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Abstract

This paper presents a raytracing-based approach for estimating the depth of shallow water bodies. Based on a calibrated, multi-view

camera setup above the water surface, we find correspondences that lie below the surface in pairs of two views. We trace rays from

each camera to each triangulated correspondence, as if no interface is present in the scene. Using snell’s law, we then compute

refracted rays to optimize an objective function with a theoretical optimum as the Hesse normal form of the water surface. The

challenge of our work is to keep the number of constraints in our mathematical model as low as possible. For a practical evaluation,

we record images with two different setups: a laboratory setting with a box filled with water at a depth of 14.5 cm and a water

roll-of container at 2.2 m, and use both fiducial markers as well as computed features as correspondences. Our results show that

with a well-setup optimizer, our method converges towards the true water plane and is usable to estimate the depth of our setups.

1. Introduction

P
HOTOGRAMMETRY through a water surface is a challenging

problem. Here, calibrated cameras are placed above the

water surface, with the object to be measured being located be-

low. For above water stereo vision as one form of above water

photogrammetry, the epipolar constraint enforced by known ex-

trinsics is used for 3D reconstruction. It states that any single

point in one camera’s view maps to a line in another camera’s

view. However, this does not hold as soon as an interface

between two (or multiple) media is placed in the light’s path;

refraction according to snell’s law makes the initial constraint

unapplicable. To this end, different methods for 3D reconstruc-

tion are required.

It is possible to consider naive triangulations of found corres-

pondences, as if no air-water interface is in the scene. For in-

stance, placing fiducial markers below the water surface, for

them to be detected in each camera’s image is an option. Us-

ing these unique correspondences, triangulation from stereo-

geometry gives a 3D point. However, this introduces errors in

the computed points w.r.t. the true 3D points, depending on the

marker-interface and interface-camera distances as well as their

orientation. Once a flat calibration pattern is placed below the

water surface this effect is especially noticeable: in that case,

its triangulated points appear curved.

This issue motivates modeling and estimating the air-water in-

terface, as errors are correctable once the pose and shape of

the air-water interface is known. Typically, many constraints

are imposed on the modeling problem, even more so when the

water surface is distorted by waves as the latter quickly be-

comes an ill-posed problem. Current research does not make

it clear whether or not a generalized, low-constraint approach

to the mathematical modeling problem of multi-view, multi-

media photogrammetry of unknown underwater scenes exists

that successfully estimates water surfaces and therefore would

be usable to correct refraction errors in 3D measurements.

Our approach explores the implications of reducing the num-

ber of constraints on the modeling problem, using an objective

function with a novel criterion. The main contributions of this

paper are: 1. an objective function with a novel refractive-plane

and backrefractive based disparity criterion. 2. Its evaluation

using four calibrated cameras applied in both: 3. a laboratory

setting of a filled water tank, with both fiducials and detected

features, and 4. an outdoor setting with a filled roll-off con-

tainer (van der Lucht et al., 2019) with CCTag fiducials (Calvet

et al., 2016). We additionally observe how CCTag fiducials are

robust against distortions caused by waves.

2. Related Work

Previous work on defining refractive objective functions im-

poses different types of constraints on the modeling problem.

Maas (1995) already showed how strict geometric modeling of

a windowed underwater camera enclosure w.r.t. the camera it-

self and the scene makes it possible to correct 3D points. He

requires the camera to be at a fixed, known distance from a

glass window of known thickness that seperates air from wa-

ter of known depth. In another work of Ferreira et al. (2005),

the authors show how highly constrained measurement setups

allow to treat multi-media underwater resonstruction as a con-

ventional stereo problem that utilizes the epipolar constraint.

For this, they require the camera orientations to be in a certain

range, in order to keep the incident angle of light small.

Morris and Kutulakos (2005) base their model on the fact that

normals at a media intersecion need to be consistent across two

views with each different rays from that intersection – this nor-

mal consistency constraint has since seen multiple applications

(Qian et al., 2018, 2017; Ding et al., 2011). To model an ar-

bitrarily shaped refractive surface, Morris and Kutulakos pos-

ition two cameras in a stereo setup with known position w.r.t.

a reference pattern. They show that in their case, two views

are sufficient to reconstruct the shape of the surface, and coin

the term ‘refractive disparity’, defined as the distance between

points on that reference pattern that are projected onto the im-

age, to provide a more robust approach for comparing refractive

normals. We also define a disparity between points that are the
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intersections of rays and planes. However, we do not strictly

require any known reference plane on the bottom of the under-

water scene, only correct correspondences are a requirement.

We compute planes from the cross-product of each uncorrec-

ted, direct ray with its refracted ray at the intersection with an

interface estimate.

More recently, multi-media photogrammetry has seen an in-

crease of interest in the research community. Zhang et al.

(2014) use distortion and defocus of a video sequence to re-

cover the immersed surface, starting from a reference image

that features a flat water surface. Qian et al. (2018) deploy

a multi-camera system with nine adjacent views from a near-

nadir perspective. By utilizing single-shot correspondences of

optical flow, they numerically optimize an objective function

to recover both the water surface and shape of a visually rich

underwater scene. Instead of requiring nine views, Xiong and

Heidrich (2021) recover both water and underwater surfaces

by taking a video sequence of a static underwater scene with

a single static camera. They then treat the different media inter-

sections of the same subsurface point at different points in time

as distinct views of the subsurface point. Most recently, deep

learning (Thapa et al., 2020) and neural radiance fields (Wang

et al., 2023; Zhan et al., 2023) have also been applied to water

and underwater surface reconstruction. There is also focus on

the analysis of water effects to reduce the complexity down to

a planar surface (Mulsow et al., 2024; Sardemann et al., 2024),

while Rofallski et al. (2024) present an application of flat wa-

ter plane estimation and refraction correction with waterlogged

wood conservation. Our approach is more closely related to

photogrammetrics and bathymetry, since initially, our goal is

to estimate the water surface, and in case of a wavy surface,

its average surface. As a result, we receive the (average) water

height computed from corrections based on naively triangulated

points.

3. Methodology

We now introduce our raytracing model and error criterion,

shown in Figure 1. Afterwards, we present our objective func-

tion that is then applied to pair-of-two combinations from mul-

tiple, calibrated cameras.

3.1 Raytracing Model

Starting with sparse correspondences of underwater points that

are visible in at least two views, we triangulate a set of warped

points {X̃i} from a combination of two views. Since the views’

intrinsics and extrinsics are calibrated, tracing rays vi1 from each

camera’s center O1 to each warped point X̃i is possible. With

an initial guess of the water surface S⋆, we calculate the inter-

section Ii1 = vi1 ∧ S⋆. Given the surface normal n of S⋆ at

Ii1, we get a refracted ray ri1 from vi1 (both without sub- and

superscripts) with Snell’s law :

r = ρ v − n

[

ρn · v +
√

1− ρ2
(
1− (n · v)2

)
]

, (1)

with fixed ρ = 1.33 as the refractive index. This refracted ray

does not intercept X̃i – with the exception of n ∥ vi1. Both

vi1 × ri1 and Ii1 now span the plane of refraction P i
1 . This is

repeated for a second camera O2, such that we get ri2 and P i
2 .

For the true water surface S, ri1,2 need to intersect in the true

point Xi. For any other estimate S⋆, this needn’t be the case.

3.1.1 Refractive-Plane Residual Given these two refrac-

ted rays ri1,2, one approach is to compute the shortest distance

between them and define this as an error for optimization. How-

ever, this results in a similar problem as it was previously de-

scribed by van der Lucht et al. (2018). There, the authors in-

tersect camera and laser rays that are refracted at a known flat

water surface. They note that calculations solely on rays do

not provide a robust solution, as measurements as well as cal-

ibration parameters are prone to errors that get amplified when

projected onto rays. Instead, they propose to intersect rays and

refractive planes. We now apply this principle to our problem

of intersecting two camera rays and define our refractive-plane

residual as:

e
i = r

i
1 ∧ P

i
2

︸ ︷︷ ︸

Ji

1→2

− r
i
2 ∧ P

i
1

︸ ︷︷ ︸

Ji

2→1

, (2)

where {J i} define the intersection of the refracted ray from one

camera with the plane of refraction of another camera’s ray.

Thus, for S⋆ ≈ S, we get J i
1→2 ≈ J i

2→1 ≈ Xi, and explicitly

ei ≈ 0.

3.1.2 Backrefractive Residual Optimizing ei for {X̃i} will

unsuitably lead to the trivial solution where J i
1→2 and J i

2→1

meet in X̃i. To this end, we need to define a second category

of residuals that counterweights this trivial solution. We choose

to trace J i
1→2 back through the opposite camera’s intersection

Ii2, calling it bi2→1. Refracting this ray at Ii2 gives us a ray b̃i1→2

that intersects the origin of camera O2 for S⋆ ≈ S. This is

again repeated for J i
2→1, enabling us to define the backrefract-

ive residual:

e
i
2 = O2 − I

i
2 − b̃

i
1→2

[

(O2 − I
i
2) · b̃i1→2

]

(3)

as the orthogonal distance ei2 from b̃i1→2 to O2. (ei1 analogous.)

3.2 Objective Function

We implement our optimization routine using the Ceres frame-

work of Agarwal et al. (2023). Thus, the objective function for

a single stereo pair of our problem is defined as:

f({X̃}) =
∑

i



λrp

(

∥ei∥2
)

+
∑

c∈{1,2}

λbr

(

∥eic∥2
)



 (4)

with λrp,br as refractive-plane and backrefractive loss func-

tions. Since we use more than two cameras in our experimental

setups, we optimize
(
4

2

)
camera combinations as one bundle. In

practice, we set:

λrp(x) = x (5)

λbr(x) = 2
(√

1 + x− 1
)

(6)

To both trivial and pseudo-huber losses respecively. λbr is

chosen for optimizer stability since otherwise, backrefractive

errors disproportionately increase with larger interface-camera

distances. Ceres further defines a scale factor that can be used to

change the robustification behaviour. Our evaluation shows that

different scale factors αbr are required for distinct measurement

setups and scenes.
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Figure 1. Geometrical refraction model for a single, naive subsurface triangulation. Initial rays vi1,2 originating from cameras O1,2

meet at the naive triangulation X̃i. An estimated water plane refracts vi1,2 at intersections Ii1,2. The plane spanned by vi1 and ri1 is

intersected by ri2 (vice versa). The distance between these intersections is our refractive-plane disparity. Finally, tracing these

intersections back through the opposite interface intersections should intersect the opposite camera. The distance between these

back-refractions and the respective camera origin coins the second backrefractive disparity.

4. Evaluation

Our evaluation consists of two measurement setups: 1. a labor-

atory setting with an euro container filled with 14.5 cm of a

strictly flat water surface, and 2. a 40 000 l Roll-on/Roll-of con-

tainer (van der Lucht et al., 2019) with both a nearly flat water

surface of approximately 2.2 m and a wavy water surface, intro-

duced by a wave generator.

4.1 Laboratory Setting

Figure 2 shows our laboratory setup. To obtain both intrinsic

and extrinsic parameters per camera, we use the method of

Zhang (2000) and 150 images of a 29×29 ChArUco pattern with

a square length of 2.5 cm. We set one camera as the reference

camera and transform each other camera’s obervations into this

reference coordinate frame.

4.1.1 Apriltags First, we run the detector from the apriltag

library (Olson, 2011) with an immersed planar pattern to ob-

tain four accurate, corner-refined correspondences per marker.

Since our optimization routine is an iterative approach, we need

to set an initial guess for the Hesse normal form of the interface.

In this case, we compute it from a PCA-decomposition of the

naive triangulations, of which the normal vector with smallest

eigenvalue is a suitable candidate for a plane normal. Then, we

choose the mean of the naive triangulations plus a scaled nor-

mal vector as the support point for the initial guess. Finally,

we scale this point such that the initial guess is at the midpoint

between naive triangulations and our cameras. This is applic-

able because the distance from the cameras to the true water

surface is larger than the surface-marker distance.

4.1.2 Features Placing fiducial markers in the submerged

scene may not always be feasible. If the visual structure of

the scene allows for it, detected feature keypoints may be used

instead. However, this requires that the computed feature points

are consistent between views. For an initial evaluation of the

robustness of our approach with less robust correspondences,

we use SIFT features (Lowe, 2004) detected in the images of

Figure 2.

4.2 Water Container

Figure 3 depicts our camera setup mounted on a crane above

the water container. The height of the camera setup above the

water surface is approximately 60 cm. Because we lack large

enough calibration patterns to facilitate the intrinsic calibration

at the measurement distance of almost 3 m, we take the intrinsic

calibration from the laboratory setup and only re-calibrate the

extrinsics. This is required as we change the physical arrange-

ment of the cameras into a square.
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Figure 2. Experimental laboratory setup. Left: Overview of the setup. The cameras are positioned in a rectangle, viewing the scene at

oblique angles, at a height of 70 cm above the floor. Right: Individual views of the cameras.

Figure 3. Outdoor setup. Cameras mounted in a square are hung

on a crane, looking down towards the water tank.

Figure 4. Views of the tank with a nearly flat water surface.

Figure 5. View of one camera with surface distorted by waves,

with some fiducials having a distorted appearance.

The underwater surface of the container does not contain

enough unique visual structure to simply rely on feature match-

ing. Thus, we add fiducials to the walls and floor of the con-

tainer. However, the dimensions of the container makes the use

of the marker board of Figure 2 unsuitable. To this end, we

use CCTag markers (Calvet et al., 2016) printed on aluminium

Dibond plates, attached in a quasi-random way to the metal

container using magnets. These coded fiducials are originally

conceptualized to be detectable under highly challenging con-

ditions. Figure 4 shows the cameras’ views of the CCTags. We

determine the initial guess similarly to our laboratory setup, but

move the support point such that the initial guess lies outside

of the water. Although this requires – strictly speaking – know-

ledge about the position of the true water plane, one could al-

ways assume that an initial plane placed closely in front of the

camera setup needs to be outside of the water.

To explore our method’s robustness against significant distor-

tions of the water surface, we also run our optimizer on images

that are distorted by waves. Figure 5 shows one exemplary im-

age where almost all CCTag fiducials are distorted by waves.

Still, the tags and their codes remain detectable, persumably

because the visual distortion of light refraction by sinusoidal

waves is similar enough to high amounts of motion blur – the

original application of CCTags.

5. Results

This section presents the results we obtain with our method. To

calculate the average water depth from the solution of the Ceres
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(a) Laboratory, with apriltag pattern n = 34 (b) Tank 1, witout markers on walls n = 23

(c) Tank 2, with markers on walls n = 31 (d) Wavy tank, with markers on walls n = 29

Figure 6. Visualization of converged solutions. Largest black, cyan, yellow and magenta points are camera origins. Scattered points

around cameras are the closest distances of backrefractions. Estimated surface in blue, with normal as a white line. White points

below the surface show the naive triangulations, while blue points are their corrections.

Setup αbr dPCA d̄ d(n+1)/2

Lab (April)
0.04

14.67 cm 14.67 cm 14.74 cm
Lab (SIFT) 14.30 cm 14.30 cm 14.29 cm

Tank 1
0.35

2.12 m 2.11 m 2.11 m
Tank 2 2.09 m 2.08 m 2.13 m
Wavy Tank 2.09 m 2.06 m 2.15 m

Table 1. Depth results of converged solutions.

solver, we have multiple options. In the case of the laboratory

setup, we can simply decompose the set of corrected under-

water points {J} and take the distance dPCA from the mean

to the solved plane. This is feasible because of two reasons:

1. the low measurement error at a comparatively short meas-

urement distance, and 2. the camera intrinsics being calibrated

with images taken at that distance. Both of these reasons result

in J i
n→n+1 ≈ J i

n+1→n∀ i, n . Or in other words: {J} being

close to the true points of the apriltag pattern. In the case of

the water container, both previous reasons do not strictly apply.

Because of that, we compute the mean d̄ and median distance

d(n+1)/2 for each of the points Ji.

Table 1 shows the numeric results visualized in Figure 6. Gen-

erally, we find that the parameter αbr introduced in Section 3.2

needs to be adjusted on a per-scene basis. Otherwise, the solver

either does not converge at all or towards a degenerate solu-

tion, caused by the nonlinearity of light refraction that intro-

duces local minima.

In our experiments with the laboratory setup, the optimizer con-

verges towards the true water plane. Measured from the correc-

ted points, the depth evaluates to 14.6 cm with apriltag corres-

pondences, which is within 1 mm of our initial estimate, and

14.3 cm when computed with SIFT correspondences. Since the

water plane is close to the pattern in relation to the camera’s

distance from the surface, visible in Figure 6a, we need to set a

low value for αbr. The cause for this lies in the way we define

our backrefractive error, as the angle between the incident and

backrefracted ray aplifies the orthogonal distance of the backre-

fractive ray to the camera orign. We have to increase this para-

meter in our watertank setup because of that reason. However,

we can keep this value constant, not depending on whether or

not we include fiducials on the tank’s walls (Figure 6c) or only
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have them on its floor (Figure 6b). We also come to the con-

clusion that our optimizer converges when the image data is

disturbed by a wavy water surface. Figure 6c shows the conver-

gence in this case, with one mis-identification where the naive

triangulation is above the water surface. The proposed Ceres

framework however successfully classifies this as an outlier.

6. Conclusion

This paper presents a mathematical algebra model for multi-

media photogrammetry. Using the Ceres framework, we suc-

cesfully apply nonlinear-least-squares optimization to the non-

linear problem of light refraction. Its goal was to analyze the

behaviour of said approach when applied to real-world data.

Although more sophisticated methods exist in the literature, our

method keeps the number of constraints on the scene small and

only requires adjusting one robustification parameter αbr in-

between measurement scenes. When the ideal case of a flat

water plane is present, this method is able to estimate the true

water surface. With a wavy water surface, it is possible to de-

termine it’s average height and the distorted point’s average po-

sition. In theory, it should be possible to replace the water plane

with a more complex surface model. However, this requires that

there must be enough points available for the problem to not be

underdetermined. Needless to say, a lot of work remains to be

done. Future work will concentrate on statistical analysis of our

method. For this, more experiments are required: different ar-

rangements of fiducials, wave shapes and magnitudes, camera

poses, loss functions and parameters, and water surface models.
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