-
quality dense reconstruction.

Starting in 2022, more researchers realized the high po-
tential of using NeRF for high-quality mapping. Orbeez-
SLAM [38] and NeRF-SLAM [39] first embedded NeRF
in SOTA-SLAM frameworks. For example, Orbeez-SLAM
generates a sparse map using OrbSLAM3 [40] to set up a
coarse occupancy grid for on-ray point sampling. NeRF is
then applied directly given the tracked poses. Orbeez-SLAM
gets high-quality rendering from NeRF. However we find that
it also inherits the problem of NeRF, especially for SLAM
sequences. It hardly works with non-around-object sequences.
While based on Sigma-Fusion, which provides dense depth
in nature, NeRF-SLAM addresses the above problem by
monitoring depth along with color.

From the design of Orbeez-SLAM [38] and NeRF-
SLAM [39], that they have loosely connected pose-and-depth
and depth-and-reconstruction relations respectively, we find
that the loosely coupling does not just provide high flexibility,
but also shows high advances when each sub-task is mature,
such as the use of OrbSLAM3 and etc. This point inspires us
to make a workflow-centric design that has high expectations
for each submodule.

B. Neural Rendering in SLAM
In our view, neural rendering is a topic that has the potential

to replace reconstruction for high-quality mapping.
Many 3D reconstruction algorithms rely on marching cubes

to extract mesh from explicit [28] or implicit [26], [30],

[31]. This is not an efficient update due to the complicated
(implicit)-to-explicit-to-mesh steps. While the alternative view
synthesis relying on rendering, shows a more direct way
to extract visualization from implicit representations. View
generation could be super efficient.

The success of neural rendering in SLAM begins with
the invention of iMAP [41] and NICE-SLAM [32]. iMAP
applies volumetric rendering to MLPs and optimizes poses
and MLPs with photometric loss. NICE-SLAM improves the
rendering base and replaces the MLPs with hierarchical feature
grids. This further improves the surface quality. NICE-SLAM
certainly provides a good basis for neural rendering. However,
it still has the problems that 1. it is not real-time capable, 2.
the color result is of low quality.

Orbeez-SLAM [38] and NeRF-SLAM [39] address these
by coupling SOTA-SLAM with SOTA-NeRF, instant-ngp [42].
NSLF-OL [25], on the other hand, focuses only on surface
color and produces a real-time neural surface light field
model to be used in conjunction with an external real-time
reconstruction model.

In our SceneFactory design, we expect high for each mod-
ule. Thus the reconstruction model does not worry about the
inputs, e.g. depth. So NSLF-OL is a good starting point. How-
ever, working alongside other model makes SLF’s performance
highly dependent on the hosting reconstruction algorithm.
Therefore, in this work, we also propose to make the SLF
model supporting surface extraction in the same representa-
tion.

C. Multi-view Depth Estimation

Depth from multi-view is obtainable in multiple ways, i.e.,
as depth-from-video, multi-view stereo, and pointmaps.

Depth-from-video directly estimates depth images and cam-
era poses from video sequences with known camera intrinsics.
DeMoN [11] has firstly utilized deep learning techniques
to estimate the depth and motion with a single network.
DeepTAM [12] and DeepV2D [13] do not only work on image
pairs, but process more images with alternating mapping and
tracking modules. However, according to [43], such methods
are overfitted to the trained scale and camera parameters,
which makes it difficult to generalize to arbitrary real-world
applications.

Multi-view stereo estimates 3D geometry from uncon-
strained images with given intrinsic and extrinsic informa-
tion. MVS is starting to get a boost with the trend of
deep learning. DeepMVS [14], as the first deep network-
based method, aggregates sampled patchwise deep features
to estimate full image depth. It has demonstrated the high
potential of high-quality depth estimation with deep learning.
Similarly, MVSNet [15] learns a feature map for whole images
and fuses multi-view information into one feature map. Then
MVSNet’s design serves as mainstream for following deep
learning models [16]–[19]. But, as mentioned before, MVS
nets overfit the trained camera and scene. This also leads to
malfunction in new real scenes.

Pointmaps methods start attracting more attention in 2024. It
uses a dense 2D field of 3D points as geometric representation.

4

Fig. 2. The dependency graph in SceneFactory. SceneFactory sends requests to its dependent sub-tasks (inputs/blocks). If the dependent sub-tasks are not
complete, then each sub-task will call its corresponding dependent sub-tasks. The gray line indicates the requirement of a specific application. The yellow
line shows the dependency of input (RGB Irgb, depth Id, pose G and intrinsics θ), which is triggered when the input value is None. The green, purple,
blue, and pink lines show the dependencies of the Flexion, Depth, Tracking, and Scene Reconstruction blocks. The solid and dotted lines show mandatory
and optional dependencies. Inside each block, the functions are applied one after each other, as shown by the black arrows.

Pointmaps are first used in visual localization [44], [45] and
monocular 3D reconstruction [46], [47]. A recent pointmaps-
based work DUSt3R [20], designs a flexible stereo 3D re-
construction model. DUSt3R unifies different 3D tasks in a
groundbreaking way. For the first time, it also provides a user-
friendly interface that does not require camera parameters.

Our depth estimation module is also partly inspired by the
high-flexibility of the DUSt3R. We want to provide a user
friendly interface like DUSt3R. But further, for supporting all
above settings.

III. A UNIFIED FRAMEWORK FOR INCREMENTAL SCENE
MODELING

SceneFactory supports various combinations of RGB Irgb,
depth Id, pose G and intrinsics θ as input. We plot the
entire pipeline in Fig. 2 to have a brief overview. All of the
applications in Fig. 1 find their corresponding parts in this
diagram.

SceneFactory consists of four building blocks:
• tracking block to complete pose,
• flexion estimation block to complete the image,
• depth estimation block to estimate and complete the

depth,
• scene reconstructing block.
In this section, we introduce each of these blocks respec-

tively (Sections III-A to III-D) and combine them into a whole
workflow (Section III-E).

Note that, the last two (depth estimation and scene recon-
struction blocks) are our contribution models, we add two
more sections (Section IV and Section V) after this framework
section for a detailed explanation.

A. Tracking Block

For the tracking block, we use Mono SLAM because it
is a greatest common divisor with minimal demands. More
specifically, our tracking block is based on DPVO [48], while
we generalize it to also support RGB-D/L input.

DPVO is based on sparse correspondences, while the pose
G is optimized with sparse bundle adjustment:

Ltrack(G,P) =
∑

(k,j)∈E
∥ Π(Gij◦Π−1(P

′

k))−[P̂
′

kj+δkj] ∥2Σkj
.

(1)
where E and Π denote the edges and projection, P

′

k is the
patch k in image i, P̂

′

kj is the center of patch P
′

kj in image
j, δkj is the patch update.

The above formulation is efficiently solved with Gauss-
Newton. When the depth Id is given, we extract patch P from
the corresponding position. We fix the patch from a valid depth
pixel and optimize only the poses G from Ltrack. We choose
DPVO for the generalization because it does not require
explicit extraction of matches, and thus well fits the sparse
observation of the LiDAR. From our experiments we learnt
that this generalized version is more accurate by utilizing the
metric depth.

B. Flexion Estimation Block

Flexion estimation is required when Irgb is missing, i.e.,
depth only is given.

To support depth-only tracking in our RGBD SLAM frame-
work, a feature matching operation is required. However,
the depth image does not contain SE3-invariant context for
descriptor extraction. This is not trackable in our setting.
Therefore, we use the Flexion depth converter [9] to convert

5

(a) Colorized depth (b) Flexion

Fig. 3. Depth images (left) and their corresponding trackable converted flexion
images (right).

the depth image into a flexion image that has the SE3-invariant
properties. An example is given in Section III-B. We colorize
the depth only for better visualization. We see that flexion
images contain a more consistent value, which is more suitable
for feature matching [9]. Hence, depth-only applications are
able to treat flexion as RGB and serve as RGBD applications
as in Fig. 20.

C. Depth Estimation Block

The depth estimation block is mainly our U2-MVD (in Sec-
tion V) with intrinsics given for pose-free MVD to support
incremental application. It computes the depth for RGB appli-
cations, allowing them to work as RGB-D applications.

Note that when no metric depth is specified, tracking frames
only have sparse landmarks. Depth estimation is then required
when keyframe (KF) and good neighbor frames (NFs) are de-
tected or MVD is called for certain application requests. Once
requested, this block will query memory for good neighbor
selection (Section V-C), pose-free MVD (Section V-A), depth
completion (Section V-B) and scale recovery (Section V-D).

We put the depth estimation after the tracking sequences
because the tracker optimizes poses in a local window, and
the updated landmarks will affect the scale recovery.

D. Reconstruction Block

The reconstruction block uses our DM-NPs presented
in Section IV. This block maintains two threads: 1) NPs
allocation and online learning, and 2) visualization.

1) Online-learning thread: A training thread is used to con-
tinuously train our SLF model. Similar to the online method,
NSLF-OL [25], DM-NPs takes a new keyframe (I

′

rgb, I
′

d, G
′
)

and converts it to a colored point cloud {(pn, cn)n∈{1,··· }}.
Based on the positions of point cloud, new neural points (NPs)
will be allocated (as in Section IV-A1). The input color value
{cn}n of the point cloud will be utilized to supervise the
prediction {c∗n}n (as in Section IV-A3).

2) Visualization thread: Another thread for the renderer
relies on our Improved Point Rasterization (Section IV-C) for
surface extraction, and color prediction (Section IV-A3) on
surface. Our interactive GUI receives signals from the user

to rotate and move the view camera. Rendering is done in
real-time for a first-person view of the scene (Section IV-D).

E. Main Function

SceneFactory’s main functions are EstablishProductLine
and Step as in Algorithm 1.

Algorithm 1: Main functions

1 Function EstablishProductLine((Irgb, Id, G, θ,
app)):

// Build product line

2 pLine = AssemblingParts(Irgb, Id, G, θ, app);
3 return pLine;
4 End Function
5 Function pLine.Step((Irgb, Id, G, θ, app)):

// Product line start working part-by-part

6 Vinter ← pLine.Package(Irgb, Id, G, θ, app);
7 for fpart in pLine.parts do
8 Vinter = fpart(Vinter)
9 end

10 return pLine.Unpackage(Vinter);
11 End Function

When a task is triggered, SceneFactory successively checks
the availability of image Irgb, pose G, depth Id and intrinsics
θ, to prepare the production line. Then, the operation is
conducted following Fig. 2.

For example, if Irgb is missing (depth only), the flexion
block (Section III-B) is added to the product line to estimate
the trackable image from depth. If SceneFactory is required to
solve for the intrinsics without a θ input, it will add intrinsic-
free U2-MVD to the line for θ. If SceneFactory is asked to
solve for poses without poses G as input, it will add a tracker
to the line for predicting the pose G

′
. If the metric depth is

missing, the depth estimator block (Section III-C) is added to
estimate the depth. While if the metric depth input is sparse,
e.g., from a LiDAR, only the depth completion part will be
added. When reconstruction is requested by the application,
the completed frame parameters with image, depth, pose
and intrinsics are required to be fed into the reconstruction
block (Section III-D) for online learning and visualization.
And the corresponding parts are all added to the product line.

Then the production line treats each step function as a task.
If a single task is requested (such as MVD, Completion and
etc.), the production line will return the step result as a product.
While if sequential application is requested (such as SLAM,
Reconstruction and etc.), the production line will conditionally
step on each frame for the intermediate and return the product
at the end of this production process.

IV. DUAL-PURPOSES MULTIRESOLUTIONAL NEURAL
POINTS

In this section, we introduce the dual-purpose representation
that simultaneously supports Surface Light Fields (SLF) and
point rasterization. This representation is the first SLF method
to support surface querying.

6

(G · pl,Fpl
)

(G · pl+1,Fpl+1
)G

G

p∗

Fl+1

Fl

(pgt, cgt)

||c− cgt||22

p∗

Fl+1

Fl

c∗

Fig. 4. Illustration of the multiresolution neural points in 2D. The top row indicates the (a) allocating and (b) training during online learning. The bottom
row shows the (c) rasterization and (d) color prediction for visualization. We use multiple levels of neural points, for example, green dots for low level and
pink dots for higher level. The corresponding circle indicate the resolution of that levels of points.

A. Multiresolutional Neural Points

Intuitively, a neural point is a point with a feature. We
denote a neural point as v = (Fv,pv) with feature Fv ∈ Rm

and position pv ∈ R3.
Then, inspired by instant-ngp [42], we use multiresolution

neural points to improve learning efficiency. These are multiple
sets of neural points with different densities. We denote them
as Va the set of v with resolution/density a. Fig. 4 shows a
illustration.

During training, we follow NSLF-OL [25] to feed the set of
colored pairs (pi, ci)i for coding and training. For each point
position, we examine the density in its region and assign neural
points. Then, the MLP coding is applied.

1) Neural Points Allocation: For the feedpoint set Q =
{pi}i, given a set of resolutions a, we downsample to get
{Qa}a∈a. Then, as depicted in Fig. 4 (a), for each point pi in
Qa, we check the closest distance to a level neural points, if
distance is greater than threshold ta, the set of neural points is
extended by adding this point and assigning it initialized with
the feature.

2) Surface Points Encoding: SLF’s inference is on the
surface, so this coding is an interpolation of the feature. For
inference point p ∈ Q, we utilize an efficient K-d tree to
find its K nearest neighbor ({va

k}k∈{1,··· ,K} with distance
{dak}k∈{1,··· ,K}) of inference point from each level as in as
in Fig. 4 (b). The a level feature is

F a
p =

∑
i∈{1,··· ,K}

wiF
a
vi , (2)

where wi = exp(−di
2

σ)/
∑

j exp(−
dj

2

σ).
3) Color Prediction: The color prediction is generated by

concatenating features along different levels and decoded with
MLP: fMLP ◦ fconcat((F

a
p)a∈a).

B. Mapping via Online Learning

We learn this SLF in an online fashion by continuously
feeding data according to [25]. A main thread of this module
is to continuously train the SLF. As soon as a new posed
image with depth is input to the renderer, it is assigned a
trained iteration, ittrained, to train in a least-touch strategy.

During the training iteration of a given frame, it randomly
samples ntrain pixels and passes the corresponding point pairs
{(pn, cn)n∈{1,··· ,ntrain}} to the neural allocation Section IV-A1
and prediction Section IV-A3 for the resulting color {c∗n}n.

We compute the MSE

LMSE =
∑

n∈{1,··· ,ntrain}
∥ c∗n − cn ∥2 (3)

and use the Adam optimizer for stochastic gradient descent
optimization of the features of neural points and MLP. In
addition, we use the following two strategies to speed up the
training.

1) Jump-start Training Strategy: From the experiments, we
find that our SLF converges slowly on the first frame, while
super fast for the following frames if the first frame gets coarse
color. Otherwise, the other frames would also be relatively
slow.

We think the problem arises from the chaos of parameters
as it is randomly initialized. So we set a 10× higher learning
rate for the first 5 iterations and recover then. This way, even
the first image converges in a second.

2) Least-trained First Training Strategy: The second train-
ing strategy is that after the first frame, when another frame is
input, the previous well-trained frame shouldn’t have the same
chance to be trained as the new one. So an intuitive way is to
always train the least trained frame. In this way, all subsequent
frames are converged in one second.

7

Fig. 5. Near-far-imbalance. The ray penetrates the near surface.

C. Improved Point Rasterization (IPR)

Above we explained the training process where the depth is
given. During the inference, we have to estimate the depth. To
this end, point rasterization is introduced as in Fig. 4 (c). For
simplicity, we will now operate on points in camera space. To
render an image with a resolution of H ×W , we cast a batch
of rays (oi = 0,di ∈ S2)i∈{1,··· ,HW} with (o,d) as the ray
source and direction. In implementation, the positions of the
neural points are first transformed into NDC space.

Setting camera space point p = [X,Y, Z]T as an example,
the projected point in NDC is then pndc = [fx

X
Z + px, fy

Y
Z +

py,
1
Z]T , where (fx, fy, px, py) are intrinsic parameters. In this

way, each ray is directed to +zndc, i.e., dndc = [0, 0, 1]T . The
source of the NDC space ray is obtained by projecting d
accordingly.

Points within a radius rndc around each ray (ondc =
[xndc, yndc, zndc]

T ,dndc) are then computed using only the
(x, y) coordinate.

Thus, for each ray (o,d)i, we find its Kray nearest neural
point neighbors and the distance {(pnb,k, dnb,k)}k∈{1,··· ,Kray}
within the radius. The rasterized point is thus

praster =
∑

k∈{1,··· ,K}
wnb,kpnb,k, (4)

where wnb,k = exp(−dk
2

σ)/
∑

j exp(−
dj

2

σ). However, unlike
mesh rasterization, point rasterization suffers from the follow-
ing problems:

1) the point distribution in NDC space is distorted. That
is, the points near the camera are more sparse while the
points far from the camera are more dense compared to
Euclidean space. This results in holes in the near regions.

2) the rasterization may contain several layers of points.
To deal with the hole problem, we introduce an adaptive radius
to PR. This changes the radius depending on the depth.

Considering that our finest resolution is r = 0.005m and
the screen space is at z = 1, we expect that each point with
a 0.005m gap can completely cover a pixel at z = 1. The
coverage radius should be lcoverage =

√
2(r · fim) where fim

is the focal length parameter. To simplify the implementation,
our CUDA code creates a lcoverage × lcoverage window for this
point.

If z < 1, the scenario in Fig. 5 occurs because the points are
distorted in the screen space. The ray will then penetrate the

Fig. 6. Improved Point Rasterization. Increasing the coverage area (above)
avoids the Near-far-imbalace, cf. Fig Fig. 5
and the first-layer detection keeps only these points (below).

near surface. To solve this problem, we increase the coverage
area, the coverage length becomes lcoverage =

√
2(r · fim)/z.

For the second problem, i.e., the problem of multiple layers,
we propose to use first-layer detection to keep only the points
of the first layer. Given n sorted points along the ascending z-
axis, which are traced by a given ray, {z0, · · · zn}, we compute
the occupancy of point zt.

ot =

{
1 t = 0,

zt+1 − zt < th t > 0.
(5)

Then, by cumulating production, we get the mask of the first
layer points:

o{0,··· } = cumprod(o{0,··· }). (6)

We implement our IPR with CUDA, which is about 20
times faster than Pytorch3d’s CUDA implementation (40 FPS
vs 2 FPS). We demonstrate the effect of IPR in Suppl.-B.

D. Visualization

This function plays an important role in rasterizing the depth
image and in extracting the surface point colors under certain
viewpoints. First, we rasterize at the level of neural points
with the highest resolution. Then, transforming back to world
coordinates with T, the color prediction is obtained as in Fig. 4
(d), by

craster = fMLP ◦ fconcat((F a
Tpraster

)a∈a). (7)

We follow [25] to create another thread with an interactive
GUI to provide a first-person view of the scene.

8

Fig. 7. Depth estimation via unposed & uncalibrated multi-view depth estimation model (U2-MVD). The overall pipeline is shown.

This thread receives a signal from the user to rotate and
move the view camera. The view synthesis is rendered in real-
time.

V. DEPTH ESTIMATION

In this section, we introduce our unposed & uncalibrated
multi-view depth estimation model (U2-MVD) that is depicted
as in Fig. 7. As an adjunct to SLAM, we additionally add good
neighbor frame selection for more suitable frames.

A. Depth Recovery with Dense Correlation
We acquire dense correspondences from SOTA optical flow

estimation model DKMv3 [21] for pixel-wise correspondences
li,j ∈ RH×W×2 between the frames i and j. Then the expected
correspondence pixel would be x∗

j = li,j+xi, where xi is the
pixel coordinate in frame i. However, if false correspondences
occur, it will strongly affect the resulting pose and depth. That
is, the optical flow cannot be fully trusted.

1) Cross Check: Because single-source matching is risky,
we apply cross-checking of correspondences to ensure a high-
quality match:

wi,j,(u,v) =

{
1 if ||xi,(u,v) − (x∗

j,(u,v) + Ij,i,(u,v))||2 < 0.5,

0, otherwise,
(8)

where (u, v) is the pixel coordinate in the image.
2) Static Check: We have assumed that our scene is static.

However, optical flow is not designed for static scenes. That is,
the flow is not constrained by the rigid body. Therefore, unlike
previous works [36] that trust the flow, we apply epipolar
constraint to filter out the non-rigid flow:

wi,j,(u,v) =

{
1 if distline(Lj,(u,v),x

∗
j,(u,v))

2 < 3.84,

0, otherwise
(9)

where Lj,(u,v) is the epipolar line for x∗
j,(u,v), distline is the

distance from point to line. The epipolar line Lj is obtained
by solving the essential matrix with 1000 randomly chosen
correspondences.

3) In-image Epipole Check: However, since the above static
check relies on the epipolar constraint, this check does not
work near the epipole, i.e., if the epipole is in the image,
the near-pixels will all pass the static check. Therefore, we
compute the position of the epipole in the image and filter out
the near-pixel correspondences.

4) Dense Bundle Adjustment (DBA): Although the SOTA
optical flow is used, from experiments we learnt, the single
flow is still too fragile for dense reconstruction use. Therefore,
more source frames are usually involved in MVD tasks. In
our formulation, we project the depth of the reference frame
to all source frames and monitor over dense correspondences
between each reference-source pair. In terms of SLAM, we
also collect dense matching from the reference (frame t) to
neighbor frames (Bt) in a window and compute dense BA to
stabilize the inverse depth of reference frame dt.

Then we follow DROID [36], [49] to denote the poses, the
intrinsics and the projection function as G, θ and Π. The cost
function of the Dense Bundle Adjustment (DBA) is the sum
of the projection errors over all neighbouring frames:

L(G,dt, θ) =
∑
j∈Bt

∥ x∗
j −Π(Gtj ◦Π−1(xt,dt, θ), θ) ∥2 .

(10)
This cost function is solved efficiently with Gaussian-
Newton. For the detailed formulation, please refer to DROID-
SLAM [36], [49]. Eq. (10) directly solves poses, intrinsics and
inverse depth at the same time with only optical flow (dense
correspondences) as true value.

9

(a) Frontview (b) Topview

Fig. 8. Example for the monocular depth estimation. Green arrow and blue
arrow point to two walls.

B. Monocular Depth and Depth Completion

In addition to the DBA, we utilize Metric3Dv2 [50] for
monocular depth ẑt on the reference frame t. ẑt guides the
DBA from a good start point. While more importantly, we use
ẑt to assist in completing the DBA depth with vacancy.

Recent monocular depth methods [10], [50] provide high-
quality depth estimation of structures. Please find Fig. 8. In
the frontview, we can find a well-predicted shape of the room.
However, because the estimation from a single image naturally
loses scale and intrinsic information, the relative positions
between different structures are distorted. See the top view
of Fig. 8, the arrows pointing to the walls are not placed
correctly. Besides, monodepth cannot handle vision illusions
such as Ames room in Fig. 11, which makes the inter-structure
of monodepth theoretically not reliable.

Nevertheless, we still find useful information: the copla-
narity is preserved. Which reminds us to extract useful infor-
mation from intra-structure.

Therefore, we intend to utilize a learned covariance function
that semantically identifies intra- and extra-structures, e.g.,
DepthCov [51] that learns deep prior. However, a problem
with DepthCov is that it directly regresses depth image with
true sparse depth observation. This means that if there is no
true sample on certain structures, the depth of such structures
will be arbitrarily wrong. An extreme example is with only 1
sample, then the whole depth image will be the same value.

Conversely, we introduce ScaleCov, which regresses scale
image for monodepth ẑt given DBA depth zt as observation.
ScaleCov does not face this problem, because in the worst
case, identical scale image does not ruin the depth structures.

Following DepthCov, we utilize its deep-learned covariance
function (kernel function) k to formulate ScaleCov as a
Gaussian Process Regression:

s∗ = Kfn(Knn + σ2
nI)

−1sn, (11)

Σ∗ = Kff −Kfn(Knn + σ2
nI)

−1Knf . (12)

Where, we sample non-vacancy depth from DBA depth and
compute scales sn = zt,n/ẑt,n, and use Kff , Kfn and Knn

to denotes the correlation matrix between query points, query
and observations, and observations. s∗ and Σ∗ are the queried
scale and variance that would be associated with the depth
image.

For the finished image we consider the depth to be complete
is more trustworthy and let

s̄t(x) =

{
zt(x)/ẑt(x), if zt(x) > 0

s∗(x), otherwise
(13)

Σ̄t(x) =

{
0, if zt(x) > 0

Σ∗(x), otherwise
(14)

where x is the pixel coordinate.
The final completed depth is

z̄t = s̄t ∗ ẑt, (15)

where the corresponding pixel-wise variance is Σ̄t.
In addition to the MVD completion shown in Fig. 7,

ScaleCov also supports sparse LiDAR depth completion as
shown in Fig. 19.

C. Depth Frame Selection

We observe that all previous dense mono SLAMs estimate
global geometry using keyframes. It makes sense to estimate
depth for keyframes because during the tracking process, the
main burden of keyframes is to gain information. The goal is
to keep the landmarks in view.

However, we find it problematic to use neighbouring
keyframes to support depth recovery. This does not guarantee
a good basis for triangulation, especially in dense cases.

Therefore, the good neighbor frames (NF) may not be
keyframes (KF). In addition, the tracking model stores non-
KF poses as a relative pose to the previous KF. This may
not be accurate. When using our depth model, we only input
intrinsics and images to estimate the depth without using the
poses of the NFs.

Next, we ask the question: “How to choose a frame that is
good for depth estimation?” Reliable depth estimation requires
a reference frame for triangulation. Therefore, our answer is:
“A frame has a good neighborhood for triangulation”.

Since the tracking model provides poses for all frames, we
use the relative poses to the reference frame to help verifing.
We select neighboring frames according to Algorithm 2, where
the relative facing angle and baseline are used.

D. Recover Scale to Global

Since Section V-A is applied without poses, a scale recovery
operation is required to adjust to the tracking scale.

While the global scale is hidden in the tracked landmarks
or provided poses.

When landmarks are given, the relative scale from local
to global is recovered by using RANSAC regression2 st,g =
RANSACRegressor({zlt(x)/z̄t(x)∗s = 1}x∈Pt

), where zlt
and z̄t are the landmarks from the tracker and the estimated
depth from Section V-A, Pt and x are the set of landmarks
in frame t and pixel coordinate. When landmarks are missing,
we adjust depth with the scale difference between solved and
provided poses.

2https://scikit-learn.org/stable/modules/generated/sklearn.linear model.
RANSACRegressor.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html

10

VI. EXPERIMENTS

The main experiments are conducted on multi-view depth
estimation, surface light field and dense SLAM.

A. Settings

1) Implementation Details: We use l = 3 levels of neu-
ral points with resolution starting at r0 = 0.005m with a
multiplier mreso = 4. Our reconstruction model uses the
Adam optimizer with lr = 1e − 3 for both NPs and MLP.
The k-nearest neighbor search between the query and NPs
is done with a K-d tree, while the rasterization is done with
our CUDA-implemented IPR. For the depth estimation model,
we rely on DKMv3 [21] for dense correspondences (optical
flow), and Metric3Dv2 [50] for monocular depth. We follow
DepthCov [51] to build our ScaleCov for depth completion.
We extend the monocular tracking model DPVO [48] to RGB-
D and RGB-L. Due to the optimization of local windowed
frames, we only allow out-of-window (fixed) frames for depth
and reconstruction. All experiments are conducted on a PC
with an Intel i9-13900KSi9-13900KS CPU and an NVIDIA
GeForce 4090 GPU.

2) Datasets: Our experiments mainly rely on datasets for
scenes:

a) Replica [41]: Replica has recently become the most
widely used synthetic dataset for reconstruction and synthesis
of views. It consists of 8 RGB-D sequences for rooms and
offices.

b) ScanNet [52]: ScanNet is also widely used for RGB-
D reconstruction. However, ScanNet is captured with old
camera sensors with high motion blur. Which is harmful for
dense matching.

c) KITTI [53]: The KITTI dataset is one of the most
famous outdoor datasets with stereo camera, Velodyne laser-
scanner and GPS. We use its depth completion data branch
for RobustMVD benchmarking.

d) ETH3D [54]: ETH3D is a widely used benchmark
in the field of 3D reconstruction. This dataset provides multi-
view images with ground truth poses and mesh reconstruction.
We use its multi-view benchmark data branch for RobustMVD.

e) DTU [55]: DTU is the most widely used object-level
dataset in deep learning-based multi-view stereo work. DTU
provides high-quality images with dense point cloud for each
object. Although the tabletop object is not the research focus
of this paper, we use DTU for RobustMVD.

f) Tanks&Temples [56]: Tanks&Temples captures real
indoor and outdoor scenes with high-quality videos. It is
mostly used alongside the DTU dataset for generalization
testing. We also use it for RobustMVD.

g) Our Datasets: We acquire the first dense mono SLAM
purpose RGB-X dataset. Previous RGB-D reconstruction pur-
pose datasets contain large rotations, which is acceptable for
RGB-D SLAM even with blur. However, for dense monocular
purposes, sufficient parallax between consecutive frames is
required. Large rotations and blurry images are detrimental
to both tracking and depth estimation. Moreover, recent SOTA
dense mono SLAMs only focus on small room- or object-scale
reconstruction. With our own datasets we also want to show

(a) Handheld RGB-L (b) UAV RGB-L

(c) Azure Kinect RGB-D (d) Redmi Phone RGB

Fig. 9. Sensors employed for capturing the datasets. See description
in Suppl.-C

that the proposed method scales to larger scenes. Therefore,
we acquire our own dataset using a motion pattern with good
parallax and four different sensor systems, which are shown
in Fig. 9 (For more details see Suppl.-C). The datasets ordered
from small to large scale are:

• Apartment living room using Xiaomi phone (RGB)
• University of Würzburg Robotics hall using a Kinect

Azure (RGB-D)
• Veitshöchheim Palace captured from a handheld mapping

system (RGB-L)
• University of Wüzburg building complex captured from

a UAV of the Center for Telematics (RGB-L)

3) Baselines: We compare our framework to both multi-
view depth estimation (MVD) and incremental scene recon-
struction (ISR) models.

For MVD, we compare with famous classic COLMAP [57],
[58] and Deep learning based methods, such as MVS-
Net [15], Vis-MVSSNet [19], MVS2D [59], DeMon [11],
DeepV2D [13], Robust MVD baseline [43], DUSt3R [20] and
more.

For ISR, we include Dense RGB-D-SLAM SOTAs (NICE-
SLAM [32], Vox-Fusion), Dense Mono SLAM SOTAs (NeRF-
SLAM, DROID-SLAM, NICER-SLAM), Surface Light Field
model (NSLF-OL [25]).

4) Evaluation Metrics: In the MVD test, we follow Ro-
bustMVD [43] to use Absolute Relative Error (absrel) and
the Inlier Ratio to measure the estimation quality. When
ground truth (GT) scale (GT pose) was not given, we follow
DUSt3R [20] to align the depth to GT scale with the median.

In the ISR test, our evaluations are mainly for color, geom-
etry, and pose. For color, we use PSNR, SSIM, and LPIPS.
For geometry, we use accuracy, completion, and completion
ratio. For trajectory, we use ATE RMSE. Before evaluating
the geometry and trajectory, we follow NICER-SLAM to
align the reconstruction and trajectories with the ICP tool of
CloudCompare [60]. For the monocular scenario, scale is also
corrected.

11

TABLE I
MULTI-VIEW DEPTH EVALUATION WITH DIFFERENT SETTINGS: A) CLASSICAL APPROACHES; B) WITH POSES AND DEPTH RANGE, WITHOUT

ALIGNMENT; C) ABSOLUTE SCALE EVALUATION WITH POSES, WITHOUT DEPTH RANGE AND ALIGNMENT; D) WITHOUT POSES AND DEPTH RANGE, BUT
WITH ALIGNMENT; E) WITHOUT POSES, DEPTH RANGE AND INTRINSICS, BUT WITH ALIGNMENT. (PARENTHESES) DENOTE TRAINING ON DATA FROM

THE SAME DOMAIN. THE BEST RESULTS FOR EACH SETTING ARE IN BOLD. THE OVERALL BEST ARE UNDERLINED AND BOLDED.

Methods
GT GT GT Align KITTI ScanNet ETH3D DTU T&T

Pose Range Intrinsics rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel↓ τ ↑

(a)
COLMAP [57], [58] ✓ × ✓ × 12.0 58.2 14.6 34.2 16.4 55.1 0.7 96.5 2.7 95.0
COLMAP Dense [57], [58] ✓ × ✓ × 26.9 52.7 38.0 22.5 89.8 23.2 20.8 69.3 25.7 76.4

(b)

MVSNet [15] ✓ ✓ ✓ × 22.7 36.1 24.6 20.4 35.4 31.4 (1.8) (86.0) 8.3 73.0
MVSNet Inv. Depth [15] ✓ ✓ ✓ × 18.6 30.7 22.7 20.9 21.6 35.6 (1.8) (86.7) 6.5 74.6
Vis-MVSSNet [19] ✓ ✓ ✓ × 9.5 55.4 8.9 33.5 10.8 43.3 (1.8) (87.4) 4.1 87.2
MVS2D ScanNet [59] ✓ ✓ ✓ × 21.2 8.7 (27.2) (5.3) 27.4 4.8 17.2 9.8 29.2 4.4
MVS2D DTU [59] ✓ ✓ ✓ × 226.6 0.7 32.3 11.1 99.0 11.6 (3.6) (64.2) 25.8 28.0

(c)

DeMon [11] ✓ × ✓ × 16.7 13.4 75.0 0.0 19.0 16.2 23.7 11.5 17.6 18.3
DeepV2D KITTI [13] ✓ × ✓ × (20.4) (16.3) 25.8 8.1 30.1 9.4 24.6 8.2 38.5 9.6
DeepV2D ScanNet [13] ✓ × ✓ × 61.9 5.2 (3.8) (60.2) 18.7 28.7 9.2 27.4 33.5 38.0
MVSNet [15] ✓ × ✓ × 14.0 35.8 1568.0 5.7 507.7 8.3 (4429.1) (0.1) 118.2 50.7
MVSNet Inv. Depth [15] ✓ × ✓ × 29.6 8.1 65.2 28.5 60.3 5.8 (28.7) (48.9) 51.4 14.6
Vis-MVSNet [19] ✓ × ✓ × 10.3 54.4 84.9 15.6 51.5 17.4 (374.2) (1.7) 21.1 65.6
MVS2D ScanNet [59] ✓ × ✓ × 73.4 0.0 (4.5) (54.1) 30.7 14.4 5.0 57.9 56.4 11.1
MVS2D DTU [59] ✓ × ✓ × 93.3 0.0 51.5 1.6 78.0 0.0 (1.6) (92.3) 87.5 0.0
Robust MVD Baseline [43] ✓ × ✓ × 7.1 41.9 7.4 38.4 9.0 42.6 2.7 82.0 5.0 75.1
U2-MVD (Ours) ✓ × ✓ × 23.6 31.8 27.6 21.8 2.6 43.7 2.82 81.1 2.26 89.2

(d)

DeMoN [11] × × ✓ ∥t∥ 15.5 15.2 12.0 21.0 17.4 15.4 21.8 16.6 13.0 23.2
DeepV2D KITTI [13] × × ✓ med (3.1) (74.9) 23.7 11.1 27.1 10.1 24.8 8.1 34.1 9.1
DeepV2D ScanNet [13] × × ✓ med 10.0 36.2 (4.4) (54.8) 11.8 29.3 7.7 33.0 8.9 46.4
U2-MVD (Ours) × × ✓ med 2.07 81.9 3.40 41.4 1.89 44.8 2.77 72.0 2.30 81.4

(e)

DUSt3R 224-NoCroCo [20] × × × med 15.14 21.16 7.54 40.00 9.51 40.07 3.56 62.83 11.12 37.90
DUSt3R 224 [20] × × × med 15.39 26.69 (5.86) (50.84) 4.71 61.74 2.76 77.32 5.54 56.38
DUSt3R 512 [20] × × × med 9.11 39.49 (4.93) (60.20) 2.91 76.91 3.52 69.33 3.17 76.68
U2-MVD (Ours) × × × med 2.08 82.01 7.19 22.17 1.87 50.14 15.61 33.74 2.46 81.00

B. Effect of Multiview Detph Estimation

One of the most important components of SceneFactory
is the depth estimator. We follow the Multiview Depth Es-
timation (MVD) benchmark, RobustMVD [43], to evaluate
the depth result on 5 widely used datasets (KITTI, ScanNet,
ETH3D, DTU, and Tanks&Temple).

1) Quantitative Evaluation: Please find Table I the bench-
marking result. The metrics are the Absolute Relative Error
(rel or absrel) and the Inlier Ratio (τ) with a threshold of
1.03 [43]. Since our model also supports intrinsic-free, which
is not listed in [43], we follow DUSt3R [20] to add an
additional column (GT Intrinsics) to indicate the requirement
of intrinsics besides the whole benchmark. Both of ours and
DUSt3R do not require GT pose, depth range, and intrinsics
(in setting (e)). To have a better evaluation of our model, we
add intrinsics and also test our model in both (c) with GT pose
and (d) without GT pose setting.

First of all, in (e) setting (without the input of GT pose,
depth range, or intrinsics), on the indoor and outdoor datasets
ETH3D, Tanks&Temple and KITTI, our model can already
outperform other approaches over all (a-e) folds. On the indoor
dataset ScanNet, our scores do not exceed DUSt3R. What’s

more, our model performs particularly poorly on the object
level (DTU dataset). We believe that this is due to the fact
that the estimation of intrinsic properties adds additional chal-
lenges to the MVD tasks. On ScanNet, the images originally
contained strong motion blur, which is also detrimental to the
estimation of intrinsics. While on the object level dataset, for
example DTU, small intrinsic errors will cause more notice-
able estimation errors, sicne the camera is close to the object.
Please note when we also input intrinsics (in (d) setting), our
model easily achieves overall best result on all datasets over all
(a-e) folds. But, when we further input GT pose (in (c) setting),
our performance is dropped on KITTI and ScanNet datasets.
While on the rest, the performances are still maintained. This is
because ETH3D, DTU and T&T’s GT poses are captured from
the scanning system or COLMAP, which are good enough for
multiview depth estimation purpose. However, KITTI’s GT
pose is from GPS, ScanNet’s GT pose is from RGB-D SLAM,
BundleFusion [61]. Which is more for tracking and mapping
purposes. Therefore, if the GT pose is not available, optimizing
both (pose and depth) will certainly exceed optimizing with a
non-GT GT pose input.

From the condition that overall BEST in Table I are mainly

12

Scene-RGB DUSt3R-MVD DUSt3R-absrel Ours-MVD Ours-absrel

Fig. 10. Result of MVD. Examples from top row to bottom are from the KITTI, ScanNet, ETH3D, DTU and T&T datasets. From left to right are scene
image, depth prediction and absolute relative error (absrel) error of DUSt3R, and depth prediction and absrel error of our model. For depth and absrel images,
higher values are warmer, lower values are colder colors.

ours, we find our model can flexibly support all input settings,
while in a reliable depth estimation performance. This provides
us a good basis for our entire SceneFactory pipeline.

2) Qualitative Evaluation: We are particularly interested in
the unconstraint setting (e) and show the estimated depth and
error in Fig. 10. Where we have attached the qualitative result
of the robustMVD of the 5 datasets in Table I sequentially.

Please find in figure that our result has better performance
on outdoor and indoor dataset, except for ScanNet. It is
consistent with the result in Table I (e) where the intrinsic
solving via dense matching of our method is fragile for
ScanNet that contains strong motion blur caused by a rather
old RGB camera. However, DUSt3R is more optimized for
monodepth (because during the benchmarking, DUSt3R does
not benefit from more source views). So it is not affected by
this issue.

Although our average score on object dataset DTU is lower,
it is only because our method fails in some cases. While the
robustMVD selected qualitative figure is still better.

3) Demonstration on Custom Data: As we claimed earlier,
DUSt3R is not guaranteed to work due to the limitation of the
training dataset. In addition, due to the fact that 1) DUSt3R
does not improve with increasing number of source images
in the RobustMVD benchmark and 2) performs similarly
with and without source images. We suggest that the SOTA

(a) Ames Room (ref frame) (b) Ames Room (src frame)
Fig. 11. MVS input of Ames room. The true shape please find webpage 4.

DUSt3R is mainly based on its strength in monocular depth.
To verify this, we test the vision illusion that also happens to

a human eye vision, the Ames Room3. Here we show the data
of the Ames Room in Fig. 11. Where we capture the image
from Sketchfab resource4 Ames Room to create the illusion
of a distorted room. Where typically shows incorrect relative
scales on the left and right corners. DUSt3R, as we suspected,
shows the Ames room as a normal room, as in Fig. 12. Our
model, on the other hand, truly reproduces the distorted space.

The above tests show that our model not only scores well,
but is also more reliable.

3https://en.wikipedia.org/wiki/Ames room
4https://sketchfab.com/3d-models/ames-room-iphone-3d-scan-

b59a0dcf49de4df2a50104abf3eab7e4

https://en.wikipedia.org/wiki/Ames_room
https://sketchfab.com/3d-models/ames-room-iphone-3d-scan-b59a0dcf49de4df2a50104abf3eab7e4
https://sketchfab.com/3d-models/ames-room-iphone-3d-scan-b59a0dcf49de4df2a50104abf3eab7e4

13

TABLE II
FULL MODEL COMPARISON ON REPLICA SEQUENCES. HEADER INDICATES SCENE NAMES.

Office0 Office1 Office2 Office3 Office4 Room0 Room1 Room2

NICE-SLAM [32]
PSNR ↑ 28.38 30.68 23.90 24.88 25.18 23.46 23.97 25.94
SSIM ↑ 0.908 0.935 0.893 0.888 0.902 0.798 0.838 0.882
LPIPS ↓ 0.386 0.278 0.330 0.287 0.326 0.443 0.401 0.315

Surface Light Field methods

NSLF-OL [25]+DI-Fusion [26]
PSNR ↑ 28.59 26.70 21.10 21.89 25.74 23.24 25.68 24.88
SSIM ↑ 0.913 0.879 0.863 0.847 0.893 0.816 0.883 0.888
LPIPS ↓ 0.371 0.497 0.362 0.368 0.401 0.371 0.308 0.330

SceneFactory (Ours)
PSNR ↑ 33.38 31.89 24.84 25.39 31.14 27.98 29.51 30.64
SSIM ↑ 0.921 0.893 0.837 0.873 0.893 0.858 0.883 0.898
LPIPS ↓ 0.167 0.267 0.208 0.129 0.178 0.111 0.149 0.145

(a) DUSt3R’s Frontview (b) DUSt3R’s Topview

(c) Ours Frontview (d) Ours Topview

Fig. 12. MVD on Ames room. (a) and (b) shows the frontview and the
topview of DUSt3R’s prediction. Which falsely predicts the distorted space
as a rectangular room. (c) and (d) shows the frontview and the topview of
our prediction. Which well predicts the real shape.

C. Evaluation on Surface Light Fields (SLF)

In the test above, we generate depth from images. In
this subsection, we generate a color image and explore the
importance of our surface light field model.

1) Replica Test: To mitigate the effects of other SceneFac-
tory blocks, image, depth, pose and intrinsics (Irgb, Id,G, θ)
are all available in the dependency graph (Fig. 2).

First, we follow the scene-level SLF model NSLF-OL [25]
to test on the Replica dataset. From Table II, our model
strongly outperforms the NICE-SLAM and SOTA SLF model,
NSLF-OL on all PSNR, SSIM, LPIPS metrics. To make the
comparison more obvious, we show images in the Fig. 13,
the first two rows are from the Replica dataset. From this,
we see that the main advances of our model are that on the
one hand, unlike NSLF-OL, our DM-NPs itself can provide a

cleaner surface, and on the other hand, our SLF recovers the
color better. Also, NSLF-OL only works alongside the surface
model, while our SLF model can support surface generation
by itself.

TABLE III
SURFACE LIGHT FIELD COMPARISON ON SCANNET SEQUENCES.

0568 0164

NSLF-OL
+Di-Fusion

PSNR ↑ 19.09 18.78
SSIM ↑ 0.500 0.595
LPIPS ↓ 0.575 0.551

SceneFactory

PSNR ↑ 19.90 21.85
SSIM ↑ 0.573 0.688
LPIPS ↓ 0.536 0.444

2) ScanNet Test: Following the same setup, we continue
testing on ScanNet. Please find Fig. 13. The ScanNet image
has a lot of blur on the image and more noise in the depth
(due to the low-quality capture).

However, our result is still better than NSLF-OL with better
quantitative evaluation (Table III). From the image shown
in Fig. 13 the row 3, 4, we see that the structure of NSLF-
OL is not well reconstructed. Our result is much clearer.

D. Evaluation of Dense SLAM
In this section, we evaluate SceneFactory’s main applica-

tion, Dense SLAM, in both RGB-D and monocular settings.

TABLE IV
CAMERA TRACKING RESULTS ON THE REPLICA DATASET. ATE RMSE

[CM] (↓) IS USED AS THE EVALUATION METRIC.

rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

RGB-D input
NICE-SLAM 1.69 2.04 1.55 0.99 0.90 1.39 3.97 3.08 1.95
Vox-Fusion 0.27 1.33 0.47 0.70 1.11 0.46 0.26 0.58 0.65
SceneFactory 0.20 0.12 0.14 0.17 0.07 0.13 0.29 0.22 0.17

RGB input
COLMAP 0.62 23.7 0.39 0.33 0.24 0.79 0.14 1.73 3.49
NeRF-SLAM 17.26 11.94 15.76 12.75 10.34 14.52 20.32 14.96 14.73
DIM-SLAM 0.48 0.78 0.35 0.67 0.37 0.36 0.33 0.36 0.46
DROID-SLAM 0.34 0.13 0.27 0.25 0.42 0.32 0.52 0.40 0.33
NICER-SLAM 1.36 1.60 1.14 2.12 3.23 2.12 1.42 2.01 1.88
SceneFactory 0.20 0.20 0.15 0.20 0.12 0.25 0.29 0.22 0.20

1) Replica Test: First, we follow Dense Mono SLAM
SOTA, NICER-SLAM, to have a complete test on both color
and geometric on Replica dataset.

14

NSLF-OL SceneFactory Ground Truth

Fig. 13. Result of Surface Light Field test on Replica and ScanNet dataset.

We show the tracking performance, from Table IV, Scene-
Factory achieves the best tracking performance overall. While
with RGB input, SceneFactory uses Momo-SLAM DPVO, but
with RGB-D input, SceneFactory uses our generalized DPVO
with RGB-D, which achieves the best performance.

Notably, with RGB and depth as input, NSLF-OL requires
an external reconstruction model to provide the surface pre-
diction. While in contrast, SceneFactory itself also supports
surface. We render input frames for depth and accumulate a
point cloud. To fit in the evaluation script of NICER-SLAM,
we extract mesh via Screened Poisson Surface Reconstruc-
tion for the evaluation. Table V shows the performance of
the reconstruction. In addition, to demonstrate the ability to
reconstruct surface color, we show the color result in Table V
in the view synthesis comparison. The upper rows are with
RGB-D input, while the lower rows are with RGB input.

From the tables, we learn that with RGB-D input, Scene-
Factory outperforms all SOTAs by far in both reconstruction

and view generation over all scenes by a wide margin. To
better demonstrate the quality, we show a qualitative evaluation
in Fig. 14. Here our method works best. Please note the highly
detailed texture on the quilt.

In the monocular setting with RGB input only, our model
cannot outperform the NeRF-like SOTA NICER-SLAM.
Please find Fig. 14, our model 1) does not support completion,
2) directly fuses depth images without optimizing the geom-
etry that causes false surface rendering. Which we consider
the reason that cannot surpass the NICER-SLAM. However,
NICER-SLAM takes ∼ 10 hours train per scene excluding
the preprocessing time that costs more, while our model takes
only minutes. But as a DBA-based method, compared to our
closest model DROID-SLAM, our model still achieves much
better scores to a level as useful as the NeRF-like method. We
believe this is due to the post-optimization nature of the global
geometry for NeRF-like models. While DBA-based methods
rely more on a separate solution of the local inverse depth.

15

TABLE V
RECONSTRUCTION RESULTS ON THE REPLICA DATASET. BEST
RESULTS ARE HIGHLIGHTED AS first , SECOND , AND THIRD .

rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

RGB-D input

N
IC

E

Acc.[cm]↓ 3.53 3.60 3.03 5.56 3.35 4.71 3.84 3.35 3.87

Comp.[cm]↓ 3.40 3.62 3.27 4.55 4.03 3.94 3.99 4.15 3.87

Comp.Ratio[<5cm %]↑ 86.05 80.75 87.23 79.34 82.13 80.35 80.55 82.88 82.41

Vo
x-

Fu
si

on Acc.[cm]↓ 2.53 1.69 3.33 2.20 2.21 2.72 4.16 2.48 2.67

Comp.[cm]↓ 2.81 2.51 4.03 8.75 7.36 4.19 3.26 3.49 4.55

Comp.Ratio[<5cm %]↑ 91.52 91.34 86.78 81.99 82.03 85.45 87.13 86.53 86.59

O
ur

s Acc.[cm]↓ 1.49 1.16 1.24 1.11 0.91 1.37 1.62 1.52 1.30
Comp.[cm]↓ 3.65 2.88 4.31 1.68 2.23 3.59 3.59 4.02 3.24
Comp.Ratio[<5cm %]↑ 87.61 90.02 86.83 93.43 90.39 86.24 84.98 85.07 88.07

RGB input

N
eR

F-
S. Acc. [cm]↓ 11.84 10.62 11.86 9.32 14.40 11.54 16.31 11.11 12.13

Comp. [cm]↓ 5.63 5.88 9.22 13.29 10.17 6.95 7.81 5.26 8.03

Comp. Ratio [%]↑ 61.13 68.19 47.85 37.64 56.17 66.20 55.67 61.86 56.84

D
R

O
ID

-S
.

Acc. [cm]↓ 12.18 8.35 3.26 3.01 2.39 5.66 4.49 4.65 5.50

Comp. [cm]↓ 8.96 6.07 16.01 16.19 16.20 15.56 9.73 9.63 12.29

Comp. Ratio [%]↑ 60.07 76.20 61.62 64.19 60.63 56.78 61.95 67.51 63.60

N
IC

E
R

-S
. Acc. [cm]↓ 2.53 3.93 3.40 5.49 3.45 4.02 3.34 3.03 3.65

Comp. [cm]↓ 3.04 4.10 3.42 6.09 4.42 4.29 4.03 3.87 4.16
Comp. Ratio [%]↑ 88.75 76.61 86.1 65.19 77.84 74.51 82.01 83.98 79.37

O
ur

s Acc. [cm]↓ 3.61 4.02 5.53 2.71 2.17 4.09 4.23 3.69 3.76

Comp. [cm]↓ 6.98 6.76 12.24 6.46 5.59 10.31 7.53 10.46 8.29

Comp. Ratio [%]↑ 74.06 72.59 63.85 77.80 75.26 65.56 68.89 69.10 70.89

TABLE VI
NOVEL VIEW SYNTHESIS EVALUATION ON REPLICA DATASET. BEST

RESULTS ARE HIGHLIGHTED AS first , SECOND , AND THIRD .

rm-0 rm-1 rm-2 off-0 off-1 off-2 off-3 off-4 Avg.

RGB-D input

N
IC

E
-S

. PSNR ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42
SSIM ↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809
LPIPS ↓ 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vo
x-

F. PSNR ↑ 22.39 22.36 23.92 27.79 29.83 20.33 23.47 25.21 24.41
SSIM ↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801
LPIPS ↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

O
ur

s PSNR ↑ 27.72 28.86 30.17 32.59 31.39 24.44 25.34 30.47 28.87
SSIM ↑ 0.850 0.872 0.899 0.915 0.892 0.837 0.867 0.887 0.877
LPIPS ↓ 0.124 0.166 0.143 0.165 0.262 0.208 0.132 0.184 0.173

RGB input

N
eR

F-
S. PSNR ↑ 16.45 19.62 21.17 21.44 20.86 15.49 15.11 18.96 18.64

SSIM ↑ 0.576 0.700 0.754 0.773 0.747 0.731 0.688 0.790 0.720
LPIPS ↓ 0.330 0.177 0.170 0.335 0.229 0.251 0.282 0.241 0.252

D
R

O
ID

-S
.

PSNR ↑ 21.41 24.04 22.08 23.59 21.29 20.64 20.22 20.22 21.69
SSIM ↑ 0.693 0.786 0.826 0.868 0.863 0.828 0.808 0.819 0.812
LPIPS ↓ 0.329 0.270 0.228 0.232 0.207 0.231 0.234 0.237 0.246

N
IC

E
R

-S
.

PSNR ↑ 25.33 23.92 26.12 28.54 25.86 21.95 26.13 25.47 25.41
SSIM ↑ 0.751 0.771 0.831 0.866 0.852 0.820 0.856 0.865 0.827
LPIPS ↓ 0.250 0.215 0.176 0.172 0.178 0.195 0.162 0.177 0.191

O
ur

s PSNR ↑ 23.12 24.10 24.11 26.15 24.68 21.55 22.44 24.42 23.82
SSIM ↑ 0.686 0.749 0.765 0.816 0.852 0.731 0.739 0.789 0.766
LPIPS ↓ 0.353 0.307 0.366 0.338 0.291 0.381 0.346 0.375 0.344

There is no post-optimization involved.
In addition, the DBA-based method mainly relies on trian-

gulation. However, the replica data set is originally acquired
for the purpose of dense RGB-D reconstruction, but not for
dense mono. This means that the trajectory of the replica
sequences inherently does not consider the effect of the
interrelation of frames for depth estimation.

To better illustrate this issue, we test on our own dataset
for Dense Mono SLAM purpose in large scene, with mostly
xy-directional motion.

The recent SOTA NeRF-like Dense SLAM, NICER-SLAM,
highly focuses on the repeated encircling capturing of an ob-
ject/scene. This is because NICER-SLAM theoretically expires
on large scale scene: 1) NICER-SLAM works in bounded
model, the poses are required to bound the scene (from their
open release); 2) NICER-SLAM’s hashgrid resolution is preset
to 2048 with about 24 GB usage of GPU memory. But this
is far too low for a large scene, and it is hard to increase the
resolution further. (This is also the reason why the unbounded
multi-hashgrid method, NSLF-OL [25], uses SLF instead of
NeRF). So as the scale increases, NICER-SLAM’s tracking
and then mapping will be dysfunctional. Even the new branch,
Gaussian blending based dense mono SLAM, MonoGS, is
rarely tested at large scale. While SLAM in robotics is usually
excircle-like capturing the scene.

Therefore, to better explore the performance, our dataset
mainly contains middle- and large-range scenes which are
rarely involved by them.

E. Dense Mono SLAM Purpose dataset

The above tests give an overview of the performance of the
tracker and the reconstructor.

We collect this dataset because we find that the current
RGB-D sequences are all intended for RGB-D tracking or
dense RGB-D reconstruction in small scenes. Due to the
fact that RGB-D sequences contain real 3D metric depth, the
sequence can simply move arbitrarily. For example, in ScanNet
and Replica there is a lot of almost purely rotational motion.

On the other hand, monocular sequences datasets are only
used for tracking and SfM purposes because no depth ground
truth is available. For dense mono SLAM, however, the
challenge goes beyond tracking and mapping. Unlike mono
SLAM that only estimates sparse points with matching pairs,
dense mono SLAM requires a much larger region to cover.

Furthermore, in real-world robotics applications, the scene
is usually captured on large scenes and non-repeat capturing
which is rarely involved in recent dense mono SLAM SOTAs.

Therefore, we have not found any published dataset that
is primarily for Dense Mono SLAM purposes in robotics. To
fill this gap, we hereby present the first large-scale RGB-D/L
dataset for dense mono SLAM purposes:

• Mid-scale (∼ 20× 10m) scene (RGB-D) as Fig. 15a,
• Large-scale (∼ 80× 50m) scene (RGB-L) as Fig. 15b,
• Small-scale (∼ 5× 5m) scene (RGB) as Fig. 15c,
• Very-large-scale (∼ 300 × 200m) scene (RGB-L)

as Fig. 15d

16

NICE-SLAM Ours NICER-SLAM Ours GT
RGB-D Input RGB Input

Fig. 14. Qualitative evaluation on the Replica dataset for selected views.

(a) Robotics hall (RGB-D) (b) Veitshöchheim Palace (RGB-L)

(c) Living room (RGB) (d) University campus (RGB-L)

Fig. 15. Our four datasets featuring different ranges.

We capture our mid-range data, Robotics Hall, with an Azure
Kinect RGB-D camera. Because of the range limitation of
Kinect Depth (1m − 5m), we turn to RGB-L for large-
range data, Veitshöchheim Palace. For small-range data, living
room, we use cell phone for just quick quality demonstration.
To explore the extreme, we capture very large-range data,
university campus (language center) with an aerial view RGB-
L capture.

Figs. 15a to 15c’s trajectory is a circle because the target
is on the same level. Fig. 15d’s drone trajectory is parallel to
the ground but the aerial view also well fits the xy-directional
translation.

In the previous test, we aligned the surface result with
ICP, which becomes challenging in the large scene due to
the large partial non-overlap. To standardize the comparison,
in our dataset, we use the alignment matrix from trajectory
comparison to transform the result reconstruction to ground
truth.

1) Mid-scale data: For a handheld camera, since our task
is mainly with scene modeling, our facing direction of the
camera is inside-out. Therefore, our capture scheme should

TABLE VII
TEST ON ROBOTICS HALL OF OUR DATASET.

NICER. MonoGS Ours Ours (RGB-D)

ATE [m] ↓ 2.44 2.17 0.59 0.22
Acc. [m]↓ 1.009 0.724 0.360 0.138
Comp. [m]↓ 1.246 0.837 0.368 0.141
Comp. Ratio [%]↑ 33.11 49.58 74.84 99.13
PSNR ↑ 19.20 - 15.13 14.65
SSIM ↑ 0.690 - 0.442 0.468
LPIPSalex ↓ 0.449 - 0.628 0.615
Time 8 hours 25 min. 10 min. 5 min.

(a) NICER-SLAM (b) MonoGS

(c) Ours (RGB) (d) Ours (RGB-D)

Fig. 16. Test result (3D maps) on our mid-range scene, i.e., robotics hall.
Trajectories are plotted blue.

follow a certain rule, as shown in Fig. 15:
• move in circle in the scene
• viewing direction is perpendicular to the moving direc-

tion.
Please find Table VII the result on robotics hall. SceneFac-

tory can easily achieve best tracking and reconstruction than
two most new Dense Mono SLAM SOTA, NICER-SLAM and

17

MonoGS. Moreover, we find NICER-SLAM that works better
on image rendering even with much worse tracking and incon-
sistent scale. To reveal the truth, we visualize the trajectory
with reconstruction. Please find Fig. 16, both NICER-SLAM
and MonoGS severely suffer severely from scale. This further
confirms our speculation: The tightly coupled Dense Mono
SLAM SOTAs (NICER-SLAM, MonoGS) models attend to
one thing and lose sight of another.

Also, the open version of NICER-SLAM requires prepro-
cessing of the data sequence (COLMAP and more), which
takes many more hours than the 8h in the table. MonoGS is
relatively faster, but the result can hardly be viewed in any non-
trained view. Which is, you can only view the mid-range and
large-range (next test) in the same trained view. As claimed
in NSLF-OL [25], this is not usable in SLAM because SLAM
captures contain very sparse view directions.

TABLE VIII
TEST ON SCHLOSS OF OUR DATASET.

NICER. MonoGS Ours Ours (RGB-L)

ATE [m] ↓ - 12.90 0.31 0.37
Acc. [m]↓ - 7.050 5.074 0.423
Comp. [m]↓ - 19.956 0.215 0.321
Comp. Ratio [%]↑ - 2.6435 95.67 86.54
Time 4 (28%) hours 2 hours 13 min. 9 min.

(a) NICER-SLAM (b) MonoGS

(c) Ours (RGB) (d) Ours (RGB-L)

Fig. 17. Test result (3D map) on our large-range scene, i.e., Veitshöchheim
Palace.

2) Large-scale data: For even larger scenes, RGB-D cam-
eras are not applicable, therefore, we turn to Livox LiDAR to
provide the metric depth.

We use our handheld RGB-L camera to capture scenes.
Since the range is large, our target should be captured outside-
in following the same rule as Section VI-E1.

For the larger range scene, from Table VIII, NICER-SLAM
fails at 28%, MonoGS shows very large tracking error. This
is also revealed by the Fig. 17. MonoGS losses the scale in

the middle. In addition the better performance on large-range,
the time cost should also be considered. NICER-SLAM takes
4 hours for only 28% without the counting of preprocessing.
MonoGS takes 2 hours for the scene. While ours are still in
an acceptable range.

3) Aerial-view data test: To better demonstrate the poten-
tial, we further expand the test scale to very large. This is too
large to capture with simple handheld equipment. So we turn
to an airborne device.

The data is collected with a custom-built UAV (DJI Matrice
300 RTK) equipped with a LUCID camera and a co-calibrated
OUSTER OS1 laser scanner, flying over a university building
that is a former high school.

The Dense SLAM result is demonstrated in Fig. 18. Without
using of metric depth. SceneFactory provides a high-quality
reconstruction of this very large scene.

F. Exclusive Applications

In addition to the previously demonstrated hot tasks, Scene-
Factory also supports other usages.

1) LiDAR Completion: Our ScaleCov model supports com-
pletion of metric LiDAR depth. Given an RGB and sparse
depth image from Livox, ScaleCov regresses the full depth
and variance to the client. We provide an example in Fig. 19.

This technique is also utilized in previous test Fig. 17d.
2) Dense Depth-only SLAM: Color sensors tend to be more

sensitive to the environment. If a color sensor fails, e.g. due
to poor lighting conditions or at night, the depth sensor could
play a role instead.

SceneFactory implements depth-only SLAM under the fac-
tory lines of depth-flexion and RGB-D SLAM. This first
transforms the depth image into a trackable RGB image with
depth-flexion. Then the application is used in the same way as
our RGB-D SLAM application. Please find Fig. 20 our demo
of office2 in Replica dataset, with depth only as input, The
reconstruction result is of high quality and smoothness.

VII. CONCLUSION

In this paper, we have introduced a workflow-centric and
unified framework for incremental scene modeling, called
SceneFactory. Following the structure of a “factory”, we have
designed “assembly lines” for a wide range of applications, to
achieve high flexibility, adaptability and production diversifi-
cation.

In addition, within the framework, we propose an unposed
& uncalibrated multi-view depth estimation model for highly
flexible use. We introduce a surface accessible light field
design along with an improved point rasterization to enable
surface query for the first time.

Our experiments show that SceneFactory is highly compet-
itive or even better than compact SOTAs in such applications.
The high quality and broad applicability of the design further
enhances the progress of our design.

Needless to say, a lot of work remains to be done. In
future work, we will focus on adding more applications to
the production lines, such as deformable reconstruction, active
SLAM, or scene understanding [62].

18

(a) Aerial image, oblique view (∼ 300m× 200m) (b) Our result (RGB)

Fig. 18. SceneFactory’s Dense Mono SLAM on our very-large range scene, i.e., University campus.

(a) RGB (b) Livox depth

(c) Completed depth (d) Depth variance

Fig. 19. Example for the completed LiDAR depth with ScaleCov.

Fig. 20. Depth-only SLAM result on the Replica dataset. Shown without the
ceiling for better visualization.

REFERENCES

[1] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct
monocular slam,” in European conference on computer vision. Springer,
2014, pp. 834–849.

[2] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE transactions
on robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[3] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam,” IEEE Transactions on Robotics, vol. 37,
no. 6, pp. 1874–1890, 2021.

[4] K. Ebadi, L. Bernreiter, H. Biggie, G. Catt, Y. Chang, A. Chatterjee,
C. E. Denniston, S.-P. Deschênes, K. Harlow, S. Khattak, L. Nogueira,
M. Palieri, P. Petráček, M. Petrlı́k, A. Reinke, V. Krátký, S. Zhao, A.-a.
Agha-mohammadi, K. Alexis, C. Heckman, K. Khosoussi, N. Kottege,
B. Morrell, M. Hutter, F. Pauling, F. Pomerleau, M. Saska, S. Scherer,
R. Siegwart, J. L. Williams, and L. Carlone, “Present and Future of
SLAM in Extreme Environments: The DARPA SubT Challenge,” IEEE
Transactions on Robotics, vol. 40, pp. 936–959, 2024.

[5] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d
cameras,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2013, pp. 2100–2106.

[6] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in 2011
10th IEEE international symposium on mixed and augmented reality.
Ieee, 2011, pp. 127–136.

[7] Davison, “Real-time simultaneous localisation and mapping with a
single camera,” in Proceedings Ninth IEEE International Conference
on Computer Vision. IEEE, 2003, pp. 1403–1410.

[8] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[9] R. Lösch, M. Sastuba, J. Toth, and B. Jung, “Converting depth images
and point clouds for feature-based pose estimation,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2023.

[10] W. Yin, C. Zhang, H. Chen, Z. Cai, G. Yu, K. Wang, X. Chen, and
C. Shen, “Metric3d: Towards zero-shot metric 3d prediction from a sin-
gle image,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023, pp. 9043–9053.

[11] B. Ummenhofer, H. Zhou, J. Uhrig, N. Mayer, E. Ilg, A. Dosovitskiy,
and T. Brox, “Demon: Depth and motion network for learning monocular
stereo,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 5038–5047.

[12] H. Zhou, B. Ummenhofer, and T. Brox, “Deeptam: Deep tracking and
mapping,” in Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 822–838.

[13] Z. Teed and J. Deng, “Deepv2d: Video to depth with differentiable
structure from motion,” in International Conference on Learning Rep-
resentations, 2019.

[14] P.-H. Huang, K. Matzen, J. Kopf, N. Ahuja, and J.-B. Huang, “Deepmvs:
Learning multi-view stereopsis,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 2821–2830.

[15] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, “Mvsnet: Depth inference
for unstructured multi-view stereo,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 767–783.

[16] Y. Yao, Z. Luo, S. Li, T. Shen, T. Fang, and L. Quan, “Recurrent mvsnet
for high-resolution multi-view stereo depth inference,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 5525–5534.

[17] J. Yang, W. Mao, J. M. Alvarez, and M. Liu, “Cost volume pyramid
based depth inference for multi-view stereo,” in Proceedings of the

19

IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 4877–4886.

[18] X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, and P. Tan, “Cascade cost
volume for high-resolution multi-view stereo and stereo matching,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 2495–2504.

[19] J. Zhang, S. Li, Z. Luo, T. Fang, and Y. Yao, “Vis-mvsnet: Visibility-
aware multi-view stereo network,” International Journal of Computer
Vision, vol. 131, no. 1, pp. 199–214, 2023.

[20] S. Wang, V. Leroy, Y. Cabon, B. Chidlovskii, and J. Revaud, “Dust3r:
Geometric 3d vision made easy,” arXiv preprint arXiv:2312.14132,
2023.

[21] J. Edstedt, I. Athanasiadis, M. Wadenbäck, and M. Felsberg, “Dkm:
Dense kernelized feature matching for geometry estimation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 17 765–17 775.

[22] Z. Yu, S. Peng, M. Niemeyer, T. Sattler, and A. Geiger, “Monosdf:
Exploring monocular geometric cues for neural implicit surface recon-
struction,” Advances in neural information processing systems, vol. 35,
pp. 25 018–25 032, 2022.

[23] M. M. Johari, C. Carta, and F. Fleuret, “Eslam: Efficient dense slam
system based on hybrid representation of signed distance fields,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 17 408–17 419.

[24] A. Rosinol, J. J. Leonard, and L. Carlone, “Nerf-slam: Real-time
dense monocular slam with neural radiance fields,” arXiv preprint
arXiv:2210.13641, 2022.

[25] Y. Yuan and A. Nüchter, “Online learning of neural surface light fields
alongside real-time incremental 3d reconstruction,” IEEE Robotics and
Automation Letters, 2023.

[26] J. Huang, S.-S. Huang, H. Song, and S.-M. Hu, “Di-fusion: Online
implicit 3d reconstruction with deep priors,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 8932–8941.

[27] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson,
and G. Gkioxari, “Accelerating 3d deep learning with pytorch3d,” arXiv
preprint arXiv:2007.08501, 2020.

[28] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in 2011
10th IEEE international symposium on mixed and augmented reality.
Ieee, 2011, pp. 127–136.

[29] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” in Seminal graphics: pioneering efforts
that shaped the field, 1998, pp. 347–353.

[30] Y. Yuan and A. Nüchter, “An algorithm for the se (3)-transformation
on neural implicit maps for remapping functions,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 7763–7770, 2022.

[31] ——, “Uni-fusion: Universal continuous mapping,” IEEE Transactions
on Robotics, 2024.

[32] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and
M. Pollefeys, “Nice-slam: Neural implicit scalable encoding for slam,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 12 786–12 796.

[33] M. Bloesch, J. Czarnowski, R. Clark, S. Leutenegger, and A. J. Davison,
“Codeslam—learning a compact, optimisable representation for dense
visual slam,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 2560–2568.

[34] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison, “Deepfactors:
Real-time probabilistic dense monocular slam,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 721–728, 2020.

[35] L. Koestler, N. Yang, N. Zeller, and D. Cremers, “Tandem: Tracking and
dense mapping in real-time using deep multi-view stereo,” in Conference
on Robot Learning. PMLR, 2022, pp. 34–45.

[36] Z. Teed and J. Deng, “Droid-slam: Deep visual slam for monocular,
stereo, and rgb-d cameras,” Advances in neural information processing
systems, vol. 34, pp. 16 558–16 569, 2021.

[37] A. Rosinol, J. J. Leonard, and L. Carlone, “Probabilistic volumetric
fusion for dense monocular slam,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2023, pp. 3097–
3105.

[38] C.-M. Chung, Y.-C. Tseng, Y.-C. Hsu, X.-Q. Shi, Y.-H. Hua, J.-F. Yeh,
W.-C. Chen, Y.-T. Chen, and W. H. Hsu, “Orbeez-slam: A real-time
monocular visual slam with orb features and nerf-realized mapping,”
in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 9400–9406.

[39] A. Rosinol, J. J. Leonard, and L. Carlone, “Nerf-slam: Real-time
dense monocular slam with neural radiance fields,” in 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2023, pp. 3437–3444.

[40] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam,” IEEE Transactions on Robotics, vol. 37,
no. 6, pp. 1874–1890, 2021.

[41] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap: Implicit mapping and
positioning in real-time,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 6229–6238.

[42] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM transactions on
graphics (TOG), vol. 41, no. 4, pp. 1–15, 2022.

[43] P. Schröppel, J. Bechtold, A. Amiranashvili, and T. Brox, “A benchmark
and a baseline for robust multi-view depth estimation,” in 2022 Inter-
national Conference on 3D Vision (3DV). IEEE, 2022, pp. 637–645.

[44] E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold,
and C. Rother, “Dsac-differentiable ransac for camera localization,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 6684–6692.

[45] J. Revaud, Y. Cabon, R. Brégier, J. Lee, and P. Weinzaepfel, “Sacreg:
Scene-agnostic coordinate regression for visual localization,” arXiv
preprint arXiv:2307.11702, 2023.

[46] C.-H. Lin, C. Kong, and S. Lucey, “Learning efficient point cloud
generation for dense 3d object reconstruction,” in proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[47] J. Wang, B. Sun, and Y. Lu, “Mvpnet: Multi-view point regression net-
works for 3d object reconstruction from a single image,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019,
pp. 8949–8956.

[48] Z. Teed, L. Lipson, and J. Deng, “Deep patch visual odometry,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[49] A. Hagemann, M. Knorr, and C. Stiller, “Deep geometry-aware camera
self-calibration from video,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2023, pp. 3438–3448.

[50] M. Hu, W. Yin, C. Zhang, Z. Cai, X. Long, H. Chen, K. Wang, G. Yu,
C. Shen, and S. Shen, “A versatile monocular geometric foundation
model for zero-shot metric depth and surface normal estimation,” 2024.

[51] E. Dexheimer and A. J. Davison, “Learning a depth covariance function,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 13 122–13 131.

[52] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor
scenes,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 5828–5839.

[53] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[54] T. Schops, J. L. Schonberger, S. Galliani, T. Sattler, K. Schindler,
M. Pollefeys, and A. Geiger, “A multi-view stereo benchmark with high-
resolution images and multi-camera videos,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 3260–
3269.

[55] R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, and H. Aanæs, “Large scale
multi-view stereopsis evaluation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2014, pp. 406–413.

[56] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and temples:
Benchmarking large-scale scene reconstruction,” ACM Transactions on
Graphics, vol. 36, no. 4, 2017.

[57] J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 4104–4113.

[58] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, “Pixelwise
view selection for unstructured multi-view stereo,” in Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part III 14. Springer, 2016, pp.
501–518.

[59] Z. Yang, Z. Ren, Q. Shan, and Q. Huang, “Mvs2d: Efficient multi-
view stereo via attention-driven 2d convolutions,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2022,
pp. 8574–8584.

[60] R. from http://www.cloudcompare.org/, “Cloudcompare (version 2.11),”
2024.

[61] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt, “Bundle-
fusion: Real-time globally consistent 3d reconstruction using on-the-fly

20

surface reintegration,” ACM Transactions on Graphics (ToG), vol. 36,
no. 4, p. 1, 2017.

[62] Y. Ming, X. Yang, W. Wang, Z. Chen, J. Feng, Y. Xing, and G. Zhang,
“Benchmarking neural radiance fields for autonomous robots: An
overview,” arXiv preprint arXiv:2405.05526, 2024.

SUPPLEMENTARY

A. Good Neighbor Selection

The dense bundle adjustment relies on the selection of good
neighbors. We select neighbor frames by filtering the relative
poses according to Algorithm 2.

Algorithm 2: Depth neighbor frame selection.

1 Function
FindGoodNeighbors([Gnb,1, · · ·],Gi), τnb = 2):

// select frame by relative pose

2 ids = [];Ts = []
3 for Gj ∈ [Gnb,1, · · ·] do

// transformation from i to j

4 Tji = G−1
i Gj ;

5 Rji, tji = Tji;
6 lbaseline = ||tji||2;
7 θfacing = arccos([0, 0, 1]Rji[0, 0, 1]

T);
8 if lbaseline > τbaseline and θfacing > τfacing

then
9 ids.append(j); Ts.append(Tji)

10 end
11 end
12 if len(ids) < τnb then
13 return ∅;
14 else

// return the best τnb XY directional

baselines

15 return SortByBaselineXY (ids, Ts)[: τnb];
16 end
17 End Function

B. Improved Point Rasterization Ablation Test

a) Effect of Adaptive Radius: Please note Fig. 21, there
is a black hole on the desktop. This is due to the fixed radius
of pytorch3d’s point rasterization in NDC space. Which would
be much more severe if the camera goes even closer. While
our IPR does not have this problem.

(a) Pytorch3d Rast. (∼ 0.57s) (b) Ours Rast. (∼ 0.025s)

Fig. 21. The effect of the Adaptive Radius (left pytorch3d) and our
implementation (right) in an arbitrary view.

b) Effect of First-layer filter: Apart from the adaptive
radius, our IPR also gets the surface with a layer filter as
in Fig. 22. Without the layer filter, the resulting surface points
will be in the middle of multiple surface layers, resulting in
empty space during color rendering.

(a) w/o Layer filter (b) w/ Layer Filter

Fig. 22. The application of the Layer Filter (right) removed blank space (left).

C. Description of the Sensor Systems

For collecting our own RGB-X dataset, described in
Sec. VI-A2, two commercial sensors are employed: the Mi-
crosoft Azure Kinect RGB-D sensor and the built-in camera of
a Xiaomi Redmi smartphone. Furthermore, two custom-built
sensor systems are used for capturing the datasets:

a) Handheld mapping system: Our custom-built hand-
held mapping device is show in Fig. 9(a). It is based on
a commercial camera rig with the sensors mounted to the
top bar. The sensors are a Livox AVIA Lidar and two IDS
U3-30C0CP global-shutter cameras with a Sony IMX392
2.35 MPixel RGB CMOS sensor. The Lidar sensor has a
Field of View (FoV) of 70.4◦ × 77.2◦. The cameras are
equipped with 4 mm lenses, which results in a similar FoV
of 77.3◦× 61.9◦. Below the sensors a 3D printed enclosure is
mounted with an embedded PC for data recording and power
supply electronics. The cameras and lidar are co-calibrated
using a calibration board.

From the system we extract a synchronized RGB-L data
stream with Lidar scans and camera images with 10 Hz. While
the system features stereo cameras, in this work we focus
on mono SLAM. Therefore, only the camera closest to the
Lidar sensor is used. The data is captured with the system
handheld and an average walking speed of 0.84 m

s . During
data collection the sensors always points towards the captured
object. The trajectory around Veitshöchheim Palace is 251 m
long and was captured in 5 min. It consists of 3000 Lidar scans
and 3000 RGB images.

b) UAV mapping system: The UAV mapping system is
based on the DJI Matrice 300 RTK and is shown in Fig. 9(b).
It carries an Ouster OS1-128 Lidar and a LUCID Vision Labs
Phoenix PHX032S-CC global-shutter camera with a Sony
IMX265 3.2 MPixel RGB CMOS sensor. The Lidar sensor has
a FoV of 360◦×45◦. The camera is used with a 4.5 mm fixed
lens with a horizontal FoV of 84.7◦. The co-calibrated camera
is mounted directly on top of the Lidar sensor. For the data
collection an embedded PC is mounted on top of the UAV.
The aerial imagery is captured with an oblique angle and a
lawnmower pattern flight trajectory.

	Introduction
	Related Works
	Dense SLAM
	Neural Rendering in SLAM
	Multi-view Depth Estimation

	A Unified Framework for Incremental Scene Modeling
	Tracking Block
	Flexion Estimation Block
	Depth Estimation Block
	Reconstruction Block
	Online-learning thread
	Visualization thread

	Main Function

	Dual-purposes Multiresolutional Neural Points
	Multiresolutional Neural Points
	Neural Points Allocation
	Surface Points Encoding
	Color Prediction

	Mapping via Online Learning
	Jump-start Training Strategy
	Least-trained First Training Strategy

	Improved Point Rasterization (IPR)
	Visualization

	Depth Estimation
	Depth Recovery with Dense Correlation
	Cross Check
	Static Check
	In-image Epipole Check
	Dense Bundle Adjustment (DBA)

	Monocular Depth and Depth Completion
	Depth Frame Selection
	Recover Scale to Global

	Experiments
	Settings
	Implementation Details
	Datasets
	Baselines
	Evaluation Metrics

	Effect of Multiview Detph Estimation
	Quantitative Evaluation
	Qualitative Evaluation
	Demonstration on Custom Data

	Evaluation on Surface Light Fields (SLF)
	Replica Test
	ScanNet Test

	Evaluation of Dense SLAM
	Replica Test

	Dense Mono SLAM Purpose dataset
	Mid-scale data
	Large-scale data
	Aerial-view data test

	Exclusive Applications
	LiDAR Completion
	Dense Depth-only SLAM

	Conclusion
	References
	Good Neighbor Selection
	Improved Point Rasterization Ablation Test
	Description of the Sensor Systems

