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Abstract— Palletizing, or packing rectangular boxes of vari-
ous sizes onto pallets, is a frequently encountered task in many
commercial scenarios, e.g., shipment of goods. An extension of
this problem is the automated placement of boxes on pallets,
henceforth task completion, by means of industrial robot arms.
The palletizing and task completion problems are treated in
the context of the IEEE ICRA 2012 Virtual Manufacturing
Automation Competition. We approach the palletizing challenge
by a winner-takes-all strategy, where multiple heuristics are
evaluated against the given datasets. Our results show a
performance comparable to that of the commercial software
benchmark from the previous competitions. We solve task
completion in USARSim by picking boxes and placing them
on a pallet. Our inverse kinematics algorithm consists of a
geometric and numeric component.

I. INTRODUCTION

Palletizing items of different sizes, i.e., mixed palletizing,
is a common challenge that occurs in many commercial
scenarios. Examples are shipping goods from one part of
the warehouse to another, or loading containers and delivery
vehicles. The shape of goods varies in many manufacturing
setups but rectangular cuboids appear most often and hence
most of the research in this area focuses on cuboid box
packing. Related problems also occurs in other domains, such
as VLSI circuit design for packing elements on circuit boards
or in paper mills for minimizing the waste when cutting rolls
of paper.

Mobility, on the other hand, is the task of moving a pallet,
on which items have been packed, from one part of the
warehouse to another, usually using a fleet of autonomous
robots. As a preliminary step to the mobility task, items
need to be placed on a pallet. This is referred to as task
completion and is done by using industrial robot arms with
robust manipulation capabilities. Task completion involves
picking items that arrive on a conveyor belt, or are placed at
some location in the scene, and placing them onto the pallet.

In this paper, we describe the approach of the Jacobs
University Bremen team for the VMAC palletizing challenge
and present the task completion component. In solving the
palletizing problem, we implement a decision algorithm
that evaluates multiple heuristics for solving the 3D bin
packing problem and applies the solution with the highest
score. We ensure a minimal execution time through a multi-
threaded implementation and we facilitate the extension of
the algorithm with new heuristics through a modular software
architecture. For task completion, we use an USARSim
setup, where we simulate a conveyor belt and allow the
KUKA KR60 robot to grip boxes and place them on a pallet.
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To solve the forward and inverse kinematics for the 6 degrees
of freedom (DOF) robot, we implement a geometric and a
numeric approach, that we use alternatively, to compensate
for each other’s weaknesses.

II. RELATED WORK

Extensive research has been done on the geometric version
of the palletizing problem as manifest by the numerous
literature occurrences that address both the 2-D and 3-
D cases. In most cases, the problem is formulated as a
cutting stock problem and it is well known that either such
formulation or an explicit packing problem formulation give
rise to an NP-hard task [9]. Despite the fact that the problem
occurs in various domains, most of the existing approaches
are applicable across many domains. For instance, algorithms
developed for VLSI component arrangement are easily adapt-
able and applicable to the palletizing problem [9].

A large number of the existing approaches have been
focussed on finding an ideal representation scheme for the
problem mainly in two-dimensional cases [5] [7] and [8].
Most of these algorithms showed decent results of standard
benchmark datasets such as the Beasley1 as shown in [9].

More recent work, from a previous VMAC competition
in 2010, compared the performance of commercial software
with the contributions from competitors. The issue of metrics
used in design of the algorithms for solving the problem was
also addressed [1].

III. PALLETIZING

Our assumption is, that the order will contain many articles
of equal height. More specifically we assume that in most
cases there are enough articles of equal height to fill one
or more layers of same height. Using this simplification we
reduce the 3D knapsack problem to a 2D knapsack problem
in each individual layer of same article height. Arranging
objects of same height in one layer will create a nearly
seamless surface on the top. Hence another layer can be
easily placed on it. If our initial assumption is right, i.e.,
there are many articles of same height, then this heuristic
avoids the problem of stacking freely in three dimensions.
This prevents articles from overlapping or tumbling down
and allows for efficient stacking.

In most orders there will be a number of articles that are
left over from being arranged into separate layers or are not
enough to form their own layer to start with. Those articles
will be put on top of the previously arranged layer stack. The
idea is to build incomplete layers of same height, i.e., layers
that do not cover the whole area of the pallet. However, these
layers are sorted by the area they cover in descending order.



Thus, the layer covering the most area goes to the bottom of
the top pile. Once all remaining articles fit into the available
area next to each other, they are arranged in a final layer.
This last layer can consist of articles of different height, as
no other layer will be stacked on top.

As left over articles are most certainly of very different
height, our approach evaluates other algorithms than the layer
heuristic. One candidate for such an algorithm is the three
dimensional corner block list (CBL) algorithm [9].

A. Implementation

We are using Python to implement our approach due to fast
development. Computationally expensive subtasks are to be
subsequently converted to a compiled language like C/C++
for faster execution.

The input XML file order.xml as well as the out-
put XML file packlist.xml do not use any attributes
but arrange information by XML tags only. This makes it
possible to easily serialize the input as well as the output
XML into a Python data structure only using the built-in
dict and list types as containers. Normal XML parsers need
their own datatypes as they need to differentiate between a
node’s attributes and child elements. Parsing from XML to a
Python dictionary and the other way round is accomplished
using the xml.etree module. For quick visual verification a
minimal SVG library was written as well. It mostly serves
for debugging purposes and allows to render arbitrary shapes
onto a 2D canvas.

B. Arranging articles in layers

As explained above, our heuristic will arrange articles of
the same height into individual layers and then stack those
layers on top of each other. An illustration of this layered
structure can be seen in Figure 1. As all articles in one layer
are of the same height, stacking is not expected to create
any problems. Therefore, the performance of our algorithm
is also dependent on how well we arrange the articles in
each layer. This subtask is a two dimensional knapsack
problem and is therefore NP-hard, as its three dimensional
counterpart. So another heuristic will be used here.

For the arrangement in one layer, the three dimensional
cuboid articles will be simplified to the two dimensional
rectangles representing the base rectangle of the cuboid. This
simplification is possible since every article in one layer is
of the same height. So after sorting the articles into bins of
articles with equal height, each bin will be processed and its
content sorted into as many full layers as possible, potentially
leaving a rest. A layer is considered full if the sum of the
base rectangles of the articles that are arranged in it, is larger
than 70% of the area the pallet provides. This threshold is
chosen arbitrarily and is adjusted depending on the scenario.

Considering one bin containing articles of equal height that
have been reduced to their base rectangles, the algorithm will
sort the rectangles by area. Afterwards, another algorithm
will arrange them into one layer. This step is repeated until
no new layer can be created. The possible leftover articles are
kept in a list for later processing. The heuristic for arranging

Fig. 1: partial article stack as rendered by the palletViewer
evaluation software

this list of rectangles into a bigger rectangle of pallet size is
as follows: The empty pallet is represented by an empty node
of the size of the pallet. When the first rectangle is inserted,
it is placed in the upper left corner of the unused space and
partitions the remaining space into an empty rectangle to the
right of the inserted rectangle and an empty rectangle below
the inserted rectangle. This insertion operation is stored in a
tree like structure. The root node is the pallet area itself and
upon insertion of the first article, the node becomes occupied
and two empty child nodes are created of the size of the
empty rectangles to the right and bottom of the inserted one.
On every insertion of a new rectangle, the tree is traversed
in breadth-first order to find an empty leaf node. If a fitting
one is found, then this node is marked as full and two new
leaves are added.

Since new rectangles are always inserted in the most
upper left position available, it is likely that there is some
space between the most right rectangles and the right border
and the lowest rectangles and the lower border. This is
problematic when stacking several layers on top of each other
as an overhang might be created. Hence, it is beneficial to
spread out the placed rectangles so that they are most equally
distributed over the available space. This is achieved by post-
processing the tree that was created by the method above and
spreading out each horizontal line to the available height and
each rectangle in a horizontal line to the available width. An
illustration of this processing step can be found in Figure 2b.

C. Optimizing the result

One feature of our approach is that many properties are
quickly adaptable to different scenarios to increase perfor-
mance:

• when sorting items for arranging them into layers, sort
by base area, maximum of length and width or article
weight

• process the articles rotated by 90 degrees
• arrange the items as if the pallet was rotated by 90, 180

or 270 degrees



(a) rectangles arranged on pallet area (b) rectangles spread out over pallet area

Fig. 2: 2D placement heuristic for arbitrary layer configuration

• run algorithm on half or quarters of a pallet and join
the individual results afterward

• try 3D-CBL for the leftover articles
• try 3D-CBL for the whole order
Articles come with very different densities and the evalu-

ating algorithm checks for a good distribution of mass and a
low placement of the center of mass. Hence it is reasonable
to place heavy articles in the center of each layer. Our
heuristic for building a layer works by starting at one of
the corners and is hence not optimal for arranging articles
around the middle. Two approaches to remedy the situation
are listed above. Firstly, layers could be rotated so that while
heavy packages are still at the corners, the mass is equally
distributed around all four corners. Secondly, it is possible
to run the algorithm on a pallet area that is divided into two
or four parts and then started at the center of an edge or the
middle of the pallet area respectively.

Since it is hard to decide on a one-size-fits-all strategy
without sacrificing performance in special cases, all possible
permutations of the options above are enumerated by the
algorithm and compared against the evaluation software. The
configuration that produces the highest score will be the final
output of the algorithm. This brute-force method currently
takes about 8 to 10 hours to complete, so in further research
it will be used to find settings that never produce good output;
these settings are then be removed from the tried options so
that the overall runtime reduces to an acceptable value.

IV. TASK COMPLETION

In task completion we use an USARSim simulated KUKA
KR60 robot arm with an attached vacuum gripper end
effector, as given in Figure 3a. We focus on the simplified
task of moving the end effector to a given pose, e.g., on the
conveyor belt, gripping the object, moving to another given
pose, e.g., on the pallet, releasing the object and repeating.
Solving this task requires solving the inverse kinematics (IK)
problem, for this 6 DOF robot. To this end, we implement
two approaches: yielding a geometric solution, to be used
for far-reaching poses, and a numeric solution, to be used
for close-reaching poses.

Using the previously computed pack list from the pal-
letizing task, we spawn boxes of sizes as specified in the

simulator one at a time at a specific pickup location from
which the robot grabs them and puts them onto the pallet.
The processes of picking up the boxes and spawning new
ones are synchronized using message passing.

A. Overview and Implementation

We are using ROS [10] to implement our inverse kine-
matics algorithms and communicate with the USARSim
environment. Once the robot is spawned in USARSim, our
ROS node, i.e., client, listens to messages about joint angles,
gripper status, etc. The client node then receives a goal pose,
either from a configuration file or ROS launch file, and based
on a Euclidean distance threshold decides whether to apply
the geometric or the numeric IK solution. Once the end
effector has reached the desired pose, the object is gripped
and the goal pose is changed. Once the end effector reaches
the new pose, the object is released and the arm is reset to
its resting position. This cycle repeats, until the connection
to USARSim is closed.

A preliminary step in our implementation is the description
of the robot model in ROS, given by the Unified Robot De-
scription Format (URDF), which is an XML file representing
the coordinate systems of the robot joints and the positions of
the joint links. The visualization of our KUKA KR60 robot
model is presented in Figure 3b.

Given the URDF file, we attempted to use an off-the-
shelf IK solver [3], [4]. However, these either yielded no
solution or required unreasonably long execution times.
Consequently, we built our own IK solvers, based on text-
books [11], [2], as detailed in subsections IV-B, IV-C.

B. Geometric IK solution

This approach computes the closed form solution of the 6
DOF inverse kinematics, by solving a system of geometric
equations and thus computing the joint angles required for
a specified goal pose. The computation is done by first
deriving joint values 1, 2 and 3 from Figure 3b, which
are responsible for the translation component of the end
effector pose. The remaining joint angles, which account
for the orientation component in the end effector pose, are
then computed based on the previous joint angles. Here, we
briefly illustrate how the first three angles, i.e., θ1, θ2, θ3,
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(a) KUKA KR60 in USARSim (b) URDF Robot Model visualized in
rViz

Fig. 3: Visualization of the KUKA KR60 robot in simulation

are calculated. We denote the initial position and the goal
position, as (x1, y1, z1) and (x2, y2, z2), respectively. Please
note that all the constants are expressed in UDK/Unreal units
(uu), using the 1uu↔ 804mm conversion.

1) First angle calculation

Let A =
√

(x1 − x2)2 + (y1 − y2)2

B =
√
x22 + (y1 − y2)2

then θ1 = cos−1

(
B2 + x1

2 −A2

2Bx1

)
Note that the goal position has to be rotated by θ1,
after the first angle calculation.

2) Second angle calculation

Let R =
√

0.182 + 1.232. We distinguish between the
following cases.

case 1: Goal position does not lie on a circle with
radius R

C =
√

(z2 − 1.01)2 + (x2 − 0.435)2

D =
√

(x2 − 0.435)2 + (z2 − 2.07)2

ψ = cos−1

(
1.062 + c2 −R2

2 ∗ 1.06C

)
γ = cos−1

(
1.062 + c2 −D2

2 ∗ 1.06C

)
θ2 =

{
ψ − γ , if x2 < x1

γ − ψ , if x2 > x1

case 2: Goal position lies on a circle with radius R

θ2 = 0

3) Third angle calculation We first calculate the goal
position with respect to the new coordinate axis of the

third joint.

x2 = x2 − 0.435± (1.06 ∗ cos(θ2))

z2 = z2− 1.01− (1.06 ∗ sin(θ2))

The newly acquired goal position also has to be rotated
to the opposite direction of θ2.

S = cos−1

(
R2 + 0.182 − 1.232

2R ∗ 0.18

)
P = cos−1

(x2
R

)
θ3 =

{
S − (π2 − P ) , if z2 > 0.18
π
2 − S − P , otherwise

C. Numeric IK solution

The numeric approach relies on the approximation of the
function mapping the joint space to Cartesian space with its
Jacobian. The algorithm 1 then uses the Jacobian pseudo-
inverse to compute the change in joint angles that bring the
end effector closer to the goal position [2]. In doing so, we
use the forward kinematics provided by the ROS transform
(tf) messages between all the joints of our URDF robot
model. The Jacobian is computed numerically and the inverse
kinematics solution follows from the above description.

Algorithm 1 Iterative Algorithm for solving IK

Given: xtarget
Wanted: qtarget, s.t. xtarget = FK(qtarget)
xactual = FK(qactual)
while ||xtarget − xactual|| < ε do

Let ∆x = xtarget − xactual
Let J = J(qactual)
∆q = (JTJ)−1JT ·∆x
qactual ← qactual + ∆q
xactual = FK(qactual)

end while
return qactual



TABLE I: Scores for ICRA 2011 order.xml files for
Georgia Institute of Technology (GT), Drexel University
(Drexel) and Jacobs University Bremen (Jacobs). Some
order.xml files for Drexel were not provided.

GT Drexel Jacobs
Day 1, Round 1 84.36 67.59 90.43
Day 1, Round 2 28.96 32.94 81.96
Day 1, Round 3 9.69 26.45 80.99
Day 1, Round 4 40.63 44.46 87.81
Day 2, Round 1 78.18 39.61 89.87
Day 2, Round 2 21.56 - 80.27
Day 2, Round 3 4.80 - 75.69
Day 2, Round 4 37.88 - 81.61

V. PRELIMINARY RESULTS

A. Palletizing

Table I shows the score our approach currently achieves
compared to the results from the Georgia Institute of Tech-
nology (GT) and Drexel University (Drexel). As input files,
the order.xml files from the ICRA 2011 mixed palletizing
competition tarball icra2011files.tar.gz 1 are used.
The evaluation program is the palletViewer software package
using the scoring file scoreAsPlannedConfig1.xml
from the ICRA 2011 tarball. To produce the scores seen in
the table, the packlist.xml from GT and Drexel that can
be found in the ICRA 2011 tarball, as well as our own results
were given to palletViewer. The ICRA 2011 website 2 also
compares the GT and Drexel results against an undisclosed
commercial software. Since we are not able to reproduce the
listed GT and Drexel scores ourselves using the provided
order.xml files and the palletViewer evaluation program,
the commercial results are omitted from the comparison. A
limitation of the current version of palletViewer is, that it
can only process one pallet as an input even though many
orders require to be distributed across multiple pallets. As
soon as the palletViewer version for 2012 is released, our
code will be adjusted to work well with it.

B. Task Completion

For the task completion component we assessed the per-
formance of our approach qualitatively by visual inspection
and quantitatively by comparing the accuracy of the reached
poses. We set up a scenario, as presented in Figure 4, where
the robot picks boxes that successively appear at a fixed
location and places them on the pallet at locations indicated
by the palletizing algorithm.

Our experiments show that the numeric IK is prone to
jerk when reaching far poses, but is quite smooth for close
poses. In contrast, the geometric approach is smooth in both
cases, but is less accurate than the numeric approach for
close poses. The quantitative metric used for accuracy is the
norm of the pose error vector:

||xtarget − xactual||2

1http://www.vma-competition.com/files/
icra2011files.tar.gz

2http://www.vma-competition.com/?q=node/13

TABLE II: Accuracy of IK approaches in Unreal units

Geometric Numeric
Close poses ≈ 0.06uu ≈ 0.01uu
Far poses ≈ 0.02uu –

The results in Table II show that the numeric approach
is about an order of magnitude more accurate in the case
of close poses. For the case of far poses, we do not report
the result, because the jitteriness of the robot arm yields the
solution infeasible.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented the approach of the Jacobs
University Bremen team for the IEEE ICRA 2012 Virtual
Manufacturing Automation Competition. Our approach dy-
namically chooses the best heuristic to apply for solving the
3D bin packing problem. The results shown in section V
are superior to the other university teams’ results in [6]
and comparable to the commercial software benchmark. The
flexibility of our approach allows us to quickly adjust to the
given metrics and scenarios.

Additionally, we investigate task completion in a simulated
environment, i.e., using the output of the palletizing task to
place items on a pallet with a robotic arm. We solve task
completion within a ROS framework, where we combine
two textbook approaches for solving the inverse kinematics
of the simulated KUKA KR60 robot. While our approach
may benefit from further improvements, e.g., use via-points
for planning the end-effector trajectory so as to avoid object
collisions, it lays the foundation for the intermediary step that
bridges the palletizing and the mobility components. Given
the experimental nature of the task completion component,
we only report preliminary results and qualitatively assess
the performance of our work.

Needless to say, a lot of work remains to be done. In future
work we will focus on the mobility challenge, building on top
of our existing components. Furthermore, we aim at selecting
heuristics for palletizing using a learning approach.
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