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Abstract

Precise digital 3D models of indoor environments
are needed in several applications, e.g., facility
management, architecture, rescue and inspection
robotics. This paper presents a new method that
transforms a 3D volumetric model, acquired by a
mobile robot equipped with a 3D laser scanner,
into a very precise compact 3D map and gener-
ates semantic descriptions. The scanned 3D scene
is matched against a coarse semantic description of
general indoor environments. The matching is done
by a Prolog program compiled from the scanned 3D
scene and combined with clauses from the coarse
semantic description. The generated scene specific
knowledge produced by the unification in the Pro-
log program is used to refine the 3D model.

1 Introduction

Automatic and precise reconstruction of indoor en-
vironments is an important task in architecture and
robotics. Autonomous mobile robots equipped with
3D laser range finders are well suited for gaging the
3D data. Due to odometry errors the self localiza-
tion of the robot is an unprecise measurement and
therefore can only be used as a starting point for
registration of the 3D scans in a common coordi-
nate system. Furthermore the merging of the views
as well as the scanning process itself is noisy and
small errors may occur. We overcome these prob-
lems by extending the reconstruction process with
a new knowledge based approach for the automatic
model refinement.

Since architectural shapes of environments fol-
low standard conventions arising from tradition or
utility [6] we exploit knowledge for reconstruction
of indoor environments. The used knowledge de-
scribes general attributes of the domain, i.e., archi-
tectural features as plane walls, ceilings and floors.

For various domains different knowledge is needed,
e.g., for reverse engineering of CAD parts [17]. We
show that applying general knowledge for recover-
ing specific knowledge improves reverse engineer-
ing.

This paper presents algorithms for building com-
pact and precise 3D models and extends our work
in [12]. The proposed algorithm consists of three
steps: First we extract features, i.e., planes from
registered unmeshed range data. The planes are
found by an algorithm which is a mixture of the
RANSAC (Random Sample Consensus) algorithm
and the ICP (Iterative Closest Point) algorithm [1,
3]. Second the computed planes are labeled based
on their relative orientation. A predefined semantic
net implementing general knowledge about indoor
environments is employed to define these orienta-
tions. The semantic net is externalized through a
representation by a set of Horn clauses. 3D analysis
of the previously found planes compiles additional
clauses. Prolog’s unification and backtracking al-
gorithms are used to derive a scene specific inter-
pretation from the general knowledge. Finally ar-
chitectural constraints like parallelism and orthog-
onality are enforced with respect to the gaged 3D
data by numerical methods to refine the 3D model.
To this end, two minimization algorithms are com-
pared: Powell’s method and the downhill simplex
method.

The paper is organized as follows. After dis-
cussing the state of the art in the following part we
present the 3D laser range finder that is mounted
on an autonomous mobile robot. Then we start to
describe algorithms for the 3D model based analy-
sis and scene refinement. These algorithms run af-
ter data acquisition. The second section presents
the feature extraction algorithm. The algorithms for
semantic interpretation of the data is given in sec-
tion three. In section 4 the model refinement is de-
scribed. Section 5 concludes the paper.
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1.1 Related Work

Automatic and autonomous reconstruction of envi-
ronments has received much attention for several
years. Some groups have attempted to build 3D vol-
umetric representations of environments with 2D
laser range finders [8, 11]. One laser scanner is
mounted horizontally and one is mounted vertically.
The latter one grabs a vertical scan line which is
transformed into 3D points using the current robot
pose. The horizontal scanner is used to compute the
robot pose. The precision of 3D data points depends
on that pose and on the precision of the scanner.

A few other groups use 3D laser scanners [2, 9,
19]. A 3D laser scanner generates consistent 3D
data points within a single 3D scan. The RESOLV
project aimed to model interiors for virtual reality
and tele presence [19]. They used a RIEGL laser
range finder on robots and the ICP algorithm for
scan matching [3]. The AVENUE project develops
a robot for modeling urban environments [2], us-
ing a CYRAX laser scanner. The research group
of M. Hebert reconstruct environments using the
Zoller+Fröhlich laser scanner and aim to build 3D
models without initial position estimates, i.e., with-
out odometry information [9].

1.2 The AIS 3D Laser Range Finder

The AIS 3D laser range finder [20] is built on the
basis of a 2D range finder by extension with a mount
and a servomotor. The 2D laser range finder is at-
tached to the mount for being rotated. The rotation
axis is horizontal. A standard servo is connected on
the left side (figure 1) [20].

The area of180◦(h) × 120◦(v) is scanned with
different horizontal (181, 361, 721) and vertical
(128, 256, 512) resolutions. A plane with 181 data
points is scanned in 13 ms by the 2D laser range
finder (rotating mirror device). Planes with more
data points, e.g., 361, 721, duplicate or quadrupli-
cate this time. Thus a scan with 181× 256 data
points needs 3.4 seconds. In addition to the distance
measurement the AIS 3D laser range finder is capa-
ble of quantifying the amount of light returning to
the scanner.

1.3 The Autonomous Mobile Robot

KURT2 (figure 1) is a mobile robot platform with
a size of 45 cm (length)× 33 cm (width)× 26 cm

Figure 1: The robot platform KURT2 equipped with
the AIS 3D laser range finder.

(height) and a weight of 15.6 kg. Equipped with the
3D laser range finder the height increases to 47 cm
and weight increases to 22.6 kg. KURT2’s maxi-
mum velocity is 5.2 m/s (autonomously controlled
4.0 m/s). Two 90W motors are used to power the
6 wheels, whereas the front and rear wheels have
no tread pattern to enhance rotating. KURT2 oper-
ates for about 4 hours with one battery (28 NiMH
cells, capacity: 4500 mAh) charge. The core of the
robot is a Pentium-III-600 MHz with 384 MB RAM
running Linux. An embedded 16-Bit CMOS micro-
controller is used to control the motor.1.

1.4 Range Image Registration

We use the well-known Iterative Closest Points
(ICP) algorithm to calculate a rough approxima-
tion of the transformation while the robot is acquir-
ing the 3D scans. The ICP algorithm calculates it-
eratively the point correspondence. In each itera-
tion step, the algorithm selects the closest points as
correspondences and calculates the transformation
(R, t) for minimizing the equation

E(R, t)=

Nm∑
i=1

Nd∑
j=1

wi,j ||mi − (Rdj + t)||2 , (1)

whereNm andNd, are the number of points in the
model setM or data setD, respectively andwji

are the weights for a point match. The weights are

1Videos of the exploration with the autonomous mo-
bile robot can be found athttp://www.ais.fhg.de/
ARC/kurt3D/index.html and http://www.ais.
fhg.de/ARC/3D/scanner/cdvideos.html
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assigned as follows:wji = 1, if mi is the closest
point todj within a close limit,wji = 0 otherwise.

It is shown that the iteration terminates in a min-
imum [3]. The assumption is that in the last itera-
tion step the point correspondences are correct. In
each iteration, the transformation is calculated by
the quaternion based method of Horn [10].

To digitalize environments without occlusions,
multiple 3D scans have to be registered. After reg-
istration, the scene has to be globally consistent.
We designed a method calledsimultaneous match-
ing to generate overall consistent scenes by mini-
mizing the global error [12]. The computed trans-
formations are applied to the robot pose and thus
a relocalization of the robot is done after every 3D
scan. Therefore thesimultaneous localization and
mapping problem (SLAM)is solved.

2 Feature Detection

A common technique for plane extraction is the re-
gion growing based approach, e.g., used by Hähnel
et al. [8]. Starting from an initial mesh, neighbored
planar triangles are merged iteratively. The draw-
back of this approach is the high computational de-
mand.

Another well known algorithm for feature extrac-
tion from data sets is the RANSAC algorithm [1],
used by Cantzler et al. [5]. RANSAC (Random
Sample Consensus) is a simple algorithm for ro-
bust fitting of models in the presence of many data
outliers. RANSAC first selectsN data items ran-
domly and uses them to estimate the parameters of
the plane. The next step computes the number of
data points fitting the model based on a user given
tolerance. RANSAC accepts the fit, if the computed
number exceeds a certain limit. Otherwise the algo-
rithm iterates with other points [1].

Liu et al. proposes another technique for plane
extraction from range data. They use expectation
maximization (EM) for generating a surface model
[11]. Their algorithm adjusts the number of planes
and estimates the location and orientation, by max-
imizing the expectation of a logarithmic likelihood
function. Plane parameters are efficiently calculated
by reducing the problem to a computation of eigen-
values by introducing Lagrange multipliers. This
approach is not inherently able to determine the
number of planes in the data set [8].

Our algorithm is a mixture of the RANSAC and

the ICP algorithm, and provides fast plane extrac-
tion for a point cloud. No prior meshing algorithms
need to be applied. A planep is defined by three
3D points (p1,p2,p3 ∈ R3) or by one 3D point
and the surface normal (p1, n with ||n|| = 1,
p1,n ∈ R3). To detect a surface, the algorithm ran-
domly selects a point and estimates a plane through
two neighbored data points. Now the data points
x ∈ R3 are calculated that fulfill:

|(x− p1) · n| < ε. (2)

If this set of points exceeds a limit, e.g., 50 points,
an ICP based optimization is started. All data points
satisfying eq. (2) form the model setM and are
projected to the plane to form the data setD for
each iteration of the ICP algorithm. Minimizing
the ICP error function (1) by transforming the plane
with this point-to-plane metric takes only a few it-
erations. The time consuming search is replaced
by direct calculation of the closest point and the
transformation (R, t) is efficiently calculated [10].
Given the best fit, all plane points are marked and
subtracted from the original data set. The algorithm
terminates after all points have been tested accord-
ing to eq. (2).

The extracted 3D planes are unbounded in size.
Surfaces are finally extracted from the points by
mapping them onto the planes. A quadtree based
method generates the surfaces. Figure 4 shows an
example with 7 extracted planes of a single 3D scan
containing 58680 range data points.

3 Semantic Scene Interpretation

The scene interpretation uses the features, i.e.,
planes previously computed. The background
for interpretation comprises generic architectural
knowledge. A model of an indoor scene is imple-
mented as a semantic net based on the idea of Grau
et al. [7] that is also used by Cantzler et al. [5].

Nodes of a semantic net represent enti-
ties of the world. The relationship between
the entities are encoded using different con-
nections. Possible labels of the nodes are
L = {Wall , Floor , Ceiling , Door ,
No Feature }. The relationships between the
features areR = {parallel , orthogonal ,
above , under , equalheight }. The labels
above andunder are relative to their plane and
hence not commutative. Figure 2 left shows the
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. . .

equalheight(floor,floor).

equalheight(ceiling,ceiling).

equalheight(door, ).

. . .

Figure 2: Left: Semantic net for scene interpretation. Right: Externalized knowledge representation in
Prolog with facts for every arc of the net and a condition for theNo Feature label.

entities and their relations. The entitydoor repre-
sents anopendoor. The semantic net can easily be
extended. Further entities have to be accompanied
by a more sophisticated feature detection. This
paper concentrates on plane detection so that the
semantic net is a subset of all indoor environments.

Prolog is used to implement and externalize the
semantic net. The net is encoded by definite Horn
clauses [18]. The nodes of the net are arguments
and the arcs define relations on the nodes. Figure 2
right shows a part of the semantic net as a Prolog
program. All facts for the relationparallel are
shown. For encoding the labelnofeature , a
condition is used. This prevents Prolog’s unifica-
tion algorithm from assigning planes with the label
nofeature . In addition to the representation of
the semantic net, a clause of the following form
is compiled from the analysis of the planes. The
planes are represented by variablesP0, P1, etc.:
labeling(P0,P1,P2,P3,P4) :-

parallel(P0,P1),under(P0,P1),

orthogonal(P0,P2),under(P0,P2),

orthogonal(P0,P3),under(P0,P3),

parallel(P0,P4),above(P0,P4),

· · ·
Prolog’s unification algorithm is used to assign a
consistent labeling to the planes:
consistent labeling(P0,P1,P2,P3,P4) :-

labeling(P0,P1,P2,P3,P4).

The label nofeature is considered, iff the
unification fails. In this case, an additional Horn
clause is used to generate a consistent labeling with
explicit unifying of one variable withnofeature .
All combinations are computed to unify the vari-
able:
consistent labeling(P0,P1,P2,P3,P4) :-

comb([P0,P1,P2,P3,P4],[nofeature]),

labeling(P0,P1,P2,P3,P4).

The process is continued with assigning two
variables the label tonofeature , and so on until
a Prolog’s unification succeeds:
consistent labeling(P0,P1,P2,P3,P4) :-

comb([P0,P1,P2,P3,P4],[nofeature,nofeature]),

labeling(P0,P1,P2,P3,P4).

· · ·
The order of the rules above is important, as in all
Prolog programs. Prolog searches for clauses from
top to bottom. The following three clauses are used
to compute all combinations:
comb( ,[]).

comb([X|T],[X|Comb]) :- comb(T,Comb).

comb([ |T],[X|Comb]) :- comb(T,[X|Comb]).

Finally the following query is submitted:
consistent labeling(P0,P1,P2,P3,P4).

and the automatic generated Prolog program starts
and computes the solution. Table 1 shows the com-
putation time (Pentium IV-2400, SWI-Prolog [15])
of the Prolog program and a previous complete
depth first search implementation [12].

number of planes backtracking Prolog
5 93.51 ms 89.33 ms
7 155.14 ms 101.81 ms
13 589.11 ms 313.79 ms

Table 1: Computation time for matching the seman-
tic net with the planes.

4 Model Refinement

Due to unprecise measurements or registration er-
rors, the 3D data might be erroneous. These errors
lead to inaccurate 3D models. The semantic inter-
pretation enables us to refine the model. The planes
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are adjusted such that they explain the 3D data, and
the semantic constraints like parallelism or orthog-
onality are enforced.

To enforce the semantic constraints, the model is
first simplified. A preprocessing step merges neigh-
boring planes with equal labels, e.g., two ceiling
planes. This simplification process increases the
point to plane distance, which has to be reduced in
the following main optimization process. This opti-
mization uses an error function to enforce the paral-
lelism or orthogonality constraints. The error func-
tion consists of two parts. The first part accumulates
the point to plane distances and the second part ac-
cumulates the angle differences given through the
constraints. The error function has the following
form:

E(P ) =
∑
pi∈P

∑
x∈p1

||(x− pi1) · ni||

+ γ
∑
pi∈P

∑
pj∈P

ci,j , (3)

whereci,j expresses the parallelism or orthogonal-
ity constraints, respectively, according to

ci,j = min{| arccos(ni · nj)|,
|π − arccos(ni · nj)|}, and

ci,j = |π
2
− arccos(ni · nj)|, respectively.

Minimization ofE(P ) (eq. (3)) is a nonlinear opti-
mization process.

The time consumed for optimizingE(P ) in-
creases with the number of plane parameters. To
speed up the process, the normal vectorsn of the
planes are specified by spherical coordinates, i.e.,
two anglesα, β. The pointp1 of a plane is re-
duced to a fixed vector pointing from the origin of
the coordinate system in the direction ofp1 and its
distanced. The minimal description of all planes
P consists of the concatenation ofpi, with pi =
(αi, βi, di), i.e., a planepi is defined by two angles
and a distance.

4.1 Powell’s Method

A suitable optimization algorithm for eq. (3) is
Powell’s method [13], because the optimal solution
is close to the starting point. Powell’s method finds
search directions with a small number of error func-
tion evaluations of eq. (3). Gradient descent al-
gorithms have difficulties, since no derivatives are
available.

Powell’s method computes directions for func-
tion minimization in one direction [13]. From the
starting pointP0 in then-dimensional search space
(the concatenation of the 3-vector descriptions of all
planes) the error function (3) is optimized along a
direction i using a one dimensional minimization
method, e.g., Brent’s method [14].

Conjugate directions are good search directions,
while unit basis directions are inefficient in error
functions with valleys. At the line minimum of a
function along the directioni the gradient is perpen-
dicular toi. In addition, the n-dimensional function
is approximated at pointP by a Taylor series using
pointP0 as origin of the coordinate system. It is

E(P ) = E(P0) +

∑
k

∂E

∂Pk

Pk +

∑
k,l

∂2E

∂Pk∂Pl

PkPl

+ · · ·

≈ c− b · P +
1

2
P ·A · P (4)

with c = E(P0), b = ∇E|P0 and A the Hes-
sian matrix ofE at pointP0. Given a directioni,
the method of conjugate gradients is to select a new
direction j so thati and j are perpendicular. This
selection prevents interference of minimization di-
rections. For the approximation above the gradient
of E is∇E = A · P − b. From the differentiation
(δ(∇E) = A(δP )) it follows for directionsi andj
that

0 = i · δ(∇E) = i ·A · j. (5)

With the above equation conjugate directions are
defined and Powell’s method produces such direc-
tions, without computing derivatives.

The following heuristic scheme is implemented
for finding new directions. Starting point is the de-
scription of the planes and the initial directionsil,
l = 1, . . . , n are the unit basis directions. The al-
gorithm repeats the following steps until the error
function (3) reaches a minimum [14]:

1. Save the starting position asP0.
2. Forl = 1, . . . , n, minimize the error function

(3) starting fromPl−1 along the directionil
and store the minimum as the next positionPl.
After the loop, allPl are computed.

3. Let il be the direction of the largest decrease.
Now this directionil is replaced with the di-
rection given by(Pn − P0). The assumption
of the heuristic is that the substituted direction
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includes the replaced direction so that the re-
sulting set of directions remains linear inde-
pendent.

4. The iteration process continues with the new
starting positionP0 = Pn, until the minimum
is reached.

Experimental evaluations for the environment
test settings show that the minimization algorithm
finds a local minimum of the error function (3) and
the set of directions remains linear independent.
The computed description of the planes fits the data
and the semantic model.

4.2 Downhill Simplex Method

Another suitable optimization algorithm for eq. (3)
is the downhill simplex method as used by Cantzler
et al. [4]. A nondegenerate simplex is a geometrical
figure consisting ofN+1 vertices inN dimensions,
whereas theN + 1 vertices span aN -dimensional
vector space. Given an initial starting pointP0, the
starting simplex is computed through

Pi = P0 + λil, (6)

with il the unit basis directions andλ a constant that
depends on the problem’s characteristic length scale
[14]. In our experimentsλ is set to 0.15.

The downhill simplex method consists of a series
of steps, i.e., reflections and contractions [14]. In a
reflection step the algorithm moves the point of the
simplex where the function is largest through the
opposite face of the simplex to some lower point. If
the algorithm reaches a “valley floor”, the method
contracts the simplex, i.e., the volume of the sim-
plex decreases by moving one or several points, and
moves along the valley [14].

Figure 3 shows the minimization of eq. (3) with
the downhill simplex method in comparison with
Powell’s method. The downhill simplex method
performs worse during the first steps, but reaches
a better minimum than Powell’s method. The peaks
in E(P ) produced by Powell’s method are the re-
sult of search directionsi cross a “valley” in combi-
nation with large steps in Brent’s line minimization
algorithm.

4.3 Final Refinement and Results

The semantic description, i.e., the ceiling and walls
enable to transform the orientation of the model

number of
function evaluation

200100
0

0

1679.09

10000

20000

E(P)

39.0

E(P) with Powell’s Method

396.5

E(P) with Downhill Simplex Method

Figure 3: Minimization of the error function start-
ing withE(P ) = 1679.09. Powell’s method finds a
minimum at 396.5 and the downhill simplex reaches
a minimum at 39.0.

along the coordinate axis. Therefore it is not nec-
essary to transform the model interactively into a
global coordinate system or to stay in the coordi-
nates given by the first 3D scan.

The proposed methods have been tested in sev-
eral experiments with our autonomous mobile robot
in the GMD Robobench, a standard office envi-
ronment for the evaluation of autonomous mobile
robots. Figure 4 shows an example 3D point cloud
(single 3D scan with 58680 points) and the seman-
tic interpretation. The figure shows the reduction
of the jitters at the floor, ceiling and walls (circled).
The orientation of the model in the bottom image
is transformed along the axis of the coordinate sys-
tem and the meshing algorithm produces flat walls.
Hereby an octree-based algorithm [16] generates
the mesh (cube width: 5cm). The total computa-
tion time for the complete optimization is about 2.4
seconds (Pentium-IV-2400).

5 Conclusion

This paper has presented a new approach to sen-
sor and knowledge based reconstruction of 3D in-
door environments with autonomous mobile robots
equipped with a 3D laser scanner. The proposed
method consists of three steps and is applied after
the 3D data is acquired:
• The first step is a fast feature extraction, i.e.,

plane detection. The presented algorithm is
a combination of the ICP algorithm with the
RANSAC approach.

• Second, the computed planes are labeled with
a predefined semantic net. The semantic net
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Figure 4: From top left to bottom right: Photo of the scanned scene; Reflectance values acquired by the AIS
3D laser range finder (distorted, since the rotation of the scanner is not considered [20]); 3D point cloud;
rendered scene with reflectance values; extracted planes with semantic interpretation; unconstrained mesh,
constrained mesh.
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contains and implements general knowledge
of indoor scenes. The semantic net is exter-
nalized and implemented as a Prolog program.
3D analysis of the extracted features compiles
additional clauses and Prolog’s backtracking
and unification algorithm derives scene spe-
cific knowledge.

• Third the model is refined with the constraints
arising from the semantic labeling. Numeri-
cal algorithms, i.e., Powell’s method and the
downhill simplex method are used for the 3D
model improvement.

The proposed method will be included in the robot
control architecture for the automatic gaging of in-
door environments.

Future work will concentrate on the integration
of two color cameras and enhancing the seman-
tic interpretation by fusing color images with range
data. The aperture angle of the camera will be en-
larged using a pan and tilt unit to acquire color in-
formation for all measured range points. Further-
more the semantic net will be extended to more de-
tailed features, i.e., non-planar features.
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